Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Development ; 151(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722096

RESUMO

During embryonic development, lymphatic endothelial cell (LEC) precursors are distinguished from blood endothelial cells by the expression of Prospero-related homeobox 1 (Prox1), which is essential for lymphatic vasculature formation in mouse and zebrafish. Prox1 expression initiation precedes LEC sprouting and migration, serving as the marker of specified LECs. Despite its crucial role in lymphatic development, Prox1 upstream regulation in LECs remains to be uncovered. SOX18 and COUP-TFII are thought to regulate Prox1 in mice by binding its promoter region. However, the specific regulation of Prox1 expression in LECs remains to be studied in detail. Here, we used evolutionary conservation and chromatin accessibility to identify enhancers located in the proximity of zebrafish prox1a active in developing LECs. We confirmed the functional role of the identified sequences through CRISPR/Cas9 mutagenesis of a lymphatic valve enhancer. The deletion of this region results in impaired valve morphology and function. Overall, our results reveal an intricate control of prox1a expression through a collection of enhancers. Ray-finned fish-specific distal enhancers drive pan-lymphatic expression, whereas vertebrate-conserved proximal enhancers refine expression in functionally distinct subsets of lymphatic endothelium.


Assuntos
Células Endoteliais , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio , Vasos Linfáticos , Proteínas Supressoras de Tumor , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Peixe-Zebra/genética , Peixe-Zebra/embriologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Elementos Facilitadores Genéticos/genética , Vasos Linfáticos/metabolismo , Vasos Linfáticos/embriologia , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Células Endoteliais/metabolismo , Linfangiogênese/genética , Sistemas CRISPR-Cas/genética , Regiões Promotoras Genéticas/genética , Camundongos
2.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256941

RESUMO

Tumour-associated angiogenesis play key roles in tumour growth and cancer metastasis. Consequently, several anti-angiogenic drugs such as sunitinib and axitinib have been approved for use as anti-cancer therapies. However, the majority of these drugs target the vascular endothelial growth factor A (VEGFA)/VEGF receptor 2 (VEGFR2) pathway and have shown mixed outcome, largely due to development of resistances and increased tumour aggressiveness. In this study, we used the zebrafish model to screen for novel anti-angiogenic molecules from a library of compounds derived from natural products. From this, we identified canthin-6-one, an indole alkaloid, which inhibited zebrafish intersegmental vessel (ISV) and sub-intestinal vessel development. Further characterisation revealed that treatment of canthin-6-one reduced ISV endothelial cell number and inhibited proliferation of human umbilical vein endothelial cells (HUVECs), suggesting that canthin-6-one inhibits endothelial cell proliferation. Of note, canthin-6-one did not inhibit VEGFA-induced phosphorylation of VEGFR2 in HUVECs and downstream phosphorylation of extracellular signal-regulated kinase (Erk) in leading ISV endothelial cells in zebrafish, suggesting that canthin-6-one inhibits angiogenesis independent of the VEGFA/VEGFR2 pathway. Importantly, we found that canthin-6-one impairs tumour-associated angiogenesis in a zebrafish B16F10 melanoma cell xenograft model and synergises with VEGFR inhibitor sunitinib malate to inhibit developmental angiogenesis. In summary, we showed that canthin-6-one exhibits anti-angiogenic properties in both developmental and pathological contexts in zebrafish, independent of the VEGFA/VEGFR2 pathway and demonstrate that canthin-6-one may hold value for further development as a novel anti-angiogenic drug.

3.
Dev Cell ; 58(23): 2627-2640, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38052179

RESUMO

The Hippo signaling pathway regulates developmental organ growth, regeneration, and cell fate decisions. Although the role of the Hippo pathway, and its transcriptional effectors YAP and TAZ, has been well documented in many cell types and species, only recently have the roles for this pathway come to light in vascular development and disease. Experiments in mice, zebrafish, and in vitro have uncovered roles for the Hippo pathway, YAP, and TAZ in vasculogenesis, angiogenesis, and lymphangiogenesis. In addition, the Hippo pathway has been implicated in vascular cancers and cardiovascular diseases, thus identifying it as a potential therapeutic target for the treatment of these conditions. However, despite recent advances, Hippo's role in the vasculature is still underappreciated compared with its role in epithelial tissues. In this review, we appraise our current understanding of the Hippo pathway in blood and lymphatic vessel development and highlight the current knowledge gaps and opportunities for further research.


Assuntos
Via de Sinalização Hippo , Transativadores , Animais , Camundongos , Transativadores/metabolismo , Proteínas de Sinalização YAP , Peixe-Zebra/metabolismo , Linfangiogênese
5.
EMBO J ; 42(11): e112590, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36912146

RESUMO

During development, the lymphatic vasculature forms as a second network derived chiefly from blood vessels. The transdifferentiation of embryonic venous endothelial cells (VECs) into lymphatic endothelial cells (LECs) is a key step in this process. Specification, differentiation and maintenance of LEC fate are all driven by the transcription factor Prox1, yet the downstream mechanisms remain to be elucidated. We here present a single-cell transcriptomic atlas of lymphangiogenesis in zebrafish, revealing new markers and hallmarks of LEC differentiation over four developmental stages. We further profile single-cell transcriptomic and chromatin accessibility changes in zygotic prox1a mutants that are undergoing a LEC-VEC fate shift. Using maternal and zygotic prox1a/prox1b mutants, we determine the earliest transcriptomic changes directed by Prox1 during LEC specification. This work altogether reveals new downstream targets and regulatory regions of the genome controlled by Prox1 and presents evidence that Prox1 specifies LEC fate primarily by limiting blood vascular and haematopoietic fate. This extensive single-cell resource provides new mechanistic insights into the enigmatic role of Prox1 and the control of LEC differentiation in development.


Assuntos
Vasos Linfáticos , Peixe-Zebra , Animais , Peixe-Zebra/genética , Proteínas de Homeodomínio/genética , Proteínas Supressoras de Tumor/genética , Células Endoteliais , Células Cultivadas , Diferenciação Celular , Linfangiogênese/genética , Fatores de Transcrição/genética , Análise de Célula Única
6.
Elife ; 122023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36648336

RESUMO

The nucleoporin (NUP) ELYS, encoded by AHCTF1, is a large multifunctional protein with essential roles in nuclear pore assembly and mitosis. Using both larval and adult zebrafish models of hepatocellular carcinoma (HCC), in which the expression of an inducible mutant kras transgene (krasG12V) drives hepatocyte-specific hyperplasia and liver enlargement, we show that reducing ahctf1 gene dosage by 50% markedly decreases liver volume, while non-hyperplastic tissues are unaffected. We demonstrate that in the context of cancer, ahctf1 heterozygosity impairs nuclear pore formation, mitotic spindle assembly, and chromosome segregation, leading to DNA damage and activation of a Tp53-dependent transcriptional programme that induces cell death and cell cycle arrest. Heterozygous expression of both ahctf1 and ranbp2 (encoding a second nucleoporin), or treatment of heterozygous ahctf1 larvae with the nucleocytoplasmic transport inhibitor, Selinexor, completely blocks krasG12V-driven hepatocyte hyperplasia. Gene expression analysis of patient samples in the liver hepatocellular carcinoma (LIHC) dataset in The Cancer Genome Atlas shows that high expression of one or more of the transcripts encoding the 10 components of the NUP107-160 subcomplex, which includes AHCTF1, is positively correlated with worse overall survival. These results provide a strong and feasible rationale for the development of novel cancer therapeutics that target ELYS function and suggest potential avenues for effective combinatorial treatments.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Hiperplasia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
7.
PLoS Pathog ; 18(4): e1010389, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35446924

RESUMO

Meningitis caused by infectious pathogens is associated with vessel damage and infarct formation, however the physiological cause is often unknown. Cryptococcus neoformans is a human fungal pathogen and causative agent of cryptococcal meningitis, where vascular events are observed in up to 30% of patients, predominantly in severe infection. Therefore, we aimed to investigate how infection may lead to vessel damage and associated pathogen dissemination using a zebrafish model that permitted noninvasive in vivo imaging. We find that cryptococcal cells become trapped within the vasculature (dependent on their size) and proliferate there resulting in vasodilation. Localised cryptococcal growth, originating from a small number of cryptococcal cells in the vasculature was associated with sites of dissemination and simultaneously with loss of blood vessel integrity. Using a cell-cell junction tension reporter we identified dissemination from intact blood vessels and where vessel rupture occurred. Finally, we manipulated blood vessel tension via cell junctions and found increased tension resulted in increased dissemination. Our data suggest that global vascular vasodilation occurs following infection, resulting in increased vessel tension which subsequently increases dissemination events, representing a positive feedback loop. Thus, we identify a mechanism for blood vessel damage during cryptococcal infection that may represent a cause of vascular damage and cortical infarction during cryptococcal meningitis.


Assuntos
Criptococose , Cryptococcus neoformans , Meningite Criptocócica , Animais , Criptococose/microbiologia , Humanos , Peixe-Zebra
8.
Nat Cell Biol ; 23(11): 1136-1147, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34750583

RESUMO

The development of a functional vasculature requires the coordinated control of cell fate, lineage differentiation and network growth. Cellular proliferation is spatiotemporally regulated in developing vessels, but how this is orchestrated in different lineages is unknown. Here, using a zebrafish genetic screen for lymphatic-deficient mutants, we uncover a mutant for the RNA helicase Ddx21. Ddx21 cell-autonomously regulates lymphatic vessel development. An established regulator of ribosomal RNA synthesis and ribosome biogenesis, Ddx21 is enriched in sprouting venous endothelial cells in response to Vegfc-Flt4 signalling. Ddx21 function is essential for Vegfc-Flt4-driven endothelial cell proliferation. In the absence of Ddx21, endothelial cells show reduced ribosome biogenesis, p53 and p21 upregulation and cell cycle arrest that blocks lymphangiogenesis. Thus, Ddx21 coordinates the lymphatic endothelial cell response to Vegfc-Flt4 signalling by balancing ribosome biogenesis and p53 function. This mechanism may be targetable in diseases of excessive lymphangiogenesis such as cancer metastasis or lymphatic malformation.


Assuntos
Proliferação de Células , RNA Helicases DEAD-box/metabolismo , Células Endoteliais/enzimologia , Linfangiogênese , Vasos Linfáticos/enzimologia , RNA Ribossômico/biossíntese , Ribossomos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Pontos de Checagem do Ciclo Celular , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , RNA Helicases DEAD-box/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Vasos Linfáticos/embriologia , RNA Ribossômico/genética , Ribossomos/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Fator C de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
9.
Pharmaceuticals (Basel) ; 14(7)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206901

RESUMO

Lymphangiogenesis, the formation of new lymphatic vessels from pre-existing vasculature, plays critical roles in disease, including in cancer metastasis and chronic inflammation. Preclinical and recent clinical studies have now demonstrated therapeutic utility for several anti-lymphangiogenic agents, but optimal agents and efficacy in different settings remain to be determined. We tested the anti-lymphangiogenic property of 3,4-Difluorobenzocurcumin (CDF), which has previously been implicated as an anti-cancer agent, using zebrafish embryos and cultured vascular endothelial cells. We used transgenic zebrafish labelling the lymphatic system and found that CDF potently inhibits lymphangiogenesis during embryonic development. We also found that the parent compound, Curcumin, does not inhibit lymphangiogenesis. CDF blocked lymphatic and venous sprouting, and lymphatic migration in the head and trunk of the embryo. Mechanistically, CDF impaired VEGFC-VEGFR3-ERK signalling in vitro and in vivo. In an in vivo pathological model of Vegfc-overexpression, treatment with CDF rescued endothelial cell hyperplasia. CDF did not inhibit the kinase activity of VEGFR3 yet displayed more prolonged activity in vivo than previously reported kinase inhibitors. These findings warrant further assessment of CDF and its mode of action as a candidate for use in metastasis and diseases of aberrant lymphangiogenesis.

10.
Elife ; 102021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34003110

RESUMO

The formation of new blood vessel networks occurs via angiogenesis during development, tissue repair, and disease. Angiogenesis is regulated by intracellular endothelial signalling pathways, induced downstream of vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs). A major challenge in understanding angiogenesis is interpreting how signalling events occur dynamically within endothelial cell populations during sprouting, proliferation, and migration. Extracellular signal-regulated kinase (Erk) is a central downstream effector of Vegf-signalling and reports the signalling that drives angiogenesis. We generated a vascular Erk biosensor transgenic line in zebrafish using a kinase translocation reporter that allows live-imaging of Erk-signalling dynamics. We demonstrate the utility of this line to live-image Erk activity during physiologically relevant angiogenic events. Further, we reveal dynamic and sequential endothelial cell Erk-signalling events following blood vessel wounding. Initial signalling is dependent upon Ca2+ in the earliest responding endothelial cells, but is independent of Vegfr-signalling and local inflammation. The sustained regenerative response, however, involves a Vegfr-dependent mechanism that initiates concomitantly with the wound inflammatory response. This work reveals a highly dynamic sequence of signalling events in regenerative angiogenesis and validates a new resource for the study of vascular Erk-signalling in real-time.


Assuntos
Células Endoteliais/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Sistema de Sinalização das MAP Quinases/fisiologia , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica , Transdução de Sinais , Animais , Células Cultivadas , Sistema de Sinalização das MAP Quinases/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra
11.
Curr Biol ; 31(6): 1326-1336.e5, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33581074

RESUMO

Epithelia must eliminate apoptotic cells to preserve tissue barriers and prevent inflammation.1 Several different mechanisms exist for apoptotic clearance, including efferocytosis2,3 and apical extrusion.4,5 We found that extrusion was the first-line response to apoptosis in cultured monolayers and in zebrafish epidermis. During extrusion, the apoptotic cell elicited active lamellipodial protrusions and assembly of a contractile extrusion ring in its neighbors. Depleting E-cadherin compromised both the contractile ring and extrusion, implying that a cadherin-dependent pathway allows apoptotic cells to engage their neighbors for extrusion. We identify RhoA as the cadherin-dependent signal in the neighbor cells and show that it is activated in response to contractile tension from the apoptotic cell. This mechanical stimulus is conveyed by a myosin-VI-dependent mechanotransduction pathway that is necessary both for extrusion and to preserve the epithelial barrier when apoptosis was stimulated. Earlier studies suggested that release of sphingosine-1-phosphate (S1P) from apoptotic cells might define where RhoA was activated. However, we found that, although S1P is necessary for extrusion, its contribution does not require a localized source of S1P in the epithelium. We therefore propose a unified view of how RhoA is stimulated to engage neighbor cells for apoptotic extrusion. Here, tension-sensitive mechanotransduction is the proximate mechanism that activates RhoA specifically in the immediate neighbors of apoptotic cells, but this also must be primed by S1P in the tissue environment. Together, these elements provide a coincidence detection system that confers robustness on the extrusion response.


Assuntos
Apoptose , Células Epiteliais/citologia , Mecanotransdução Celular , Peixe-Zebra , Proteína rhoA de Ligação ao GTP/fisiologia , Animais , Caderinas/genética , Lisofosfolipídeos , Esfingosina/análogos & derivados
12.
Mol Biol Cell ; 31(23): 2557-2569, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32903148

RESUMO

Epithelia can eliminate apoptotic cells by apical extrusion. This is a complex morphogenetic event where expulsion of the apoptotic cell is accompanied by rearrangement of its immediate neighbors to form a rosette. A key mechanism for extrusion is constriction of an actomyosin network that neighbor cells form at their interface with the apoptotic cell. Here we report a complementary process of cytoskeletal relaxation that occurs when cortical contractility is down-regulated at the junctions between those neighbor cells themselves. This reflects a mechanosensitive Src family kinase (SFK) signaling pathway that is activated in neighbor cells when the apoptotic cell relaxes shortly after injury. Inhibiting SFK signaling blocks both the expulsion of apoptotic cells and the rosette formation among their neighbor cells. This reveals the complex pattern of spatially distinct contraction and relaxation that must be established in the neighboring epithelium for apoptotic cells to be extruded.


Assuntos
Junções Aderentes/metabolismo , Apoptose/fisiologia , Quinases da Família src/metabolismo , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Junções Aderentes/fisiologia , Células Epiteliais/metabolismo , Epitélio/metabolismo , Epitélio/fisiologia , Humanos , Células MCF-7 , Morfogênese , Transdução de Sinais , Quinases da Família src/fisiologia
13.
Am J Med Genet A ; 182(1): 189-194, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31633297

RESUMO

Hennekam lymphangiectasia-lymphedema syndrome is an autosomal recessive disorder characterized by congenital lymphedema, intestinal lymphangiectasia, facial dysmorphism, and variable intellectual disability. Known disease genes include CCBE1, FAT4, and ADAMTS3. In a patient with clinically diagnosed Hennekam syndrome but without mutations or copy-number changes in the three known disease genes, we identified a homozygous single-exon deletion affecting FBXL7. Specifically, exon 3, which encodes the F-box domain and several leucine-rich repeats of FBXL7, is eliminated. Our analyses of databases representing >100,000 control individuals failed to identify biallelic loss-of-function variants in FBXL7. Published studies in Drosophila indicate Fbxl7 interacts with Fat, of which human FAT4 is an ortholog, and mutation of either gene yields similar morphological consequences. These data suggest that FBXL7 may be the fourth gene for Hennekam syndrome, acting via a shared pathway with FAT4.


Assuntos
Anormalidades Craniofaciais/genética , Proteínas F-Box/genética , Predisposição Genética para Doença , Linfangiectasia Intestinal/genética , Linfedema/genética , Proteínas ADAMTS/genética , Alelos , Animais , Pré-Escolar , Anormalidades Craniofaciais/complicações , Anormalidades Craniofaciais/patologia , Drosophila melanogaster/genética , Genótipo , Homozigoto , Humanos , Linfangiectasia Intestinal/complicações , Linfangiectasia Intestinal/patologia , Linfedema/complicações , Linfedema/patologia , Masculino , Técnicas de Diagnóstico Molecular/métodos , Mutação/genética , Linhagem , Fenótipo , Pró-Colágeno N-Endopeptidase/genética
14.
Elife ; 82019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31038457

RESUMO

Lymphatic vascular development involves specification of lymphatic endothelial progenitors that subsequently undergo sprouting, proliferation and tissue growth to form a complex second vasculature. The Hippo pathway and effectors Yap and Taz control organ growth and regulate morphogenesis and cellular proliferation. Yap and Taz control angiogenesis but a role in lymphangiogenesis remains to be fully elucidated. Here we show that YAP displays dynamic changes in lymphatic progenitors and Yap1 is essential for lymphatic vascular development in zebrafish. Maternal and Zygotic (MZ) yap1 mutants show normal specification of lymphatic progenitors, abnormal cellular sprouting and reduced numbers of lymphatic progenitors emerging from the cardinal vein during lymphangiogenesis. Furthermore, Yap1 is indispensable for Vegfc-induced proliferation in a transgenic model of Vegfc overexpression. Paracrine Vegfc-signalling ultimately increases nuclear YAP in lymphatic progenitors to control lymphatic development. We thus identify a role for Yap in lymphangiogenesis, acting downstream of Vegfc to promote expansion of this vascular lineage.


Assuntos
Proliferação de Células/efeitos dos fármacos , Vasos Linfáticos/efeitos dos fármacos , Transativadores/metabolismo , Transativadores/farmacologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/farmacologia , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Inativação de Genes , Linfangiogênese/efeitos dos fármacos , Vasos Linfáticos/citologia , Masculino , Morfogênese/efeitos dos fármacos , Transativadores/genética , Proteínas de Sinalização YAP , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
15.
Dev Cell ; 49(2): 279-292.e5, 2019 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-31014480

RESUMO

The correct assignment of cell fate within fields of multipotent progenitors is essential for accurate tissue diversification. The first lymphatic vessels arise from pre-existing veins after venous endothelial cells become specified as lymphatic progenitors. Prox1 specifies lymphatic fate and labels these progenitors; however, the mechanisms restricting Prox1 expression and limiting the progenitor pool remain unknown. We identified a zebrafish mutant that displayed premature, expanded, and prolonged lymphatic specification. The gene responsible encodes the regulator of alternative splicing, Nova2. In zebrafish and human endothelial cells, Nova2 selectively regulates pre-mRNA splicing for components of signaling pathways and phosphoproteins. Nova2-deficient endothelial cells display increased Mapk/Erk signaling, and Prox1 expression is dynamically controlled by Erk signaling. We identify a mechanism whereby Nova2-regulated splicing constrains Erk signaling, thus limiting lymphatic progenitor cell specification. This identifies the capacity of a factor that tunes mRNA splicing to control assignment of cell fate during vascular differentiation.


Assuntos
Vasos Linfáticos/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo , Animais , Diferenciação Celular , Linhagem da Célula , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Proteínas de Homeodomínio/metabolismo , Humanos , Linfangiogênese , Vasos Linfáticos/citologia , Masculino , Antígeno Neuro-Oncológico Ventral , Proteínas Supressoras de Tumor/metabolismo , Veias/citologia , Veias/metabolismo , Peixe-Zebra
16.
Dev Dyn ; 248(4): 284-295, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30801852

RESUMO

BACKGROUND: During heart morphogenesis, the cardiac chambers undergo ballooning: a process involving regionalized elongation of cardiomyocytes. Cardiomyocyte shape changes require reorganization of the actin cytoskeleton; however, the genetic regulation of this process is not well understood. RESULTS: From a forward genetic screen, we identified the zebrafish uq 23ks mutant which manifests chamber ballooning defects. Whole-genome sequencing-mapping identified a truncating mutation in the gene, myo5b. myo5b encodes an atypical myosin required for endosome recycling and, consistent with this, increased vesicles were observed in myo5b mutant cardiomyocytes. Expression of RFP-Rab11a (a recycling endosome marker) confirmed increased recycling endosomes in cardiomyocytes of myo5b mutants. To investigate potential cargo of MyoVb-associated vesicles, we examined the adherens junction protein, N-cadherin. N-cadherin appeared mispatterned at cell junctions, and an increase in the number of intracellular particles was also apparent. Co-localization with RFP-Rab11a confirmed increased N-cadherin-positive recycling endosomes, demonstrating N-cadherin trafficking is perturbed in myo5b mutants. Finally, phalloidin staining showed disorganized F-actin in myo5b cardiomyocytes, suggesting the cytoskeleton fails to remodel, obstructing chamber ballooning. CONCLUSIONS: MyoVb is required for cardiomyocyte endosomal recycling and appropriate N-cadherin localization during the onset of chamber ballooning. Cardiomyocytes lacking MyoVb are unable to reorganize their actin cytoskeleton, resulting in failed chamber ballooning. Developmental Dynamics 248:284-295, 2019. © 2019 Wiley Periodicals, Inc.


Assuntos
Caderinas/metabolismo , Citoesqueleto/ultraestrutura , Coração/crescimento & desenvolvimento , Miócitos Cardíacos/metabolismo , Miosina Tipo V/fisiologia , Animais , Forma Celular , Citoesqueleto/metabolismo , Endossomos/metabolismo , Humanos , Miocárdio/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/ultraestrutura , Miosina Tipo V/genética , Miosinas/genética , Miosinas/fisiologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia
17.
Methods Mol Biol ; 1846: 55-70, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30242752

RESUMO

The accessibility and optical transparency of the zebrafish embryo offers a unique platform for live-imaging of developmental lymphangiogenesis. Transgenic lines labelling lymphatic progenitors and vessels enable researchers to visualize cellular processes and ask how they contribute to lymphatic development in genetic models. Furthermore, validated immunofluorescence staining for key signaling and cell fate markers (phosphorylated Erk and Prox1) allow single cell resolution studies of lymphatic differentiation. Here, we describe in detail how zebrafish embryos and larvae can be mounted for high resolution, staged imaging of lymphatic networks, how lymphangiogenesis can be reliably quantified and how immunofluorescence can reveal lymphatic signaling and differentiation. These methods offer researchers the opportunity to experimentally dissect developmental lymphangiogenesis with outstanding resolution.


Assuntos
Angiografia , Linfangiogênese , Vasos Linfáticos/embriologia , Imagem Molecular , Peixe-Zebra/embriologia , Angiografia/métodos , Animais , Animais Geneticamente Modificados , Células Endoteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Imunofluorescência , Genes Reporter , Proteínas de Homeodomínio/metabolismo , Imagem Molecular/métodos , Fosforilação , Proteínas Supressoras de Tumor/metabolismo
18.
Development ; 145(10)2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29773646

RESUMO

Despite the essential role of the lymphatic vasculature in tissue homeostasis and disease, knowledge of the organ-specific origins of lymphatic endothelial progenitor cells remains limited. The assumption that most murine embryonic lymphatic endothelial cells (LECs) are venous derived has recently been challenged. Here, we show that the embryonic dermal blood capillary plexus constitutes an additional, local source of LECs that contributes to the formation of the dermal lymphatic vascular network. We describe a novel mechanism whereby rare PROX1-positive endothelial cells exit the capillary plexus in a Ccbe1-dependent manner to establish discrete LEC clusters. As development proceeds, these clusters expand and further contribute to the growing lymphatic system. Lineage tracing and analyses of Gata2-deficient mice confirmed that these clusters are endothelial in origin. Furthermore, ectopic expression of Vegfc in the vasculature increased the number of PROX1-positive progenitors within the capillary bed. Our work reveals a novel source of lymphatic endothelial progenitors employed during construction of the dermal lymphatic vasculature and demonstrates that the blood vasculature is likely to remain an ongoing source of LECs during organogenesis, raising the question of whether a similar mechanism operates during pathological lymphangiogenesis.


Assuntos
Capilares/citologia , Células Endoteliais/citologia , Proteínas de Homeodomínio/genética , Linfangiogênese/fisiologia , Vasos Linfáticos/embriologia , Células-Tronco/citologia , Proteínas Supressoras de Tumor/genética , Animais , Proteínas de Ligação ao Cálcio/genética , Fator de Transcrição GATA2/genética , Linfangiogênese/genética , Vasos Linfáticos/citologia , Camundongos , Camundongos Transgênicos , Fator C de Crescimento do Endotélio Vascular/biossíntese , Fator C de Crescimento do Endotélio Vascular/genética
19.
Sci Signal ; 10(499)2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974649

RESUMO

Lymphatic vessels constitute a specialized vasculature that is involved in development, cancer, obesity, and immune regulation. The migration of lymphatic endothelial cells (LECs) is critical for vessel growth (lymphangiogenesis) and vessel remodeling, processes that modify the lymphatic network in response to developmental or pathological demands. Using the publicly accessible results of our genome-wide siRNA screen, we characterized the migratome of primary human LECs and identified individual genes and signaling pathways that regulate LEC migration. We compared our data set with mRNA differential expression data from endothelial and stromal cells derived from two in vivo models of lymphatic vessel remodeling, viral infection and contact hypersensitivity-induced inflammation, which identified genes selectively involved in regulating LEC migration and remodeling. We also characterized the top candidates in the LEC migratome in primary blood vascular endothelial cells to identify genes with functions common to lymphatic and blood vascular endothelium. On the basis of these analyses, we showed that LGALS1, which encodes the glycan-binding protein Galectin-1, promoted lymphatic vascular growth in vitro and in vivo and contributed to maintenance of the lymphatic endothelial phenotype. Our results provide insight into the signaling networks that control lymphangiogenesis and lymphatic remodeling and potentially identify therapeutic targets and biomarkers in disease specific to lymphatic or blood vessels.


Assuntos
Movimento Celular/fisiologia , Células Endoteliais/metabolismo , Transdução de Sinais/fisiologia , Células Endoteliais/citologia , Galectina 1/genética , Galectina 1/metabolismo , Estudo de Associação Genômica Ampla , Humanos
20.
Elife ; 62017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28137359

RESUMO

Pharmacological targeting of transcription factors holds great promise for the development of new therapeutics, but strategies based on blockade of DNA binding, nuclear shuttling, or individual protein partner recruitment have yielded limited success to date. Transcription factors typically engage in complex interaction networks, likely masking the effects of specifically inhibiting single protein-protein interactions. Here, we used a combination of genomic, proteomic and biophysical methods to discover a suite of protein-protein interactions involving the SOX18 transcription factor, a known regulator of vascular development and disease. We describe a small-molecule that is able to disrupt a discrete subset of SOX18-dependent interactions. This compound selectively suppressed SOX18 transcriptional outputs in vitro and interfered with vascular development in zebrafish larvae. In a mouse pre-clinical model of breast cancer, treatment with this inhibitor significantly improved survival by reducing tumour vascular density and metastatic spread. Our studies validate an interactome-based molecular strategy to interfere with transcription factor activity, for the development of novel disease therapeutics.


Assuntos
Antineoplásicos/metabolismo , Neoplasias da Mama/prevenção & controle , Fatores de Transcrição SOXF/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos , Animais , Fenômenos Biofísicos , Vasos Sanguíneos/embriologia , Modelos Animais de Doenças , Genômica , Camundongos , Proteômica , Resultado do Tratamento , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA