Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Front Immunol ; 13: 830290, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35300343

RESUMO

Cytotoxic lymphocytes release proteins contained within the cytoplasmic cytolytic granules after recognition of infected or tumor target cells. These cytotoxic granular proteins (namely granzymes, granulysin, and perforin) are key immunological mediators within human cellular immunity. The availability of highly purified cytotoxic proteins has been fundamental for understanding their function in immunity and mechanistic involvement in sepsis and autoimmunity. Methods for recovery of native cytotoxic proteins can be problematic leading to: 1) the co-purification of additional proteins, confounding interpretation of function, and 2) low yields of highly purified proteins. Recombinant protein expression of individual cytolytic components can overcome these challenges. The use of mammalian expression systems is preferred for optimal post-translational modifications and avoidance of endotoxin contamination. Some of these proteins have been proposed for host directed human therapies (e.g. - granzyme A), or treatment of systemic infections or tumors as in granulysin. We report here a novel expression system using HEK293T cells for cost-effective purification of high yields of human granzymes (granzyme A and granzyme B) and granulysin with enhanced biological activity than previous reports. The resulting proteins are free of native contaminants, fold correctly, and remain enzymatically active. Importantly, these improvements have also led to the first purification of biologically active recombinant human granulysin in high yields from a mammalian system. This method can be used as a template for purification of many other secreted cellular proteins and may lead to advances for human medicine.


Assuntos
Mamíferos , Animais , Citoplasma/metabolismo , Granzimas/metabolismo , Células HEK293 , Humanos , Mamíferos/metabolismo , Perforina
2.
Trends Immunol ; 43(2): 132-147, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34973923

RESUMO

Metabolic reprogramming of cancer cells creates a unique tumor microenvironment (TME) characterized by the limited availability of nutrients, which subsequently affects the metabolism, differentiation, and function of tumor-infiltrating T lymphocytes (TILs). TILs can also be inhibited by tumor-derived metabolic waste products and low oxygen. Therefore, a thorough understanding of how such unique metabolites influence mammalian T cell differentiation and function can inform novel anticancer therapeutic approaches. Here, we highlight the importance of these metabolites in modulating various T cell subsets within the TME, dissecting how these changes might alter clinical outcomes. We explore potential TME metabolic determinants that might constitute candidate targets for cancer immunotherapies, ideally leading to future strategies for reprogramming tumor metabolism to potentiate anticancer T cell functions.


Assuntos
Neoplasias , Microambiente Tumoral , Animais , Diferenciação Celular , Humanos , Imunoterapia , Linfócitos do Interstício Tumoral/metabolismo , Mamíferos , Neoplasias/metabolismo
3.
Adv Sci (Weinh) ; 9(1): e2101553, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34747157

RESUMO

Metabolic disorder is one of the hallmarks of cancers, and reprogramming of metabolism is becoming a novel strategy for cancer treatment. Citrate is a key metabolite and critical metabolic regulator linking glycolysis and lipid metabolism in cellular energy homeostasis. Here it is reported that citrate treatment (both sodium citrate and citric acid) significantly suppresses tumor cell proliferation and growth in various tumor types. Mechanistically, citrate promotes excessive lipid biosynthesis and induces disruption of lipid metabolism in tumor cells, resulting in tumor cell senescence and growth inhibition. Furthermore, ATM-associated DNA damage response cooperates with MAPK and mTOR signaling pathways to control citrate-induced tumor cell growth arrest and senescence. In vivo studies further demonstrate that citrate administration dramatically inhibits tumor growth and progression in a colon cancer xenograft model. Importantly, citrate administration combined with the conventional chemotherapy drugs exhibits synergistic antitumor effects in vivo in the colon cancer models. These results clearly indicate that citrate can reprogram lipid metabolism and cell fate in cancer cells, and targeting citrate can be a promising therapeutic strategy for tumor treatment.


Assuntos
Senescência Celular , Ácido Cítrico/metabolismo , Ácido Cítrico/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/biossíntese , Animais , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
4.
Front Immunol ; 12: 712678, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34413857

RESUMO

Mycobacterium tuberculosis (Mtb), the pathological agent that causes tuberculosis (TB) is the number one infectious killer worldwide with one fourth of the world's population currently infected. Data indicate that γ9δ2 T cells secrete Granzyme A (GzmA) in the extracellular space triggering the infected monocyte to inhibit growth of intracellular mycobacteria. Accordingly, deletion of GZMA from γ9δ2 T cells reverses their inhibitory capacity. Through mechanistic studies, GzmA's action was investigated in monocytes from human PBMCs. The use of recombinant human GzmA expressed in a mammalian system induced inhibition of intracellular mycobacteria to the same degree as previous human native protein findings. Our data indicate that: 1) GzmA is internalized within mycobacteria-infected cells, suggesting that GzmA uptake could prevent infection and 2) that the active site is not required to inhibit intracellular replication. Global proteomic analysis demonstrated that the ER stress response and ATP producing proteins were upregulated after GzmA treatment, and these proteins abundancies were confirmed by examining their expression in an independent set of patient samples. Our data suggest that immunotherapeutic host interventions of these pathways may contribute to better control of the current TB epidemic.


Assuntos
Trifosfato de Adenosina/biossíntese , Estresse do Retículo Endoplasmático/imunologia , Granzimas/fisiologia , Monócitos/microbiologia , Mycobacterium bovis/fisiologia , Subpopulações de Linfócitos T/imunologia , Western Blotting , Divisão Celular , Granzimas/biossíntese , Granzimas/genética , Granzimas/farmacologia , Células HEK293 , Humanos , Células T de Memória/imunologia , Células T de Memória/metabolismo , Proteoma , Receptores de Antígenos de Linfócitos T gama-delta/análise , Proteínas Recombinantes/farmacologia , Subpopulações de Linfócitos T/metabolismo , Eletroforese em Gel Diferencial Bidimensional
5.
Oncogene ; 40(27): 4521-4537, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34120141

RESUMO

Natural killer (NK) and natural killer T (NKT) cells are two important cell subsets of the innate immune system. NK and NKT cells share many phenotypes and functions for anti-tumor immunity; however, the dynamic changes in phenotypes and functional interactions within the tumor microenvironment during tumor development and progression are unknown. Here we report that NK and NKT cells have distinct properties, metabolic profiles, and functions during tumor development. Using the mouse E0771 breast cancer and B16 melanoma models, we found that both NK and NKT cells are dynamically involved in the immune responses to cancer but have distinct distributions and phenotypic profiles in tumor sites and other peripheral organs during the course of tumor development and progression. In the early stages of tumor development, both NK and NKT cells exhibit effector properties. In the later cancer stages, NK and NKT cells have impaired cytotoxic capacities and dysfunctional states. NK cells become senescent cells, while NKT cells, other than invariant NKT (iNKT) cells, are exhausted in the advanced cancers. In contrast, iNKT cells develop increases in activation and effector function within the breast tumor microenvironment. In addition, senescent NK cells have heightened glucose and lipid metabolism, but exhausted NKT cells display unbalanced metabolism in tumor microenvironments of both breast cancer and melanoma tumor models. These studies provide a better understanding of the dynamic and distinct functional roles of NK and NKT cells in anti-tumor immunity, which may facilitate the development of novel immunotherapies targeting NK and NKT cells for cancer treatment.


Assuntos
Microambiente Tumoral , Animais , Neoplasias da Mama , Feminino , Camundongos
6.
Infect Immun ; 89(7): e0073820, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33941576

RESUMO

Trypanosoma cruzi is the intracellular parasite of Chagas disease, a chronic condition characterized by cardiac and gastrointestinal morbidity. Protective immunity requires CD4+ T cells, and Th1 cells and gamma interferon (IFN-γ) are important players in host defense. More recently, Th17 cells and interleukin 17A (IL-17A) have been shown to exert protective functions in systemic T. cruzi infection. However, it remains unclear whether Th17 cells and IL-17A protect in the mucosa, the initial site of parasite invasion in many human cases. We found that IL-17RA knockout (KO) mice are highly susceptible to orogastric infection, indicating an important function for this cytokine in mucosal immunity to T. cruzi. To investigate the specific role of Th17 cells for mucosal immunity, we reconstituted RAG1 KO mice with T. cruzi-specific T cell receptor transgenic Th17 cells prior to orogastric T. cruzi challenges. We found that Th17 cells provided protection against gastric mucosal T. cruzi infection, indicated by significantly lower stomach parasite burdens. In vitro macrophage infection assays revealed that protection by Th17 cells is reduced with IL-17A neutralization or reversed by loss of macrophage NADPH oxidase activity. Consistently with this, mice lacking functional NADPH oxidase were not protected by Th17 cell transfer. These data are the first report that Th17 cells protect against mucosal T. cruzi infection and identify a novel protective mechanism involving the induction of NADPH oxidase activity by IL-17A. These studies provide important insights for Chagas vaccine development and, more broadly, increase our understanding of the diverse roles of Th17 cells in host defense.


Assuntos
Doença de Chagas/imunologia , Mucosa Gástrica/imunologia , Mucosa Gástrica/parasitologia , Interações Hospedeiro-Parasita/imunologia , Imunidade nas Mucosas , Células Th17/imunologia , Trypanosoma cruzi/imunologia , Animais , Doença de Chagas/metabolismo , Doença de Chagas/parasitologia , Modelos Animais de Doenças , Interleucina-17/genética , Interleucina-17/metabolismo , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Camundongos , Camundongos Knockout , NADPH Oxidases/metabolismo , Células Th17/metabolismo
7.
Sci Transl Med ; 13(587)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790024

RESUMO

The functional state of T cells is a key determinant for effective antitumor immunity and immunotherapy. Cellular metabolism, including lipid metabolism, controls T cell differentiation, survival, and effector functions. Here, we report that development of T cell senescence driven by both malignant tumor cells and regulatory T cells is a general feature in cancers. Senescent T cells have active glucose metabolism but exhibit unbalanced lipid metabolism. This unbalanced lipid metabolism results in changes of expression of lipid metabolic enzymes, which, in turn, alters lipid species and accumulation of lipid droplets in T cells. Tumor cells and Treg cells drove elevated expression of group IVA phospholipase A2, which, in turn, was responsible for the altered lipid metabolism and senescence induction observed in T cells. Mitogen-activated protein kinase signaling and signal transducer and activator of transcription signaling coordinately control lipid metabolism and group IVA phospholipase A2 activity in responder T cells during T cell senescence. Inhibition of group IVA phospholipase A2 reprogrammed effector T cell lipid metabolism, prevented T cell senescence in vitro, and enhanced antitumor immunity and immunotherapy efficacy in mouse models of melanoma and breast cancer in vivo. Together, these findings identify mechanistic links between T cell senescence and regulation of lipid metabolism in the tumor microenvironment and provide a new target for tumor immunotherapy.


Assuntos
Imunoterapia , Metabolismo dos Lipídeos , Animais , Senescência Celular , Humanos , Camundongos , Linfócitos T Reguladores , Microambiente Tumoral
8.
PLoS Pathog ; 16(12): e1009128, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33284859

RESUMO

Cytokine storm is suggested as one of the major pathological characteristics of SARS-CoV-2 infection, although the mechanism for initiation of a hyper-inflammatory response, and multi-organ damage from viral infection is poorly understood. In this virus-cell interaction study, we observed that SARS-CoV-2 infection or viral spike protein expression alone inhibited angiotensin converting enzyme-2 (ACE2) receptor protein expression. The spike protein promoted an angiotensin II type 1 receptor (AT1) mediated signaling cascade, induced the transcriptional regulatory molecules NF-κB and AP-1/c-Fos via MAPK activation, and increased IL-6 release. SARS-CoV-2 infected patient sera contained elevated levels of IL-6 and soluble IL-6R. Up-regulated AT1 receptor signaling also influenced the release of extracellular soluble IL-6R by the induction of the ADAM-17 protease. Use of the AT1 receptor antagonist, Candesartan cilexetil, resulted in down-regulation of IL-6/soluble IL-6R release in spike expressing cells. Phosphorylation of STAT3 at the Tyr705 residue plays an important role as a transcriptional inducer for SOCS3 and MCP-1 expression. Further study indicated that inhibition of STAT3 Tyr705 phosphorylation in SARS-CoV-2 infected and viral spike protein expressing epithelial cells did not induce SOCS3 and MCP-1 expression. Introduction of culture supernatant from SARS-CoV-2 spike expressing cells on a model human liver endothelial Cell line (TMNK-1), where transmembrane IL-6R is poorly expressed, resulted in the induction of STAT3 Tyr705 phosphorylation as well as MCP-1 expression. In conclusion, our results indicated that the presence of SARS-CoV-2 spike protein in epithelial cells promotes IL-6 trans-signaling by activation of the AT1 axis to initiate coordination of a hyper-inflammatory response.


Assuntos
COVID-19/imunologia , Interleucina-6/imunologia , Receptores de Angiotensina/metabolismo , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , COVID-19/metabolismo , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/metabolismo , Síndrome da Liberação de Citocina/virologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Humanos , Interleucina-6/metabolismo , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia , SARS-CoV-2/metabolismo , Transdução de Sinais/fisiologia , Ativação Transcricional
9.
Front Immunol ; 11: 1952, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922402

RESUMO

TH17 cells have been extensively investigated in inflammation, autoimmune diseases, and cancer. The precise molecular mechanisms for TH17 cell regulation, however, remain elusive, especially regulation at the post-transcriptional level. Tristetraprolin (TTP) is an RNA-binding protein important for degradation of the mRNAs encoding several proinflammatory cytokines. With newly generated T cell-specific TTP conditional knockout mice (CD4CreTTPf/f), we found that aging CD4CreTTPf/f mice displayed an increase of IL-17A in serum and spontaneously developed chronic skin inflammation along with increased effector TH17 cells in the affected skin. TTP inhibited TH17 cell development and function by promoting IL-17A mRNA degradation. In a DSS-induced colitis model, CD4CreTTPf/f mice displayed severe colitis and had more TH17 cells and serum IL-17A compared with wild-type mice. Furthermore, neutralization of IL-17A reduced the severity of colitis. Our results reveal a new mechanism for regulating TH17 function and TH17-mediated inflammation post-transcriptionally by TTP, suggests that TTP might be a novel therapeutic target for the treatment of TH17-mediated diseases.


Assuntos
Colite/metabolismo , Colo/metabolismo , Interleucina-17/sangue , Células Th17/metabolismo , Tristetraprolina/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Anticorpos Neutralizantes/farmacologia , Colite/induzido quimicamente , Colite/imunologia , Colite/prevenção & controle , Colo/efeitos dos fármacos , Colo/imunologia , Colo/patologia , Dermatite/imunologia , Dermatite/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Humanos , Interleucina-17/genética , Células Jurkat , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Tristetraprolina/deficiência , Tristetraprolina/genética
10.
J Clin Invest ; 130(3): 1073-1083, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32118585

RESUMO

The functional state of the preexisting T cells in the tumor microenvironment is a key determinant for effective antitumor immunity and immunotherapy. Increasing evidence suggests that immunosenescence is an important state of T cell dysfunction that is distinct from exhaustion, a key strategy used by malignant tumors to evade immune surveillance and sustain the suppressive tumor microenvironment. Here, we discuss the phenotypic and functional characteristics of senescent T cells and their role in human cancers. We also explore the possible mechanisms and signaling pathways responsible for induction of T cell senescence by malignant tumors, and then discuss potential strategies to prevent and/or reverse senescence in tumor-specific T cells. A better understanding of these critical issues should provide novel strategies to enhance cancer immunotherapy.


Assuntos
Senescência Celular/imunologia , Imunoterapia , Neoplasias , Transdução de Sinais/imunologia , Microambiente Tumoral/imunologia , Animais , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia
11.
Vaccine ; 37(23): 3022-3030, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31040086

RESUMO

Mycobacterium bovis bacille Calmette-Guérin (BCG) prevents extrapulmonary tuberculosis (TB) and death among infants but fails to consistently and sufficiently prevent pulmonary TB in adults. Thus, TB remains the leading infectious cause of death worldwide, and new vaccine approaches are urgently needed. T-cells are important for protective immunity to Mycobacterium tuberculosis (Mtb), but the optimal T-cell antigens to be included in new vaccines are not established. T-cells are often thought of as responding mainly to peptide antigens presented by polymorphic major histocompatibility complex (MHC) I and II molecules. Over the past two decades, the number of non-peptidic Mtb derived antigens for αß and γδ T-cells has expanded rapidly, creating broader perspectives about the types of molecules that could be targeted by T-cell-based vaccines against TB. Many of these non-peptide responsive T-cell subsets in humans are activated in a manner that is unrestricted by classical MHC-dependent antigen-presenting systems, but instead require essentially nonpolymorphic presentation systems. These systems are Cluster of differentiation 1 (CD1), MHC related protein 1 (MR1), butyrophilin 3A1, as well as the nonclassical MHC class Ib family member HLA-E. Thus, the resulting T-cell responses can be shared among a genetically diverse population, creating the concept of donor-unrestricted T-cells (DURTs). Here, we review evidence that DURTs are an abundant component of the human immune system and recognize many antigens expressed by Mtb, including antigens that are expressed in BCG and other candidate whole cell vaccines. Further, DURTs exhibit functional diversity and demonstrate the ability to control microbial infection in small animal models. Finally, we outline specific knowledge gaps and research priorities that must be addressed to realize the full potential of DURTs as part of new TB vaccines approaches.


Assuntos
Subpopulações de Linfócitos T/imunologia , Doadores de Tecidos , Vacinas contra a Tuberculose/imunologia , Tuberculose Pulmonar/prevenção & controle , Animais , Apresentação de Antígeno/imunologia , Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Antígenos CD1/imunologia , Ensaios Clínicos como Assunto , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Camundongos , Mycobacterium tuberculosis , Peptídeos/química , Peptídeos/imunologia
12.
Hepatology ; 69(5): 1873-1884, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29443378

RESUMO

A comprehensive strategy to control hepatitis C virus (HCV) infection needs a vaccine. Our phase I study with recombinant HCV E1/E2 envelope glycoprotein (EnvGPs) as a candidate vaccine did not induce a strong immune response in volunteers. We analyzed the interactions of HCV EnvGPs with human monocyte-derived macrophages as antigen-presenting cells. HCV E2 induced immune regulatory cytokine interleukin (IL)-10 and soluble CD163 (sCD163) protein expression in macrophages from 7 of 9 blood donors tested. Furthermore, HCV E2 enhanced Stat3 and suppressed Stat1 activation, reflecting macrophage polarization toward M2 phenotype. E2-associated macrophage polarization appeared to be dependent of its interaction with CD81 leading endothelial growth factor receptor (EGFR) activation. Additionally, E2 suppressed the expression of C3 complement, similar to HCV-exposed dendritic cells (DCs), implying potential impairment of immune cell priming. Conclusion: Our results suggest that E2 EnvGP may not be an ideal candidate for HCV vaccine development, and discrete domains within E2 may prove to be more capable of elliciting a protective immune response. (Hepatology 2018).


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Macrófagos/metabolismo , Proteínas do Envelope Viral/fisiologia , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Complemento C3/metabolismo , Células Dendríticas/metabolismo , Receptores ErbB/metabolismo , Humanos , Interleucina-10/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Superfície Celular/metabolismo , Tetraspanina 28/metabolismo
13.
Cell Metab ; 29(1): 103-123.e5, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30344014

RESUMO

Regulatory T (Treg) cells induce an immunosuppressive microenvironment that is a major obstacle for successful tumor immunotherapy. Dissecting the regulatory mechanisms between energy metabolism and functionality in Treg cells will provide insight toward developing novel immunotherapies against cancer. Here we report that human naturally occurring and tumor-associated Treg cells exhibit distinct metabolic profiles with selectivity for glucose metabolism compared with effector T cells. Treg-mediated accelerated glucose consumption induces cellular senescence and suppression of responder T cells through cross-talk. TLR8 signaling selectively inhibits glucose uptake and glycolysis in human Treg cells, resulting in reversal of Treg suppression. Importantly, TLR8 signaling-mediated reprogramming of glucose metabolism and function in human Treg cells can enhance anti-tumor immunity in vivo in a melanoma adoptive transfer T cell therapy model. Our studies identify mechanistic links between innate signaling and metabolic regulation of human Treg suppression, which may be used as a strategy to advance tumor immunotherapy.


Assuntos
Neoplasias da Mama , Glucose/metabolismo , Melanoma , Linfócitos T Reguladores/imunologia , Receptor 8 Toll-Like/fisiologia , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Senescência Celular , Feminino , Humanos , Imunoterapia , Melanoma/metabolismo , Melanoma/terapia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Microambiente Tumoral
14.
Cell Mol Gastroenterol Hepatol ; 5(4): 678-690.e1, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29930985

RESUMO

BACKGROUND & AIMS: Atrophic gastritis caused by chronic inflammation in the gastric mucosa leads to the loss of gastric glandular cells, including acid-secreting parietal cells. Parietal cell atrophy in a setting of chronic inflammation induces spasmolytic polypeptide expressing metaplasia, a critical step in gastric carcinogenesis. However, the mechanisms by which inflammation causes parietal cell atrophy and spasmolytic polypeptide expressing metaplasia are not well defined. We investigated the role of interleukin-17A (IL-17A) in causing parietal cell atrophy. METHODS: A mouse model of autoimmune atrophic gastritis was used to examine IL-17A production during early and late stages of disease. Organoids derived from corpus glands were used to determine the direct effects of IL-17A on gastric epithelial cells. Immunofluorescent staining was used to examine IL-17A receptors and the direct effect of signaling on parietal cells. Mice were infected with an IL-17A-producing adenovirus to determine the effects of IL-17A on parietal cells in vivo. Finally, IL-17A neutralizing antibodies were administered to mice with active atrophic gastritis to evaluate the effects on parietal cell atrophy and metaplasia. RESULTS: Increased IL-17A correlated with disease severity in mice with chronic atrophic gastritis. IL-17A caused caspase-dependent gastric organoid degeneration, which could not be rescued with a necroptosis inhibitor. Parietal cells expressed IL-17A receptors and IL-17A treatment induced apoptosis in parietal cells. Overexpressing IL-17A in vivo induced caspase-3 activation and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling staining in parietal cells. Finally, IL-17A neutralizing antibody decreased parietal cell atrophy and metaplasia in mice with chronic atrophic gastritis. CONCLUSIONS: These data identify IL-17A as a cytokine that promotes parietal cell apoptosis during atrophic gastritis, a precursor lesion for gastric cancer.

15.
J Immunol Methods ; 457: 53-65, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29625078

RESUMO

Dendritic cells (DCs) are an indispensable part of studying human responses that are important for protective immunity against cancer and infectious diseases as well as prevention of autoimmunity and transplant rejection. These cells are also key elements of personalized vaccines for cancer and infectious diseases. Despite the vital role of DCs in both clinical and basic research contexts, methods for obtaining these cells from individuals remains a comparatively under-developed and inefficient process. DCs are present in very low concentrations (<1%) in blood, thus they must be generated from monocytes and the current methodology in DC generation involves a laborious process of static culture and stimulation with cytokines contained in culture medium. Herein, we describe an automated fluidic system, MicroDEN, that allows for differentiation of monocytes into immature-DCs (iDCs) utilizing continuous perfusion of differentiation media. Manual steps associated with current ex vivo monocyte differentiation are vastly reduced and an aseptic environment is ensured by the use of an enclosed cartridge and tubing network. Benchmark phenotyping was performed on the generated iDCs along with allogeneic T-cell proliferation and syngeneic antigen-specific functional assays. MicroDEN generated iDCs were phenotypically and functionally similar to well plate generated iDCs, thereby demonstrating the feasibility of utilizing MicroDEN in the broad range of applications requiring DCs.


Assuntos
Automação Laboratorial/instrumentação , Automação Laboratorial/métodos , Técnicas de Cultura de Células , Diferenciação Celular , Células Dendríticas/citologia , Células Apresentadoras de Antígenos/citologia , Células Cultivadas , Citometria de Fluxo , Humanos , Ativação Linfocitária , Monócitos/citologia
16.
Nat Commun ; 9(1): 249, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29339767

RESUMO

Defining the suppressive mechanisms used by regulatory T (Treg) cells is critical for the development of effective strategies for treating tumors and chronic infections. The molecular processes that occur in responder T cells that are suppressed by Treg cells are unclear. Here we show that human Treg cells initiate DNA damage in effector T cells caused by metabolic competition during cross-talk, resulting in senescence and functional changes that are molecularly distinct from anergy and exhaustion. ERK1/2 and p38 signaling cooperate with STAT1 and STAT3 to control Treg-induced effector T-cell senescence. Human Treg-induced T-cell senescence can be prevented via inhibition of the DNA damage response and/or STAT signaling in T-cell adoptive transfer mouse models. These studies identify molecular mechanisms of human Treg cell suppression and indicate that targeting Treg-induced T-cell senescence is a checkpoint for immunotherapy against cancer and other diseases associated with Treg cells.


Assuntos
Dano ao DNA , Sistema de Sinalização das MAP Quinases , Linfócitos T Reguladores/fisiologia , Senescência Celular , Glucose/metabolismo , Humanos , Imunoterapia , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/fisiologia , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/fisiologia , Linfócitos T Reguladores/metabolismo
17.
Nat Commun ; 8(1): 867, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29021521

RESUMO

IFN-γ-producing cytotoxic T lymphocytes are essential for host defense against viral infection and cancer. Here we show that the RNA-binding tristetraprolin, encoded by Zfp36, is needed for CD8+ T-cell production of IFN-γ in vivo. When activated in vitro, however, IFN-γ production by naive wild type and tristetraprolin-deficient CD8+ T-cells is comparable. IL-27 is overproduced by tristetraprolin-deficient macrophages and increased systemically in tristetraprolin-deficient mice. Tristetraprolin suppresses IL-27 production by promoting p28 mRNA degradation. Importantly, deletion of IL-27 receptor WSX-1 in tristetraprolin-deficient mice (WSX-1/tristetraprolin double knockout) leads to a reduction in cytotoxic T lymphocyte numbers. Moreover, tumor growth is accelerated, not only in tristetraprolin-deficient mice after cytotoxic T lymphocyte depletion, but also in WSX-1/tristetraprolin double knockout mice, with substantial reduction in the number of tumor cytotoxic T lymphocytes. This study describes a regulatory pathway for IL-27 expression and cytotoxic T lymphocyte function mediated by tristetraprolin, contributing to regulation of antitumour immunity.IL-27 is one of a number of cytokines that can induce antitumour CD8+ T cell responses. Here the authors show that TTP, encoded by Zfp36, degrades p28 to inhibit IL-27 production by macrophages and is thereby a negative regulator of the antitumour response.


Assuntos
Interleucinas/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Linfócitos T Citotóxicos/fisiologia , Tristetraprolina/metabolismo , Animais , Feminino , Regulação da Expressão Gênica , Interferon gama/metabolismo , Macrófagos/metabolismo , Neoplasias Mamárias Experimentais/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Citocinas/metabolismo , Receptores de Interleucina
18.
EBioMedicine ; 7: 278-86, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27322481

RESUMO

BACKGROUND: We report a first-in-human trial evaluating safety and immunogenicity of a recombinant BCG, AERAS-422, over-expressing TB antigens Ag85A, Ag85B, and Rv3407 and expressing mutant perfringolysin. METHODS: This was a randomized, double-blind, dose-escalation trial in HIV-negative, healthy adult, BCG-naïve volunteers, negative for prior exposure to Mtb, at one US clinical site. Volunteers were randomized 2:1 at each dose level to receive a single intradermal dose of AERAS-422 (>10(5)-<10(6)CFU=low dose, ≥10(6)-<10(7)CFU=high dose) or non-recombinant Tice BCG (1-8×10(5)CFU). Randomization used an independently prepared randomly generated sequence of treatment assignments. The primary and secondary outcomes were safety and immunogenicity, respectively, assessed in all participants through 182days post-vaccination. ClinicalTrials.gov registration number: NCT01340820. FINDINGS: Between Nov 2010 and Aug 2011, 24 volunteers were enrolled (AERAS-422 high dose, n=8; AERAS-422 low dose, n=8; Tice BCG, n=8); all were included in the safety and immunogenicity analyses. All 24 subjects had at least one adverse event, primarily expected local reactions. High dose AERAS-422 vaccination induced Ag85A- and Ag85B-specific lymphoproliferative responses and marked anti-mycobacterial activity in a whole blood bactericidal activity culture assay (WBA), but was associated with varicella zoster virus (VZV) reactivation in two vaccinees. These volunteers displayed high BCG-specific IFN-γ responses pre- and post-vaccination possibly predisposing them to autocrine/paracrine negative regulation of immune control of latent VZV. A systems biology transcriptomal approach identified positive correlations between post-vaccination T cell expression modules and WBA, and negative correlations between post-vaccination monocyte expression modules and WBA. The expression of one key macrophage marker (F4/80) was constitutively elevated in the two volunteers with zoster. INTERPRETATION: The unexpected development of VZV in two of eight healthy adult vaccine recipients resulted in discontinuation of AERAS-422 vaccine development. Immunological and transcriptomal data identified correlations with the development of TB immunity and VZV that require further investigation. FUNDING: Aeras, FDA, Bill and Melinda Gates Foundation.


Assuntos
Vacina BCG/administração & dosagem , Vacina BCG/imunologia , Herpesvirus Humano 3/fisiologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Aciltransferases/imunologia , Aciltransferases/metabolismo , Adulto , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Vacina BCG/efeitos adversos , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/metabolismo , Relação Dose-Resposta a Droga , Voluntários Saudáveis , Proteínas Hemolisinas/imunologia , Proteínas Hemolisinas/metabolismo , Humanos , Masculino , Vacinas Sintéticas/efeitos adversos , Ativação Viral , Adulto Jovem
19.
Cancer Res ; 76(6): 1429-40, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26833120

RESUMO

The ability of cancer cells to evade apoptosis is dictated by a shift in the balance between proapoptotic and antiapoptotic gene expression programs. Monocyte chemotactic protein-induced protein 1 (MCPIP1) is a zinc-finger RNA binding protein with important roles in mediating inflammatory responses. Overexpression of MCPIP1 in different cancer cell types has been implicated in eliciting an antitumor response, but a direct role of MCPIP1 in apoptosis has not been established. In this study, we demonstrate that MCPIP1 functions as a potent tumor suppressor that induces apoptosis of breast tumor cells by selectively enhancing mRNA decay of antiapoptotic gene transcripts, including Bcl2L1, Bcl2A1, RelB, Birc3, and Bcl3. Mechanistically, MCPIP1 physically interacted with a stem-loop structure in the 3' untranslated region of these transcripts through its PIN domain, causing mRNA destabilization. Furthermore, we found that MCPIP1 expression was repressed in breast tumor cells, and overexpression of MCPIP1 induced apoptosis, whereas its depletion enhanced cancer cell proliferation. Moreover, MCPIP1 induction in vivo resulted in complete regression of established tumors and a significant reduction in metastatic disease. Notably, low MCPIP1 expression in tumor samples from breast cancer patients was strongly associated with poor survival over 13 years of follow-up. Collectively, our results highlight that MCPIP1 is a new tumor suppressor in breast cancer that induces cell death by tipping the balance in favor of proapoptotic gene expression.


Assuntos
Apoptose/genética , Neoplasias da Mama/genética , Estabilidade de RNA/genética , Ribonucleases/genética , Regiões 3' não Traduzidas/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Ligação a RNA/genética
20.
Infect Immun ; 84(4): 1137-1142, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26857573

RESUMO

Trypanosoma cruzi infection, which is the etiological agent of Chagas disease, is associated with intense inflammation during the acute and chronic phases. The pathological progression of Chagas disease is influenced by the infiltration and transmigration of inflammatory cells across the endothelium to infected tissues, which are carefully regulated processes involving several molecular mediators, including adhesion molecules and platelet-activating factor (PAF). We have shown that PAF production is dependent upon calcium-independent group VIA phospholipase A2ß (iPLA2ß) following infection of human coronary artery endothelial cells (HCAECs) with T. cruzi, suggesting that the absence of iPLA2ß may decrease the recruitment of inflammatory cells to the heart to manage parasite accumulation. Cardiac endothelial cells isolated from iPLA2ß-knockout (iPLA2ß-KO) mice infected withT. cruzi demonstrated decreased PAF production compared to that by cells isolated from wild-type (WT) mice but demonstrated increases in adhesion molecule expression similar to those seen in WT mice. Myocardial inflammation in iPLA2ß-KO mice infected with T. cruzi was similar in severity to that in WT mice, but the iPLA2ß-KO mouse myocardium contained more parasite pseudocysts. Upon activation, macrophages from iPLA2ß-KO mice produced significantly less nitric oxide (NO) and caused lessT. cruzi inhibition than macrophages from wild-type mice. Thus, the absence of iPLA2ß activity does not influence myocardial inflammation, but iPLA2ß is essential forT. cruzi clearance.


Assuntos
Cardiomiopatia Chagásica/metabolismo , Cardiomiopatia Chagásica/parasitologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Fosfolipases A2 do Grupo VI/metabolismo , Macrófagos/fisiologia , Animais , Linhagem Celular , Deleção de Genes , Fosfolipases A2 do Grupo VI/genética , Macrófagos/metabolismo , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nitritos , Carga Parasitária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA