Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(2)2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38247817

RESUMO

The membrane (M) glycoprotein of coronaviruses (CoVs) serves as the nidus for virion assembly. Using a yeast two-hybrid screen, we identified the interaction of the cytosolic tail of Murine Hepatitis Virus (MHV-CoV) M protein with Myosin Vb (MYO5B), specifically with the alternative splice variant of cellular MYO5B including exon D (MYO5B+D), which mediates interaction with Rab10. When co-expressed in human lung epithelial A549 and canine kidney epithelial MDCK cells, MYO5B+D co-localized with the MHV-CoV M protein, as well as with the M proteins from Porcine Epidemic Diarrhea Virus (PEDV-CoV), Middle East Respiratory Syndrome (MERS-CoV) and Severe Acute Respiratory Syndrome 2 (SARS-CoV-2). Co-expressed M proteins and MYO5B+D co-localized with endogenous Rab10 and Rab11a. We identified point mutations in MHV-CoV M that blocked the interaction with MYO5B+D in yeast 2-hybrid assays. One of these point mutations (E121K) was previously shown to block MHV-CoV virion assembly and its interaction with MYO5B+D. The E to K mutation at homologous positions in PEDV-CoV, MERS-CoV and SARS-CoV-2 M proteins also blocked colocalization with MYO5B+D. The knockdown of Rab10 blocked the co-localization of M proteins with MYO5B+D and was rescued by re-expression of CFP-Rab10. Our results suggest that CoV M proteins traffic through Rab10-containing systems, in association with MYO5B+D.


Assuntos
Proteínas M de Coronavírus , Animais , Cães , Humanos , Células Madin Darby de Rim Canino/metabolismo , Células Madin Darby de Rim Canino/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio , Miosinas , Proteínas rab de Ligação ao GTP/genética , Saccharomyces cerevisiae , Suínos , Proteínas da Matriz Viral , SARS-CoV-2/metabolismo , Vírus da Hepatite Murina/metabolismo , Células A549/metabolismo , Células A549/virologia , Vírus da Diarreia Epidêmica Suína/metabolismo
2.
EMBO Mol Med ; 15(9): e17376, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37534622

RESUMO

SARS-CoV-2 acute respiratory distress syndrome (ARDS) induces uncontrolled lung inflammation and coagulopathy with high mortality. Anti-viral drugs and monoclonal antibodies reduce early COVID-19 severity, but treatments for late-stage immuno-thrombotic syndromes and long COVID are limited. Serine protease inhibitors (SERPINS) regulate activated proteases. The myxoma virus-derived Serp-1 protein is a secreted immunomodulatory serpin that targets activated thrombotic, thrombolytic, and complement proteases as a self-defense strategy to combat clearance. Serp-1 is effective in multiple animal models of inflammatory lung disease and vasculitis. Here, we describe systemic treatment with purified PEGylated Serp-1 as a therapy for immuno-coagulopathic complications during ARDS. Treatment with PEGSerp-1 in two mouse-adapted SARS-CoV-2 models in C57Bl/6 and BALB/c mice reduced lung and heart inflammation, with improved outcomes. PEGSerp-1 significantly reduced M1 macrophages in the lung and heart by modifying urokinase-type plasminogen activator receptor (uPAR), thrombotic proteases, and complement membrane attack complex (MAC). Sequential changes in gene expression for uPAR and serpins (complement and plasminogen inhibitors) were observed. PEGSerp-1 is a highly effective immune-modulator with therapeutic potential for severe viral ARDS, immuno-coagulopathic responses, and Long COVID.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Serpinas , Camundongos , Animais , Humanos , Serpinas/uso terapêutico , Serpinas/metabolismo , Serpinas/farmacologia , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças , Peptídeo Hidrolases
3.
bioRxiv ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36824761

RESUMO

Nucleocytoplasmic transport of proteins using XPO1 (exportin 1) plays a vital role in cell proliferation and survival. Many viruses also exploit this pathway to promote infection and replication. Thus, inhibiting XPO1-mediated nuclear export with selective inhibitors activates multiple antiviral and anti-inflammatory pathways. The XPO1 inhibitor, Selinexor, is an FDA-approved anticancer drug predicted to have antiviral function against many viruses, including SARS-CoV-2. Unexpectedly, we observed that pretreatment of cultured human cells with Selinexor actually enhanced protein expression and replication of coronaviruses, including SARS-CoV-2. Knockdown of cellular XPO1 protein expression significantly enhanced the replication of coronaviruses in human cells. We further demonstrate that Selinexor treatment reduced the formation of unique cytoplasmic antiviral granules that include RNA helicase DHX9 in the virus-infected cells. These results, for the first time, show that the anti-cancer drug Selinexor enhances the replication of coronaviruses in human cells in vitro and thus should be further explored in vivo for the potential impact on the dual use for anticancer and antiviral therapy.

4.
PLoS One ; 11(3): e0151842, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26986483

RESUMO

It is widely anticipated that a prophylactic vaccine may be needed to control the HIV/AIDS epidemic worldwide. Despite over two decades of research, a vaccine against HIV-1 remains elusive, although a recent clinical trial has shown promising results. Recent studies have focused on highly conserved domains within HIV-1 such as the membrane proximal external region (MPER) of the envelope glycoprotein, gp41. MPER has been shown to play critical roles in mucosal transmission of HIV-1, though this peptide is poorly immunogenic on its own. Here we provide evidence that plant-produced HIV-1 enveloped virus-like particles (VLPs) consisting of Gag and a deconstructed form of gp41 comprising the MPER, transmembrane, and cytoplasmic domains (Dgp41) provides an effective platform to display MPER for use as an HIV vaccine candidate. Prime-boost strategies combining systemic and mucosal priming with systemic boosting using two different vaccine candidates (VLPs and CTB-MPR--a fusion of MPER and the B-subunit of cholera toxin) were investigated in BALB/c mice. Serum antibody responses against both the Gag and gp41 antigens were elicited when systemically primed with VLPs. These responses could be recalled following systemic boosting with VLPs. In addition, mucosal priming with VLPs allowed for a boosting response against Gag and gp41 when boosted with either candidate. Importantly, the VLPs also induced Gag-specific CD4 and CD8 T-cell responses. This report on the immunogenicity of plant-based Gag/Dgp41 VLPs may represent an important milestone on the road towards a broadly efficacious and inexpensive subunit vaccine against HIV-1.


Assuntos
Vacinas contra a AIDS/imunologia , Proteína gp41 do Envelope de HIV/imunologia , HIV-1/imunologia , Nicotiana/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Vacinas de Partículas Semelhantes a Vírus/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Animais , Formação de Anticorpos/efeitos dos fármacos , Formação de Anticorpos/imunologia , Feminino , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C
5.
PLoS One ; 10(8): e0136507, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26295457

RESUMO

The membrane proximal region (MPR, residues 649-683) and transmembrane domain (TMD, residues 684-705) of the gp41 subunit of HIV-1's envelope protein are highly conserved and are important in viral mucosal transmission, virus attachment and membrane fusion with target cells. Several structures of the trimeric membrane proximal external region (residues 662-683) of MPR have been reported at the atomic level; however, the atomic structure of the TMD still remains unknown. To elucidate the structure of both MPR and TMD, we expressed the region spanning both domains, MPR-TM (residues 649-705), in Escherichia coli as a fusion protein with maltose binding protein (MBP). MPR-TM was initially fused to the C-terminus of MBP via a 42 aa-long linker containing a TEV protease recognition site (MBP-linker-MPR-TM). Biophysical characterization indicated that the purified MBP-linker-MPR-TM protein was a monodisperse and stable candidate for crystallization. However, crystals of the MBP-linker-MPR-TM protein could not be obtained in extensive crystallization screens. It is possible that the 42 residue-long linker between MBP and MPR-TM was interfering with crystal formation. To test this hypothesis, the 42 residue-long linker was replaced with three alanine residues. The fusion protein, MBP-AAA-MPR-TM, was similarly purified and characterized. Significantly, both the MBP-linker-MPR-TM and MBP-AAA-MPR-TM proteins strongly interacted with broadly neutralizing monoclonal antibodies 2F5 and 4E10. With epitopes accessible to the broadly neutralizing antibodies, these MBP/MPR-TM recombinant proteins may be in immunologically relevant conformations that mimic a pre-hairpin intermediate of gp41.


Assuntos
Vacinas contra a AIDS/química , Proteína gp41 do Envelope de HIV/química , HIV-1/imunologia , Fragmentos de Peptídeos/química , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/isolamento & purificação , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/imunologia , Proteína gp41 do Envelope de HIV/imunologia , Fragmentos de Peptídeos/imunologia , Proteínas Periplásmicas de Ligação/química , Proteínas Periplásmicas de Ligação/imunologia , Ressonância de Plasmônio de Superfície , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/isolamento & purificação
6.
Virology ; 478: 75-85, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25726972

RESUMO

Coronaviruses (CoVs) assemble at endoplasmic reticulum Golgi intermediate compartment (ERGIC) membranes and egress from cells in cargo vesicles. Only a few molecules of the envelope (E) protein are assembled into virions. The role of E in morphogenesis is not fully understood. The cellular localization and dynamics of mouse hepatitis CoV A59 (MHV) E protein were investigated to further understanding of its role during infection. E protein localized in the ERGIC and Golgi with the amino and carboxy termini in the lumen and cytoplasm, respectively. E protein does not traffic to the cell surface. MHV was genetically engineered with a tetracysteine tag at the carboxy end of E. Fluorescence recovery after photobleaching (FRAP) showed that E is mobile in ERGIC/Golgi membranes. Correlative light electron microscopy (CLEM) confirmed the presence of E in Golgi cisternae. The results provide strong support that E proteins carry out their function(s) at the site of budding/assembly.


Assuntos
Membranas Intracelulares/química , Vírus da Hepatite Murina/fisiologia , Proteínas do Envelope Viral/análise , Montagem de Vírus , Liberação de Vírus , Animais , Linhagem Celular , Cricetinae , Retículo Endoplasmático/química , Retículo Endoplasmático/virologia , Complexo de Golgi/química , Complexo de Golgi/virologia , Camundongos , Microscopia
7.
J Ethnopharmacol ; 126(3): 397-405, 2009 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19770031

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The wild basil Clinopodium vulgare L. is commonly used in Bulgarian folk medicine for treatment of irritated skin, mastitis- and prostatitis-related swelling, as well as for some disorders accompanied with significant degree of inflammation (e.g. gastric ulcers, diabetes, and cancer). AIM OF STUDY: To determine the effect of aqueous extract of Clinopodium vulgare L. on LPS-induced inflammatory responses of murine RAW 264.7 macrophages. MATERIALS AND METHODS: Cell cytotoxicity was evaluated by MTT assay. Protein expression levels were monitored by Western blot analysis. Production of NO and PGE(2) was measured by the Griess colorimetric method and enzyme immunoassay, respectively. Activation of MMP-9 was visualized by gelatin zymography. Cytokine levels were determined by BioPlex assay. Intracellular ROS and free radical scavenging potential were measured by DCFH-DA and DPPH method, respectively. Xanthine oxidase activity was evaluated spectrophotometrically. RESULTS: The extract suppresses NF-kappaB activation by preventing I kappa-B phosphorylation and inhibits the phosphorylation of p38 and SAPK/JNK MAPKs. It down-regulates iNOS expression which manifests as a drastic decrease of NO production, inhibits MMP-9 activation, but does not affect COX-2 protein levels and reduces only slightly the released PGE(2). Secretion of IL-1 beta and Il-10 is greatly reduced, whereas suppression of TNF-alpha and GM-CSF production is less dramatic. The extract has strong free radical scavenging properties and exerts inhibitory effect on xanthine oxidase activity, which lowers the levels of intracellular ROS. CONCLUSION: The study provides evidence for the anti-inflammatory potential of Clinopodium vulgare L. aqueous extract.


Assuntos
Inflamação/induzido quimicamente , Lamiaceae/química , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Western Blotting , Linhagem Celular , Citocinas/metabolismo , Dinoprostona/biossíntese , Técnicas Imunoenzimáticas , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/metabolismo , Água
8.
J Virol ; 82(6): 3000-10, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18184703

RESUMO

Coronavirus envelope (E) proteins play an important, not fully understood role(s) in the virus life cycle. All E proteins have conserved cysteine residues located on the carboxy side of the long hydrophobic domain, suggesting functional significance. In this study, we confirmed that mouse hepatitis coronavirus A59 E protein is palmitoylated. To understand the role of the conserved residues and the necessity of palmitoylation, three cysteines at positions 40, 44, and 47 were changed singly and in various combinations to alanine. Double- and triple-mutant E proteins resulted in decreased virus-like particle output when coexpressed with the membrane (M) protein. Mutant E proteins were also studied in the context of a full-length infectious clone. Single-substitution viruses exhibited growth characteristics virtually identical to those of the wild-type virus, while the double-substitution mutations gave rise to viruses with less robust growth phenotypes indicated by smaller plaques and decreased virus yields. In contrast, replacement of all three cysteines resulted in crippled virus with significantly reduced yields. Triple-mutant viruses did not exhibit impairment in entry. Mutant E proteins localized properly in infected cells. A comparison of intracellular and extracellular virus yields suggested that release is only slightly impaired. E protein lacking all three cysteines exhibited an increased rate of degradation compared to that of the wild-type protein, suggesting that palmitoylation is important for the stability of the protein. Altogether, the results indicate that the conserved cysteines and presumably palmitoylation are functionally important for virus production.


Assuntos
Sequência Conservada , Coronavirus/fisiologia , Cisteína/fisiologia , Proteínas do Envelope Viral/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Coronavirus/química , Cricetinae , Cisteína/química , Primers do DNA , Técnica Indireta de Fluorescência para Anticorpo , Camundongos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Proteínas do Envelope Viral/química
9.
J Virol ; 81(7): 3597-607, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17229680

RESUMO

Coronavirus envelope (E) proteins are small (approximately 75- to 110-amino-acid) membrane proteins that have a short hydrophilic amino terminus, a relatively long hydrophobic membrane domain, and a long hydrophilic carboxy-terminal domain. The protein is a minor virion structural component that plays an important, not fully understood role in virus production. It was recently demonstrated that the protein forms ion channels. We investigated the importance of the hydrophobic domain of the mouse hepatitis coronavirus (MHV) A59 E protein. Alanine scanning insertion mutagenesis was used to examine the effect of disruption of the domain on virus production in the context of the virus genome by using a MHV A59 infectious clone. Mutant viruses exhibited smaller plaque phenotypes, and virus production was significantly crippled. Analysis of recovered viruses suggested that the structure of the presumed alpha-helical structure and positioning of polar hydrophilic residues within the predicted transmembrane domain are important for virus production. Generation of viruses with restored wild-type helical pitch resulted in increased virus production, but some exhibited decreased virus release. Viruses with the restored helical pitch were more sensitive to treatment with the ion channel inhibitor hexamethylene amiloride than were the more crippled parental viruses with the single alanine insertions, suggesting that disruption of the transmembrane domain affects the functional activity of the protein. Overall the results indicate that the transmembrane domain plays a crucial role during biogenesis of virions.


Assuntos
Membrana Celular/metabolismo , Coronavirus/fisiologia , Proteínas do Envelope Viral/metabolismo , Montagem de Vírus , Alanina/genética , Alanina/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Coronavirus/química , Cricetinae , Interações Hidrofóbicas e Hidrofílicas , Cinética , Camundongos , Viabilidade Microbiana , Dados de Sequência Molecular , Mutação/genética , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA