Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 84(10): 1886-1903.e10, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38688280

RESUMO

Mutations in the RNA splicing factor gene SF3B1 are common across hematologic and solid cancers and result in widespread alterations in splicing, yet there is currently no therapeutic means to correct this mis-splicing. Here, we utilize synthetic introns uniquely responsive to mutant SF3B1 to identify trans factors required for aberrant mutant SF3B1 splicing activity. This revealed the G-patch domain-containing protein GPATCH8 as required for mutant SF3B1-induced splicing alterations and impaired hematopoiesis. GPATCH8 is involved in quality control of branchpoint selection, interacts with the RNA helicase DHX15, and functionally opposes SURP and G-patch domain containing 1 (SUGP1), a G-patch protein recently implicated in SF3B1-mutant diseases. Silencing of GPATCH8 corrected one-third of mutant SF3B1-dependent splicing defects and was sufficient to improve dysfunctional hematopoiesis in SF3B1-mutant mice and primary human progenitors. These data identify GPATCH8 as a novel splicing factor required for mis-splicing by mutant SF3B1 and highlight the therapeutic impact of correcting aberrant splicing in SF3B1-mutant cancers.


Assuntos
Neoplasias Hematológicas , Mutação , Fosfoproteínas , Fatores de Processamento de RNA , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Humanos , Animais , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Neoplasias Hematológicas/metabolismo , Camundongos , Splicing de RNA , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Hematopoese/genética , Células HEK293 , Íntrons , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
3.
Cell Rep ; 43(3): 113831, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38401121

RESUMO

Cancer immunotherapies have demonstrated remarkable success; however, the majority of patients do not respond or develop resistance. Here, we conduct epigenetic gene-targeted CRISPR-Cas9 screens to identify epigenomic factors that limit CD8+ T cell-mediated anti-tumor immunity. We identify that PRMT1 suppresses interferon gamma (Ifnγ)-induced MHC-I expression, thus dampening CD8+ T cell-mediated killing. Indeed, PRMT1 knockout or pharmacological targeting of type I PRMT with the clinical inhibitor GSK3368715 enhances Ifnγ-induced MHC-I expression through elevated STAT1 expression and activation, while re-introduction of PRMT1 in PRMT1-deficient cells reverses this effect. Importantly, loss of PRMT1 enhances the efficacy of anti-PD-1 immunotherapy, and The Cancer Genome Atlas analysis reveals that PRMT1 expression in human melanoma is inversely correlated with expression of human leukocyte antigen molecules, infiltration of CD8+ T cells, and overall survival. Taken together, we identify PRMT1 as a negative regulator of anti-tumor immunity, unveiling clinical type I PRMT inhibitors as immunotherapeutic agents or as adjuncts to existing immunotherapies.


Assuntos
Linfócitos T CD8-Positivos , Melanoma , Humanos , Linfócitos T CD8-Positivos/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Imunidade Celular , Interferon gama/metabolismo , Melanoma/patologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
4.
Nat Cancer ; 4(12): 1675-1692, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37872381

RESUMO

Despite recent advances in the treatment of acute myeloid leukemia (AML), there has been limited success in targeting surface antigens in AML, in part due to shared expression across malignant and normal cells. Here, high-density immunophenotyping of AML coupled with proteogenomics identified unique expression of a variety of antigens, including the RNA helicase U5 snRNP200, on the surface of AML cells but not on normal hematopoietic precursors and skewed Fc receptor distribution in the AML immune microenvironment. Cell membrane localization of U5 snRNP200 was linked to surface expression of the Fcγ receptor IIIA (FcγIIIA, also known as CD32A) and correlated with expression of interferon-regulated immune response genes. Anti-U5 snRNP200 antibodies engaging activating Fcγ receptors were efficacious across immunocompetent AML models and were augmented by combination with azacitidine. These data provide a roadmap of AML-associated antigens with Fc receptor distribution in AML and highlight the potential for targeting the AML cell surface using Fc-optimized therapeutics.


Assuntos
Leucemia Mieloide Aguda , Receptores de IgG , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Antígenos de Superfície , Leucemia Mieloide Aguda/tratamento farmacológico , Receptores Fc/metabolismo , Receptores de IgG/metabolismo , Ribonucleoproteínas Nucleares Pequenas , Microambiente Tumoral
6.
Cell Rep ; 42(8): 113014, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37605534

RESUMO

CXCL9 expression is a strong predictor of response to immune checkpoint blockade therapy. Accordingly, we sought to develop therapeutic strategies to enhance the expression of CXCL9 and augment antitumor immunity. To perform whole-genome CRISPR-Cas9 screening for regulators of CXCL9 expression, a CXCL9-GFP reporter line is generated using a CRISPR knockin strategy. This approach finds that IRF1 limits CXCL9 expression in both tumor cells and primary myeloid cells through induction of SOCS1, which subsequently limits STAT1 signaling. Thus, we identify a subset of STAT1-dependent genes that do not require IRF1 for their transcription, including CXCL9. Targeting of either IRF1 or SOCS1 potently enhances CXCL9 expression by intratumoral macrophages, which is further enhanced in the context of immune checkpoint blockade therapy. We hence show a non-canonical role for IRF1 in limiting the expression of a subset of STAT1-dependent genes through induction of SOCS1.


Assuntos
Sistemas CRISPR-Cas , Inibidores de Checkpoint Imunológico , Retroalimentação , Proteínas Supressoras da Sinalização de Citocina/genética , Transdução de Sinais
7.
Proc Natl Acad Sci U S A ; 120(36): e2306414120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37643213

RESUMO

Targeted inhibitors of bromodomain and extraterminal (BET)-bromodomains and phosphatidylinositol-3-kinase (PI3K) signaling demonstrate potent but self-limited antilymphoma activity as single agents in the context of cellular Myelocytomatosis (cMYC) oncogene-dysregulation. However, combined PI3K and BET inhibition imparts synergistic anticancer activity with the potential for more sustained disease responses due to the mutual antagonism of compensatory epigenetic and signaling networks. Here, we describe the mechanistic and therapeutic validation of rationally designed dual PI3K/BET bromodomain inhibitors, built by linkage of established PI3K and BET inhibitor pharmacophores. The lead candidate demonstrates high selectivity, nanomolar range cellular potency, and compelling in vivo efficacy, including curative responses in the aggressive Eµ-Myc lymphoma model. These studies further support the therapeutic strategy of combined PI3K and BET inhibition and provide a potential step-change in approach to orthogonal MYC antagonism using optimized chimeric small-molecule technology.


Assuntos
Linfoma , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinase , Agressão , Epigenômica , Linfoma/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase
8.
Mol Cell ; 83(10): 1725-1742.e12, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37084731

RESUMO

Most human proteins lack chemical probes, and several large-scale and generalizable small-molecule binding assays have been introduced to address this problem. How compounds discovered in such "binding-first" assays affect protein function, nonetheless, often remains unclear. Here, we describe a "function-first" proteomic strategy that uses size exclusion chromatography (SEC) to assess the global impact of electrophilic compounds on protein complexes in human cells. Integrating the SEC data with cysteine-directed activity-based protein profiling identifies changes in protein-protein interactions that are caused by site-specific liganding events, including the stereoselective engagement of cysteines in PSME1 and SF3B1 that disrupt the PA28 proteasome regulatory complex and stabilize a dynamic state of the spliceosome, respectively. Our findings thus show how multidimensional proteomic analysis of focused libraries of electrophilic compounds can expedite the discovery of chemical probes with site-specific functional effects on protein complexes in human cells.


Assuntos
Proteômica , Fatores de Transcrição , Humanos , Proteômica/métodos , Cisteína/metabolismo , Ligantes
9.
Cancer Cell ; 41(1): 164-180.e8, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563682

RESUMO

Therapy resistance is a major challenge in the treatment of cancer. Here, we performed CRISPR-Cas9 screens across a broad range of therapies used in acute myeloid leukemia to identify genomic determinants of drug response. Our screens uncover a selective dependency on RNA splicing factors whose loss preferentially enhances response to the BCL2 inhibitor venetoclax. Loss of the splicing factor RBM10 augments response to venetoclax in leukemia yet is completely dispensable for normal hematopoiesis. Combined RBM10 and BCL2 inhibition leads to mis-splicing and inactivation of the inhibitor of apoptosis XIAP and downregulation of BCL2A1, an anti-apoptotic protein implicated in venetoclax resistance. Inhibition of splicing kinase families CLKs (CDC-like kinases) and DYRKs (dual-specificity tyrosine-regulated kinases) leads to aberrant splicing of key splicing and apoptotic factors that synergize with venetoclax, and overcomes resistance to BCL2 inhibition. Our findings underscore the importance of splicing in modulating response to therapies and provide a strategy to improve venetoclax-based treatments.


Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Linhagem Celular Tumoral , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Splicing de RNA/genética , Leucemia Mieloide Aguda/genética , Proteínas Tirosina Quinases , Apoptose/genética , Proteínas de Ligação a RNA/genética
10.
bioRxiv ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38187674

RESUMO

Despite significant interest in therapeutic targeting of splicing, few chemical probes are available for the proteins involved in splicing. Here, we show that elaborated stereoisomeric acrylamide chemical probe EV96 and its analogues lead to a selective T cell state-dependent loss of interleukin 2-inducible T cell kinase (ITK) by targeting one of the core splicing factors SF3B1. Mechanistic investigations suggest that the state-dependency stems from a combination of differential protein turnover rates and availability of functional mRNA pools that can be depleted due to extensive alternative splicing. We further introduce a comprehensive list of proteins involved in splicing and leverage both cysteine- and protein-directed activity-based protein profiling (ABPP) data with electrophilic scout fragments to demonstrate covalent ligandability for many classes of splicing factors and splicing regulators in primary human T cells. Taken together, our findings show how chemical perturbation of splicing can lead to immune state-dependent changes in protein expression and provide evidence for the broad potential to target splicing factors with covalent chemistry.

11.
Nat Immunol ; 23(10): 1424-1432, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36138187

RESUMO

B cell progenitor acute lymphoblastic leukemia (B-ALL) treatment has been revolutionized by T cell-based immunotherapies-including chimeric antigen receptor T cell therapy (CAR-T) and the bispecific T cell engager therapeutic, blinatumomab-targeting surface glycoprotein CD19. Unfortunately, many patients with B-ALL will fail immunotherapy due to 'antigen escape'-the loss or absence of leukemic CD19 targeted by anti-leukemic T cells. In the present study, we utilized a genome-wide CRISPR-Cas9 screening approach to identify modulators of CD19 abundance on human B-ALL blasts. These studies identified a critical role for the transcriptional activator ZNF143 in CD19 promoter activation. Conversely, the RNA-binding protein, NUDT21, limited expression of CD19 by regulating CD19 messenger RNA polyadenylation and stability. NUDT21 deletion in B-ALL cells increased the expression of CD19 and the sensitivity to CD19-specific CAR-T and blinatumomab. In human B-ALL patients treated with CAR-T and blinatumomab, upregulation of NUDT21 mRNA coincided with CD19 loss at disease relapse. Together, these studies identify new CD19 modulators in human B-ALL.


Assuntos
Linfoma de Burkitt , Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Antígenos CD19/genética , Antígenos CD19/metabolismo , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Humanos , Imunoterapia Adotiva/efeitos adversos , Glicoproteínas de Membrana/metabolismo , Poliadenilação , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Transativadores/metabolismo
12.
Sci Adv ; 8(37): eabm9427, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36103522

RESUMO

The mechanism of action of eprenetapopt (APR-246, PRIMA-1MET) as an anticancer agent remains unresolved, although the clinical development of eprenetapopt focuses on its reported mechanism of action as a mutant-p53 reactivator. Using unbiased approaches, this study demonstrates that eprenetapopt depletes cellular antioxidant glutathione levels by increasing its turnover, triggering a nonapoptotic, iron-dependent form of cell death known as ferroptosis. Deficiency in genes responsible for supplying cancer cells with the substrates for de novo glutathione synthesis (SLC7A11, SHMT2, and MTHFD1L), as well as the enzymes required to synthesize glutathione (GCLC and GCLM), augments the activity of eprenetapopt. Eprenetapopt also inhibits iron-sulfur cluster biogenesis by limiting the cysteine desulfurase activity of NFS1, which potentiates ferroptosis and may restrict cellular proliferation. The combination of eprenetapopt with dietary serine and glycine restriction synergizes to inhibit esophageal xenograft tumor growth. These findings reframe the canonical view of eprenetapopt from a mutant-p53 reactivator to a ferroptosis inducer.

13.
Clin Epigenetics ; 14(1): 96, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902886

RESUMO

BACKGROUND: Interferon gamma (IFNγ) is a pro-inflammatory cytokine that directly activates the JAK/STAT pathway. However, the temporal dynamics of chromatin remodeling and transcriptional activation initiated by IFNγ have not been systematically profiled in an unbiased manner. Herein, we integrated transcriptomic and epigenomic profiling to characterize the acute epigenetic changes induced by IFNγ stimulation in a murine breast cancer model. RESULTS: We identified de novo activation of cis-regulatory elements bound by Irf1 that were characterized by increased chromatin accessibility, differential usage of pro-inflammatory enhancers, and downstream recruitment of BET proteins and RNA polymerase II. To functionally validate this hierarchical model of IFNγ-driven transcription, we applied selective antagonists of histone acetyltransferases P300/CBP or acetyl-lysine readers of the BET family. This highlighted that histone acetylation is an antecedent event in IFNγ-driven transcription, whereby targeting of P300/CBP acetyltransferase activity but not BET inhibition could curtail the epigenetic remodeling induced by IFNγ through suppression of Irf1 transactivation. CONCLUSIONS: These data highlight the ability for epigenetic therapies to reprogram pro-inflammatory gene expression, which may have therapeutic implications for anti-tumor immunity and inflammatory diseases.


Assuntos
Neoplasias da Mama , Interferon gama , Acetilação , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Metilação de DNA , Proteína p300 Associada a E1A , Feminino , Interferon gama/farmacologia , Janus Quinases , Proteínas de Membrana , Camundongos , Fosfoproteínas , Fatores de Transcrição STAT , Transdução de Sinais
14.
Cancer Discov ; 12(10): 2434-2453, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35904492

RESUMO

Recently, screens for mediators of resistance to FLT3 and ABL kinase inhibitors in leukemia resulted in the discovery of LZTR1 as an adapter of a Cullin-3 RING E3 ubiquitin ligase complex responsible for the degradation of RAS GTPases. In parallel, dysregulated LZTR1 expression via aberrant splicing and mutations was identified in clonal hematopoietic conditions. Here we identify that loss of LZTR1, or leukemia-associated mutants in the LZTR1 substrate and RAS GTPase RIT1 that escape degradation, drives hematopoietic stem cell (HSC) expansion and leukemia in vivo. Although RIT1 stabilization was sufficient to drive hematopoietic transformation, transformation mediated by LZTR1 loss required MRAS. Proteolysis targeting chimeras (PROTAC) against RAS or reduction of GTP-loaded RAS overcomes LZTR1 loss-mediated resistance to FLT3 inhibitors. These data reveal proteolysis of noncanonical RAS proteins as novel regulators of HSC self-renewal, define the function of RIT1 and LZTR1 mutations in leukemia, and identify means to overcome drug resistance due to LZTR1 downregulation. SIGNIFICANCE: Here we identify that impairing proteolysis of the noncanonical RAS GTPases RIT1 and MRAS via LZTR1 downregulation or leukemia-associated mutations stabilizing RIT1 enhances MAP kinase activation and drives leukemogenesis. Reducing the abundance of GTP-bound KRAS and NRAS overcomes the resistance to FLT3 kinase inhibitors associated with LZTR1 downregulation in leukemia. This article is highlighted in the In This Issue feature, p. 2221.


Assuntos
Leucemia , Proteínas ras , Proteínas Culina/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Leucemia/genética , Inibidores de Proteínas Quinases/farmacologia , Proteólise , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fatores de Transcrição/genética , Proteínas ras/genética
15.
EMBO Mol Med ; 14(7): e15203, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35514210

RESUMO

The mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) catalyzes one of the rate-limiting steps in de novo pyrimidine biosynthesis, a pathway that provides essential metabolic precursors for nucleic acids, glycoproteins, and phospholipids. DHODH inhibitors (DHODHi) are clinically used for autoimmune diseases and are emerging as a novel class of anticancer agents, especially in acute myeloid leukemia (AML) where pyrimidine starvation was recently shown to reverse the characteristic differentiation block in AML cells. Herein, we show that DHODH blockade rapidly shuts down protein translation in leukemic stem cells (LSCs) and has potent and selective activity against multiple AML subtypes. Moreover, we find that ablation of CDK5, a gene that is recurrently deleted in AML and related disorders, increases the sensitivity of AML cells to DHODHi. Our studies provide important molecular insights and identify a potential biomarker for an emerging strategy to target AML.


Assuntos
Leucemia Mieloide Aguda , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Di-Hidro-Orotato Desidrogenase , Inibidores Enzimáticos/farmacologia , Humanos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Biossíntese de Proteínas , Pirimidinas/farmacologia
16.
Leukemia ; 36(6): 1654-1665, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35459873

RESUMO

Peripheral T-cell lymphoma (PTCL) is a rare, heterogenous malignancy with dismal outcomes at relapse. Hypomethylating agents (HMA) have an emerging role in PTCL, supported by shared mutations with myelodysplasia (MDS). Response rates to azacitidine in PTCL of follicular helper cell origin are promising. Guadecitabine is a decitabine analogue with efficacy in MDS. In this phase II, single-arm trial, PTCL patients received guadecitabine on days 1-5 of 28-day cycles. Primary end points were overall response rate (ORR) and safety. Translational sub-studies included cell free plasma DNA sequencing and functional genomic screening using an epigenetically-targeted CRISPR/Cas9 library to identify response predictors. Among 20 predominantly relapsed/refractory patients, the ORR was 40% (10% complete responses). Most frequent grade 3-4 adverse events were neutropenia and thrombocytopenia. At 10 months median follow-up, median progression free survival (PFS) and overall survival (OS) were 2.9 and 10.4 months respectively. RHOAG17V mutations associated with improved PFS (median 5.47 vs. 1.35 months; Wilcoxon p = 0.02, Log-Rank p = 0.06). 4/7 patients with TP53 variants responded. Deletion of the histone methyltransferase SETD2 sensitised to HMA but TET2 deletion did not. Guadecitabine conveyed an acceptable ORR and toxicity profile; decitabine analogues may provide a backbone for future combinatorial regimens co-targeting histone methyltransferases.


Assuntos
Azacitidina , Linfoma de Células T Periférico , Azacitidina/efeitos adversos , Azacitidina/análogos & derivados , Decitabina/uso terapêutico , Genômica , Humanos , Linfoma de Células T Periférico/tratamento farmacológico , Linfoma de Células T Periférico/genética , Síndromes Mielodisplásicas/patologia , Recidiva Local de Neoplasia/induzido quimicamente , Neutropenia/induzido quimicamente , Resultado do Tratamento
17.
Cancer Discov ; 12(6): 1560-1579, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35311997

RESUMO

Pharmacologic inhibition of epigenetic enzymes can have therapeutic benefit against hematologic malignancies. In addition to affecting tumor cell growth and proliferation, these epigenetic agents may induce antitumor immunity. Here, we discovered a novel immunoregulatory mechanism through inhibition of histone deacetylases (HDAC). In models of acute myeloid leukemia (AML), leukemia cell differentiation and therapeutic benefit mediated by the HDAC inhibitor (HDACi) panobinostat required activation of the type I interferon (IFN) pathway. Plasmacytoid dendritic cells (pDC) produced type I IFN after panobinostat treatment, through transcriptional activation of IFN genes concomitant with increased H3K27 acetylation at these loci. Depletion of pDCs abrogated panobinostat-mediated induction of type I IFN signaling in leukemia cells and impaired therapeutic efficacy, whereas combined treatment with panobinostat and IFNα improved outcomes in preclinical models. These discoveries offer a new therapeutic approach for AML and demonstrate that epigenetic rewiring of pDCs enhances antitumor immunity, opening the possibility of exploiting this approach for immunotherapies. SIGNIFICANCE: We demonstrate that HDACis induce terminal differentiation of AML through epigenetic remodeling of pDCs, resulting in production of type I IFN that is important for the therapeutic effects of HDACis. The study demonstrates the important functional interplay between the immune system and leukemias in response to HDAC inhibition. This article is highlighted in the In This Issue feature, p. 1397.


Assuntos
Leucemia Mieloide Aguda , Diferenciação Celular , Células Dendríticas , Epigênese Genética , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/genética , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Panobinostat/farmacologia
18.
N Engl J Med ; 386(8): 735-743, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35196427

RESUMO

BACKGROUND: Covalent (irreversible) Bruton's tyrosine kinase (BTK) inhibitors have transformed the treatment of multiple B-cell cancers, especially chronic lymphocytic leukemia (CLL). However, resistance can arise through multiple mechanisms, including acquired mutations in BTK at residue C481, the binding site of covalent BTK inhibitors. Noncovalent (reversible) BTK inhibitors overcome this mechanism and other sources of resistance, but the mechanisms of resistance to these therapies are currently not well understood. METHODS: We performed genomic analyses of pretreatment specimens as well as specimens obtained at the time of disease progression from patients with CLL who had been treated with the noncovalent BTK inhibitor pirtobrutinib. Structural modeling, BTK-binding assays, and cell-based assays were conducted to study mutations that confer resistance to noncovalent BTK inhibitors. RESULTS: Among 55 treated patients, we identified 9 patients with relapsed or refractory CLL and acquired mechanisms of genetic resistance to pirtobrutinib. We found mutations (V416L, A428D, M437R, T474I, and L528W) that were clustered in the kinase domain of BTK and that conferred resistance to both noncovalent BTK inhibitors and certain covalent BTK inhibitors. Mutations in BTK or phospholipase C gamma 2 (PLCγ2), a signaling molecule and downstream substrate of BTK, were found in all 9 patients. Transcriptional activation reflecting B-cell-receptor signaling persisted despite continued therapy with noncovalent BTK inhibitors. CONCLUSIONS: Resistance to noncovalent BTK inhibitors arose through on-target BTK mutations and downstream PLCγ2 mutations that allowed escape from BTK inhibition. A proportion of these mutations also conferred resistance across clinically approved covalent BTK inhibitors. These data suggested new mechanisms of genomic escape from established covalent and novel noncovalent BTK inhibitors. (Funded by the American Society of Hematology and others.).


Assuntos
Tirosina Quinase da Agamaglobulinemia , Resistencia a Medicamentos Antineoplásicos , Leucemia Linfocítica Crônica de Células B , Mutação , Fosfolipase C gama , Inibidores de Proteínas Quinases , Humanos , Pessoa de Meia-Idade , Adenina/análogos & derivados , Adenina/farmacologia , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/genética , Tirosina Quinase da Agamaglobulinemia/ultraestrutura , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Fosfolipase C gama/genética , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores de Antígenos de Linfócitos B/metabolismo , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos
19.
Cancer Immunol Res ; 10(1): 87-107, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34782346

RESUMO

Targeting chromatin binding proteins and modifying enzymes can concomitantly affect tumor cell proliferation and survival, as well as enhance antitumor immunity and augment cancer immunotherapies. By screening a small-molecule library of epigenetics-based therapeutics, BET (bromo- and extra-terminal domain) inhibitors (BETi) were identified as agents that sensitize tumor cells to the antitumor activity of CD8+ T cells. BETi modulated tumor cells to be sensitized to the cytotoxic effects of the proinflammatory cytokine TNF. By preventing the recruitment of BRD4 to p65-bound cis-regulatory elements, BETi suppressed the induction of inflammatory gene expression, including the key NF-κB target genes BIRC2 (cIAP1) and BIRC3 (cIAP2). Disruption of prosurvival NF-κB signaling by BETi led to unrestrained TNF-mediated activation of the extrinsic apoptotic cascade and tumor cell death. Administration of BETi in combination with T-cell bispecific antibodies (TCB) or immune-checkpoint blockade increased bystander killing of tumor cells and enhanced tumor growth inhibition in vivo in a TNF-dependent manner. This novel epigenetic mechanism of immunomodulation may guide future use of BETi as adjuvants for immune-oncology agents.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Proteínas Inibidoras de Apoptose/genética , Proteínas Nucleares/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Animais , Apoptose/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , NF-kappa B/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
20.
Cell ; 184(15): 4032-4047.e31, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34171309

RESUMO

Although mutations in DNA are the best-studied source of neoantigens that determine response to immune checkpoint blockade, alterations in RNA splicing within cancer cells could similarly result in neoepitope production. However, the endogenous antigenicity and clinical potential of such splicing-derived epitopes have not been tested. Here, we demonstrate that pharmacologic modulation of splicing via specific drug classes generates bona fide neoantigens and elicits anti-tumor immunity, augmenting checkpoint immunotherapy. Splicing modulation inhibited tumor growth and enhanced checkpoint blockade in a manner dependent on host T cells and peptides presented on tumor MHC class I. Splicing modulation induced stereotyped splicing changes across tumor types, altering the MHC I-bound immunopeptidome to yield splicing-derived neoepitopes that trigger an anti-tumor T cell response in vivo. These data definitively identify splicing modulation as an untapped source of immunogenic peptides and provide a means to enhance response to checkpoint blockade that is readily translatable to the clinic.


Assuntos
Neoplasias/genética , Neoplasias/imunologia , Splicing de RNA/genética , Animais , Apresentação de Antígeno/efeitos dos fármacos , Apresentação de Antígeno/imunologia , Antígenos de Neoplasias/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Epitopos/imunologia , Etilenodiaminas/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia , Inflamação/patologia , Camundongos Endogâmicos C57BL , Peptídeos/metabolismo , Isoformas de Proteínas/metabolismo , Pirróis/farmacologia , Splicing de RNA/efeitos dos fármacos , Sulfonamidas/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA