Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Biomed Pharmacother ; 176: 116879, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850666

RESUMO

Cannabinoid CB2 agonists show therapeutic efficacy without unwanted CB1-mediated side effects. The G protein-biased CB2 receptor agonist LY2828360 attenuates the maintenance of chemotherapy-induced neuropathic nociception in male mice and blocks development of morphine tolerance in this model. However, the cell types involved in this phenomenon are unknown and whether this therapeutic profile is observed in female mice has never been investigated. We used conditional deletion of CB2 receptors to determine the cell population(s) mediating the anti-allodynic and morphine-sparing effects of CB2 agonists. Anti-allodynic effects of structurally distinct CB2 agonists (LY2828360 and AM1710) were present in paclitaxel-treated CB2f/f mice and in mice lacking CB2 receptors in CX3CR1 expressing microglia/macrophages (CX3CR1CRE/+; CB2f/f), but were absent in mice lacking CB2 receptors in peripheral sensory neurons (AdvillinCRE/+; CB2f/f). The morphine-sparing effect of LY28282360 occurred in a sexually-dimorphic manner, being present in male, but not female, mice. LY2828360 treatment (3 mg/kg per day i.p. x 12 days) blocked the development of morphine tolerance in male CB2f/f and CX3CR1CRE/+; CB2f/f mice with established paclitaxel-induced neuropathy but was absent in male (or female) AdvillinCRE/+; CB2f/f mice. Co-administration of morphine with a low dose of LY2828360 (0.1 mg/kg per day i.p. x 6 days) reversed morphine tolerance in paclitaxel-treated male CB2f/f mice, but not AdvillinCRE/+; CB2f/f mice of either sex. LY2828360 (3 mg/kg per day i.p. x 8 days) delayed, but did not prevent, the development of paclitaxel-induced mechanical or cold allodynia in either CB2f/f or CX3CR1CRE/+; CB2f/f mice of either sex. Our findings have potential clinical implications.


Assuntos
Tolerância a Medicamentos , Morfina , Neuralgia , Paclitaxel , Receptor CB2 de Canabinoide , Células Receptoras Sensoriais , Animais , Masculino , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética , Feminino , Morfina/farmacologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Tolerância a Medicamentos/fisiologia , Camundongos , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Nociceptividade/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Caracteres Sexuais , Camundongos Knockout , Agonistas de Receptores de Canabinoides/farmacologia
2.
Neuropharmacology ; 257: 110052, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38936657

RESUMO

The direct blockade of CB1 cannabinoid receptors produces therapeutic effects as well as adverse side-effects that limit their clinical potential. CB1 negative allosteric modulators (NAMs) represent an indirect approach to decrease the affinity and/or efficacy of orthosteric cannabinoid ligands or endocannabinoids at CB1. We recently reported that GAT358, a CB1-NAM, blocked opioid-induced mesocorticolimbic dopamine release and reward via a CB1-allosteric mechanism of action. Whether a CB1-NAM dampens opioid-mediated therapeutic effects such as analgesia or alters other unwanted opioid side-effects remain unknown. Here, we characterized the effects of GAT358 on nociceptive behaviors in the presence and absence of morphine in male rats. We examined the impact of GAT358 on formalin-evoked pain behavior and Fos protein expression, a marker of neuronal activation, in the lumbar spinal cord. We also assessed the impact of GAT358 on morphine-induced slowing of colonic transit, tolerance, and withdrawal behaviors in male mice. GAT358 attenuated morphine antinociceptive tolerance without blocking acute antinociception and reduced morphine-induced slowing of colonic motility without impacting fecal boli production. GAT358 also produced antinociception in the presence and absence of morphine in the formalin model of inflammatory nociception and reduced the number of formalin-evoked Fos protein-like immunoreactive cells in the lumbar spinal cord. Finally, GAT358 mitigated the somatic signs of naloxone-precipitated, but not spontaneous, opioid withdrawal following chronic morphine dosing. Our results support the therapeutic potential of CB1-NAMs as novel drug candidates aimed at preserving opioid-mediated analgesia while preventing their unwanted side-effects. Our studies also uncover previously unrecognized antinociceptive properties associated with an arrestin-biased CB1-NAM.


Assuntos
Analgésicos Opioides , Tolerância a Medicamentos , Morfina , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide , Síndrome de Abstinência a Substâncias , Animais , Receptor CB1 de Canabinoide/metabolismo , Masculino , Analgésicos Opioides/farmacologia , Tolerância a Medicamentos/fisiologia , Regulação Alostérica/efeitos dos fármacos , Camundongos , Morfina/farmacologia , Ratos , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo
3.
Pain ; 163(5): 834-851, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35001054

RESUMO

ABSTRACT: CB2 cannabinoid receptors (CB2) are a promising therapeutic target that lacks unwanted side effects of CB1 activation. However, the cell types expressing CB2 that mediate these effects remain poorly understood. We used transgenic mice with CB2 promoter-driven expression of enhanced green fluorescent protein (EGFP) to study cell types that express CB2 and suppress neuropathic nociception in a mouse model of chemotherapy-induced peripheral neuropathy. Structurally distinct CB2 agonists (AM1710 and LY2828360) suppressed paclitaxel-induced mechanical and cold allodynia in CB2EGFP reporter mice with established neuropathy. Antiallodynic effects of AM1710 were blocked by SR144528, a CB2 antagonist with limited CNS penetration. Intraplantar AM1710 administration suppressed paclitaxel-induced neuropathic nociception in CB2EGFP but not CB2 knockout mice, consistent with a local site of antiallodynic action. mRNA expression levels of the anti-inflammatory cytokine interleukin-10 were elevated in the lumbar spinal cord after intraplantar AM1710 injection along with the proinflammatory cytokine tumor necrosis factor alpha and chemokine monocyte chemoattractant protein-1. CB2EGFP, but not wildtype mice, exhibited anti-GFP immunoreactivity in the spleen. However, the anti-GFP signal was below the threshold for detection in the spinal cord and brain of either vehicle-treated or paclitaxel-treated CB2EGFP mice. EGFP fluorescence was coexpressed with CB2 immunolabeling in stratified patterns among epidermal keratinocytes. EGFP fluorescence was also expressed in dendritic cells in the dermis, Langerhans cells in the epidermis, and Merkel cells. Quantification of the EGFP signal revealed that Langerhans cells were dynamically increased in the epidermis after paclitaxel treatment. Our studies implicate CB2 expressed in previously unrecognized populations of skin cells as a potential target for suppressing chemotherapy-induced neuropathic nociception.


Assuntos
Antineoplásicos , Canabinoides , Neuralgia , Animais , Antineoplásicos/efeitos adversos , Canabinoides/farmacologia , Citocinas , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Camundongos , Camundongos Knockout , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Paclitaxel/toxicidade , Purinas , Piranos , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide/genética
4.
Neuropharmacology ; 205: 108925, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34921830

RESUMO

The abuse of oral formulations of prescription opioids has precipitated the current opioid epidemic. We developed an oral oxycodone consumption model consisting of a limited access (4 h) two-bottle choice drinking in the dark (TBC-DID) paradigm and quantified dependence with naloxone challenge using mice of both sexes. We also assessed neurobiological correlates of withdrawal and dependence elicited via oral oxycodone consumption using immunohistochemistry for DeltaFosB (ΔFosB), a transcription factor described as a molecular marker for drug addiction. Neither sex developed a preference for the oxycodone bottle, irrespective of oxycodone concentration, bottle position or prior water restriction. Mice that volitionally consumed oxycodone exhibited hyperlocomotion in an open field test and supraspinal but not spinally-mediated antinociception. Both sexes also developed robust, dose-dependent levels of opioid withdrawal that was precipitated by the opioid antagonist naloxone. Oral oxycodone consumption followed by naloxone challenge led to mesocorticolimbic region-dependent increases in the number of ΔFosB expressing cells. Naloxone-precipitated withdrawal jumps, but not the oxycodone bottle % preference, was positively correlated with the number of ΔFosB expressing cells specifically in the nucleus accumbens shell. Thus, limited access oral consumption of oxycodone produced physical dependence and increased ΔFosB expression despite the absence of opioid preference. Our TBC-DID paradigm allows for the study of oral opioid consumption in a simple, high-throughput manner and elucidates the underlying neurobiological substrates that accompany opioid-induced physical dependence.


Assuntos
Analgésicos Opioides/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Transtornos Relacionados ao Uso de Opioides , Oxicodona/farmacologia , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Síndrome de Abstinência a Substâncias , Analgésicos Opioides/administração & dosagem , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Locomoção/efeitos dos fármacos , Camundongos , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Nociceptividade/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Transtornos Relacionados ao Uso de Opioides/metabolismo , Transtornos Relacionados ao Uso de Opioides/fisiopatologia , Oxicodona/administração & dosagem , Proteínas Proto-Oncogênicas c-fos/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/fisiopatologia
5.
Neurobiol Pain ; 10: 100077, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34841128

RESUMO

Childhood acute lymphoblastic leukemia (ALL) is a significant clinical problem that can be effectively treated with vincristine, a vinca alkaloid-based chemotherapeutic agent. However, nearly all children receiving vincristine treatment develop vincristine-induced peripheral neuropathy (VIPN). The impact of adolescent vincristine treatment across the lifespan remains poorly understood. We, consequently, developed an adolescent rodent model of VIPN which can be utilized to study possible long term consequences of vincristine treatment in the developing rat. We also evaluated the therapeutic efficacy of voluntary exercise and potential impact of obesity as a genetic risk factor in this model on the development and maintenance of VIPN. Out of all the dosing regimens we evaluated, the most potent VIPN was produced by fifteen consecutive daily intraperitoneal (i.p.) vincristine injections at 100 µg/kg/day, throughout the critical period of adolescence from postnatal day 35 to 49. With this treatment, vincristine-treated animals developed hypersensitivity to mechanical and cold stimulation of the plantar hind paw surface, which outlasted the period of vincristine treatment and resolved within two weeks following the cessation of vincristine injection. By contrast, impairment in grip strength gain was delayed by vincristine treatment, emerging shortly following the termination of vincristine dosing, and persisted into early adulthood without diminishing. Interestingly, voluntary wheel running exercise prevented the development of vincristine-induced hypersensitivities to mechanical and cold stimulation. However, Zucker fa/fa obese animals did not exhibit higher risk of developing VIPN compared to lean rats. Our studies identify sensory and motor impairments produced by vincristine in adolescent animals and support the therapeutic efficacy of voluntary exercise for suppressing VIPN in developing rats.

6.
Artigo em Inglês | MEDLINE | ID: mdl-33622657

RESUMO

BACKGROUND: Efficacy of inhaled cannabis for treating pain is controversial. Effective treatment for chemotherapy-induced neuropathy represents an unmet medical need. We hypothesized that cannabis reduces neuropathic pain by reducing functional coupling in the raphe nuclei. METHODS: We assessed the impact of inhalation of vaporized cannabis plant (containing 10.3% Δ9-tetrahydrocannabinol/0.05% cannabidiol) or placebo cannabis on brain resting-state blood oxygen level-dependent functional connectivity and pain behavior induced by paclitaxel in rats. Rats received paclitaxel to produce chemotherapy-induced peripheral neuropathy or its vehicle. Behavioral and imaging experiments were performed after neuropathy was established and stable. Images were registered to, and analyzed using, a 3D magnetic resonance imaging rat atlas providing site-specific data on more than 168 different brain areas. RESULTS: Prior to vaporization, paclitaxel produced cold allodynia. Inhaled vaporized cannabis increased cold withdrawal latencies relative to prevaporization or placebo cannabis, consistent with Δ9-tetrahydrocannabinol-induced antinociception. In paclitaxel-treated rats, the midbrain serotonergic system, comprising the dorsal and median raphe, showed hyperconnectivity to cortical, brainstem, and hippocampal areas, consistent with nociceptive processing. Inhalation of vaporized cannabis uncoupled paclitaxel-induced hyperconnectivity patterns. No such changes in connectivity or cold responsiveness were observed following placebo cannabis vaporization. CONCLUSIONS: Inhaled vaporized cannabis plant uncoupled brain resting-state connectivity in the raphe nuclei, normalizing paclitaxel-induced hyperconnectivity to levels observed in vehicle-treated rats. Inhaled vaporized cannabis produced antinociception in both paclitaxel- and vehicle-treated rats. Our study elucidates neural circuitry implicated in the therapeutic effects of Δ9-tetrahydrocannabinol and supports a role for functional imaging studies in animals in guiding indications for future clinical trials.


Assuntos
Antineoplásicos , Cannabis , Doenças do Sistema Nervoso Periférico , Animais , Nociceptividade , Núcleos da Rafe , Ratos
7.
Neurobiol Pain ; 6: 100034, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31223138

RESUMO

Human and animal studies suggest that both traumatic nerve injury and toxic challenge with chemotherapeutic agents involves the reorganization of neural circuits in the brain. However, there have been no prospective studies, human or animal, using magnetic resonance imaging (MRI) to identify changes in brain neural circuitry that accompany the development of chemotherapy-induced neuropathic pain (i.e. within days following cessation of chemotherapy treatment and without the confound cancer). To this end, different MRI protocols were used to ascertain whether a reorganization of brain neural circuits is observed in otherwise normal rats exposed to the taxane chemotherapeutic agent paclitaxel. We conducted an imaging study to evaluate the impact of a well-established paclitaxel dosing regimen, validated to induce allodynia in control rats within eight days of treatment, on brain neural circuitry. Rats received either paclitaxel (2 mg/kg/day i.p; cumulative dose of 8 mg/kg) or its vehicle four times on alternate days (i.e. day 0, 2, 4, 6). Following the cessation of treatments (i.e. on day 8), all rats were tested for responsiveness to cold followed by diffusion weighted magnetic resonance imaging and assessment of resting state functional connectivity. Imaging data were analyzed using a 3D MRI rat with 173 segmented and annotated brain areas. Paclitaxel-treated rats were more sensitive to a cold stimulus compared to controls. Diffusion weighted imaging identified brain areas involved in the emotional and motivational response to chronic pain that were impacted by paclitaxel treatment. Affected brain regions included the prefrontal cortex, amygdala, hippocampus, hypothalamus and the striatum/nucleus accumbens. This putative reorganization of gray matter microarchitecture formed a continuum of brain areas stretching from the basal medial/lateral forebrain to the midbrain. Resting state functional connectivity showed reorganization between the periaqueductal gray, a key node in nociceptive neural circuitry, and connections to the brainstem. Our results, employing different imaging modalities to assess the central nervous system effects of chemotherapy, fit the theory that chronic pain is regulated by emotion and motivation and influences activity in the periaqueductal gray and brainstem to modulate pain perception.

8.
Pharmacol Res ; 142: 267-282, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30739035

RESUMO

Activation of cannabinoid CB1 receptors suppresses pathological pain but also produces unwanted side effects, including tolerance and physical dependence. Inhibition of fatty-acid amide hydrolase (FAAH), the major enzyme catalyzing the degradation of anandamide (AEA), an endocannabinoid, and other fatty-acid amides, suppresses pain without unwanted side effects typical of direct CB1 agonists. However, FAAH inhibitors have failed to show efficacy in several clinical trials suggesting that the right partnership of FAAH inhibition and pathology has yet to be identified. We compared efficacy of chronic treatments with a centrally penetrant FAAH inhibitor (URB597), a peripherally restricted FAAH inhibitor (URB937) and an orthosteric pan-cannabinoid agonist (WIN55,212-2) in suppressing neuropathic pain induced by the chemotherapeutic agent paclitaxel. Each FAAH inhibitor suppressed the development of paclitaxel-induced neuropathic pain and reduced the maintenance of already established allodynia with sustained efficacy. Tolerance developed to the anti-allodynic efficacy of WIN55,212-2, but not to that of URB597 or URB937, in each dosing paradigm. Challenge with the CB1 antagonist rimonabant precipitated CB1-dependent withdrawal in paclitaxel-treated mice receiving WIN55,212-2 but not URB597 or URB937. When dosing with either URB597 or URB937 was restricted to the development of neuropathy, paclitaxel-induced allodynia emerged following termination of drug delivery. These observations suggest that both FAAH inhibitors were anti-allodynic rather than curative. Moreover, neither URB597 nor URB937 impeded the ability of paclitaxel to reduce breast (4T1) or ovarian (HeyA8) tumor cell line viability. In fact, URB597 and URB937 alone reduced 4T1 tumor cell line viability, albeit with low potency, and the dose matrix of each combination with paclitaxel was synergistic in reducing 4T1 and HeyA8 tumor cell line viability according to Bliss, Highest Single Agent (HSA) and Loewe additivity models. Both FAAH inhibitors synergized with paclitaxel to reduce 4T1 and HeyA8 tumor cell line viability without reducing viability of non-tumor HEK293 cells. Neither FAAH inhibitor reduced viability of non-tumor HEK293 cells in either the presence or absence of paclitaxel, suggesting that nonspecific cytotoxic effects were not produced by the same treatments. Our results suggest that FAAH inhibitors reduce paclitaxel-induced allodynia without the occurrence of CB1-dependence in vivo and may, in fact, enhance the anti-tumor actions of paclitaxel in vitro.


Assuntos
Amidoidrolases/antagonistas & inibidores , Analgésicos/uso terapêutico , Benzamidas/uso terapêutico , Benzoxazinas/uso terapêutico , Encéfalo/metabolismo , Canabinoides/uso terapêutico , Carbamatos/uso terapêutico , Hiperalgesia/tratamento farmacológico , Morfolinas/uso terapêutico , Naftalenos/uso terapêutico , Neuralgia/tratamento farmacológico , Animais , Antineoplásicos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Tolerância a Medicamentos , Células HEK293 , Humanos , Hiperalgesia/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuralgia/induzido quimicamente , Paclitaxel , Transtornos Relacionados ao Uso de Substâncias
9.
J Natl Cancer Inst ; 111(6): 531-537, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715378

RESUMO

Although recent scientific advances have improved our understanding of basic biological mechanisms underlying chemotherapy-induced peripheral neuropathy (CIPN), few interventions are available to prevent or treat CIPN. Although some biological targets from preclinical studies show promise in nonhuman animal models, few targets have been translated to successful clinical trials. To address this problem, the National Cancer Institute's Symptom Management and Health-Related Quality of Life Steering Committee convened a meeting of experts in the CIPN and oncology symptom management fields to participate in a Clinical Trials Planning Meeting (CTPM). Investigators presented data from preclinical and translational studies for possible CIPN interventions; these were evaluated for readiness of randomized clinical trial testing by experts, and recommendations were provided. Breakout sessions were convened to discuss and develop future studies. The CTPM experts concluded that there is compelling evidence to move forward with selected pharmacological and nonpharmacological clinical trials for the prevention and treatment of CIPN. Several key feasibility issues need to be addressed, however. These include identification of optimal outcome measures to define the CIPN phenotype, establishment of parameters that guide the evaluation of clinically meaningful effects, and adoption of approaches for inclusion of translational and biomarker and/or genetic measures. The results of the CTPM provide support for conducting clinical trials that include both pharmacological and nonpharmacological approaches, alone or in combination, with biomarkers, genetics, or other measures designed to inform underlying CIPN mechanisms. Several working groups were formed to design rigorous CIPN clinical trials, the results of which are ongoing.


Assuntos
Antineoplásicos/efeitos adversos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/terapia , Antineoplásicos/uso terapêutico , Ensaios Clínicos como Assunto , Humanos , Doenças do Sistema Nervoso Periférico/prevenção & controle
10.
J Pharmacol Exp Ther ; 367(3): 551-563, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30275151

RESUMO

Opioid-based therapies remain a mainstay for chronic pain management, but unwanted side effects limit therapeutic use. We compared efficacies of brain-permeant and -impermeant inhibitors of fatty acid amide hydrolase (FAAH) in suppressing neuropathic pain induced by the chemotherapeutic agent paclitaxel. Paclitaxel produced mechanical and cold allodynia without altering nestlet shredding or marble burying behaviors. We compared FAAH inhibitors that differ in their ability to penetrate the central nervous system for antiallodynic efficacy, pharmacological specificity, and synergism with the opioid analgesic morphine. (3'-(aminocarbonyl)[1,1'-biphenyl]- 3-yl)-cyclohexylcarbamate (URB597), a brain-permeant FAAH inhibitor, attenuated paclitaxel-induced allodynia via cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2) mechanisms. URB937, a brain-impermeant FAAH inhibitor, suppressed paclitaxel-induced allodynia through a CB1 mechanism only. 5-[4-(4-cyano-1-butyn-1-yl)phenyl]-1-(2,4-dichlorophenyl)-N-(1,1-dioxido-4-thiomorpholinyl)-4-methyl-1H-pyrazole-3-carboxamide (AM6545), a peripherally restricted CB1 antagonist, fully reversed the antiallodynic efficacy of N-cyclohexyl-carbamic acid, 3'-(aminocarbonyl)-6-hydroxy[1,1'- biphenyl]-3-yl ester (URB937) but only partially reversed that of URB597. Thus, URB937 suppressed paclitaxel-induced allodynia through a mechanism that was dependent upon peripheral CB1 receptor activation only. Antiallodynic effects of both FAAH inhibitors were reversed by N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251). Antiallodynic effects of URB597, but not URB937, were reversed by 6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-methoxyphenyl)methanone (AM630). Isobolographic analysis revealed synergistic interactions between morphine and either URB597 or URB937 in reducing paclitaxel-induced allodynia. A leftward shift in the dose-response curve of morphine antinociception was observed when morphine was coadministered with either URB597 or URB937, consistent with morphine sparing. However, neither URB937 nor URB597 enhanced morphine-induced deficits in colonic transit. Thus, our findings suggest that FAAH inhibition may represent a therapeutic avenue to reduce the overall amount of opioid needed for treating neuropathic pain with potential to reduce unwanted side effects that accompany opioid administration.


Assuntos
Amidoidrolases/metabolismo , Analgésicos Opioides/farmacologia , Antineoplásicos/efeitos adversos , Encéfalo/efeitos dos fármacos , Trânsito Gastrointestinal/efeitos dos fármacos , Morfina/farmacologia , Nociceptividade/efeitos dos fármacos , Animais , Ácidos Araquidônicos/farmacologia , Benzamidas/farmacologia , Encéfalo/metabolismo , Canabinoides/farmacologia , Carbamatos/farmacologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Indóis/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Morfolinas/farmacologia , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
11.
Mol Pain ; 14: 1744806918801224, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30157705

RESUMO

Elevated N-methyl-D-aspartate receptor activity contributes to central sensitization. Our laboratories and others recently reported that disrupting protein-protein interactions downstream of N-methyl-D-aspartate receptors suppresses pain. Specifically, disrupting binding between the enzyme neuronal nitric oxide synthase and either its upstream (postsynaptic density 95 kDa, PSD95) or downstream (e.g. nitric oxide synthase 1 adaptor protein, NOS1AP) protein partners suppressed inflammatory and/or neuropathic pain. However, the lack of a small-molecule neuronal nitric oxide synthase-NOS1AP inhibitor has hindered efforts to validate the therapeutic utility of disrupting the neuronal nitric oxide synthase-NOS1AP interface as an analgesic strategy. We, therefore, evaluated the ability of a putative small-molecule neuronal nitric oxide synthase-NOS1AP inhibitor ZLc002 to disrupt binding between neuronal nitric oxide synthase and NOS1AP using ex vivo, in vitro, and purified recombinant systems and asked whether ZLc002 would suppress inflammatory and neuropathic pain in vivo. In vitro, ZLc002 reduced co-immunoprecipitation of full-length NOS1AP and neuronal nitric oxide synthase in cultured neurons and in HEK293T cells co-expressing full-length neuronal nitric oxide synthase and NOS1AP. However, using a cell-free biochemical binding assay, ZLc002 failed to disrupt the in vitro binding between His-neuronal nitric oxide synthase1-299 and glutathione S-transferase-NOS1AP400-506, protein sequences containing the required binding domains for this protein-protein interaction, suggesting an indirect mode of action in intact cells. ZLc002 (4-10 mg/kg i.p.) suppressed formalin-evoked inflammatory pain in rats and reduced Fos protein-like immunoreactivity in the lumbar spinal dorsal horn. ZLc002 also suppressed mechanical and cold allodynia in a mouse model of paclitaxel-induced neuropathic pain. Anti-allodynic efficacy was sustained for at least four days of once daily repeated dosing. ZLc002 also synergized with paclitaxel when administered in combination to reduce breast (4T1) or ovarian (HeyA8) tumor cell line viability but did not alter tumor cell viability without paclitaxel. Our results verify that ZLc002 disrupts neuronal nitric oxide synthase-NOS1AP interaction in intact cells and demonstrate, for the first time, that systemic administration of a putative small-molecule inhibitor of neuronal nitric oxide synthase-NOS1AP suppresses inflammatory and neuropathic pain.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Antineoplásicos/efeitos adversos , Inibidores Enzimáticos/uso terapêutico , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Paclitaxel/efeitos adversos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Imunoprecipitação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/tratamento farmacológico , Neurônios , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Limiar da Dor/efeitos dos fármacos , Ratos , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
12.
Mol Pharmacol ; 93(2): 49-62, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29192123

RESUMO

The CB2 cannabinoid agonist LY2828360 lacked both toxicity and efficacy in a clinical trial for osteoarthritis. Whether LY2828360 suppresses neuropathic pain has not been reported, and its signaling profile is unknown. In vitro, LY2828360 was a slowly acting but efficacious G protein-biased CB2 agonist, inhibiting cAMP accumulation and activating extracellular signal-regulated kinase 1/2 signaling while failing to recruit arrestin, activate inositol phosphate signaling, or internalize CB2 receptors. In wild-type (WT) mice, LY2828360 (3 mg/kg per day i.p. × 12 days) suppressed chemotherapy-induced neuropathic pain produced by paclitaxel without producing tolerance. Antiallodynic efficacy of LY2828360 was absent in CB2 knockout (KO) mice. Morphine (10 mg/kg per day i.p. × 12 days) tolerance developed in CB2KO mice but not in WT mice with a history of LY2828360 treatment (3 mg/kg per day i.p. × 12 days). LY2828360-induced antiallodynic efficacy was preserved in WT mice previously rendered tolerant to morphine (10 mg/kg per day i.p. × 12 days), but it was absent in morphine-tolerant CB2KO mice. Coadministration of LY2828360 (0.1 mg/kg per day i.p. × 12 days) with morphine (10 mg/kg per day × 12 days) blocked morphine tolerance in WT but not in CB2KO mice. WT mice that received LY2828360 coadministered with morphine exhibited a trend (P = 0.055) toward fewer naloxone-precipitated jumps compared with CB2KO mice. In conclusion, LY2828360 is a slowly signaling, G protein-biased CB2 agonist that attenuates chemotherapy-induced neuropathic pain without producing tolerance and may prolong effective opioid analgesia while reducing opioid dependence. LY2828360 may be useful as a first-line treatment in chemotherapy-induced neuropathic pain and may be highly efficacious in neuropathic pain states that are refractive to opioid analgesics.


Assuntos
Analgésicos Opioides/administração & dosagem , Agonistas de Receptores de Canabinoides/farmacologia , Tolerância a Medicamentos , Proteínas de Ligação ao GTP/metabolismo , Dependência de Morfina/prevenção & controle , Morfina/administração & dosagem , Neuralgia/prevenção & controle , Purinas/farmacologia , Receptor CB2 de Canabinoide/agonistas , Transdução de Sinais , Analgésicos Opioides/efeitos adversos , Animais , Antineoplásicos/administração & dosagem , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfina/efeitos adversos , Naloxona/administração & dosagem , Antagonistas de Entorpecentes/administração & dosagem , Paclitaxel/administração & dosagem , Purinas/administração & dosagem , Receptor CB2 de Canabinoide/metabolismo , Síndrome de Abstinência a Substâncias
13.
Biol Psychiatry ; 84(10): 722-733, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28823711

RESUMO

BACKGROUND: Activation of cannabinoid CB1 receptors suppresses pathological pain but also produces unwanted central side effects. We hypothesized that a positive allosteric modulator of CB1 signaling would suppress inflammatory and neuropathic pain without producing cannabimimetic effects or physical dependence. We also asked whether a CB1 positive allosteric modulator would synergize with inhibitors of endocannabinoid deactivation and/or an orthosteric cannabinoid agonist. METHODS: GAT211, a novel CB1 positive allosteric modulator, was evaluated for antinociceptive efficacy and tolerance in models of neuropathic and/or inflammatory pain. Cardinal signs of direct CB1-receptor activation were evaluated together with the propensity to induce reward or aversion and physical dependence. Comparisons were made with inhibitors of endocannabinoid deactivation (JZL184, URB597) or an orthosteric cannabinoid agonist (WIN55,212-2). All studies used 4 to 11 subjects per group. RESULTS: GAT211 suppressed allodynia induced by complete Freund's adjuvant and the chemotherapeutic agent paclitaxel in wild-type but not CB1 knockout mice. GAT211 did not impede paclitaxel-induced tumor cell line toxicity. GAT211 did not produce cardinal signs of direct CB1-receptor activation in the presence or absence of pathological pain. GAT211 produced synergistic antiallodynic effects with fatty acid amide hydrolase and monoacylglycerol lipase inhibitors in paclitaxel-treated mice. Therapeutic efficacy was preserved over 19 days of chronic dosing with GAT211, but it was not preserved with the monoacylglycerol lipase inhibitor JZL184. The CB1 antagonist rimonabant precipitated withdrawal in mice treated chronically with WIN55,212-2 but not in mice treated with GAT211. GAT211 did not induce conditioned place preference or aversion. CONCLUSIONS: Positive allosteric modulation of CB1-receptor signaling shows promise as a safe and effective analgesic strategy that lacks tolerance, dependence, and abuse liability.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Hiperalgesia/tratamento farmacológico , Indóis/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Animais , Benzamidas/farmacologia , Benzodioxóis/farmacologia , Benzoxazinas/farmacologia , Carbamatos/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Hiperalgesia/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfolinas/farmacologia , Naftalenos/farmacologia , Neuralgia/etiologia , Paclitaxel , Piperidinas/farmacologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Recompensa
14.
Neurobiol Learn Mem ; 144: 259-270, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28811227

RESUMO

Chemotherapy is widely used to treat patients with systemic cancer. The efficacy of cancer therapies is frequently undermined by adverse side effects that have a negative impact on the quality of life of cancer survivors. Cancer patients who receive chemotherapy often experience chemotherapy-induced cognitive impairment across a variety of domains including memory, learning, and attention. In the current study, the impact of paclitaxel, a taxane derived chemotherapeutic agent, on episodic memory, prior learning, new learning, and reversal learning were evaluated in rats. Neurogenesis was quantified post-treatment in the dentate gyrus of the same rats using immunostaining for 5-Bromo-2'-deoxyuridine (BrdU) and Ki67. Paclitaxel treatment selectively impaired reversal learning while sparing episodic memory, prior learning, and new learning. Furthermore, paclitaxel-treated rats showed decreases in markers of hippocampal cell proliferation, as measured by markers of cell proliferation assessed using immunostaining for Ki67 and BrdU. This work highlights the importance of using multiple measures of learning and memory to identify the pattern of impaired and spared aspects of chemotherapy-induced cognitive impairment.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Aprendizagem/efeitos dos fármacos , Memória Episódica , Paclitaxel/administração & dosagem , Reversão de Aprendizagem/efeitos dos fármacos , Animais , Proliferação de Células , Giro Denteado/efeitos dos fármacos , Giro Denteado/fisiologia , Masculino , Neurogênese/efeitos dos fármacos , Ratos Sprague-Dawley
15.
Behav Brain Res ; 320: 48-57, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27908748

RESUMO

Chemotherapeutic agents are widely used to treat patients with systemic cancer. The efficacy of these therapies is undermined by their adverse side-effect profiles such as cognitive deficits that have a negative impact on the quality of life of cancer survivors. Cognitive side effects occur across a variety of domains, including memory, executive function, and processing speed. Such impairments are exacerbated under cognitive challenges and a subgroup of patients experience long-term impairments. Episodic memory in rats can be examined using a source memory task. In the current study, rats received paclitaxel, a taxane-derived chemotherapeutic agent, and learning and memory functioning was examined using the source memory task. Treatment with paclitaxel did not impair spatial and episodic memory, and paclitaxel treated rats were not more susceptible to cognitive challenges. Under conditions in which memory was not impaired, paclitaxel treatment impaired learning of new rules, documenting a decreased sensitivity to changes in experimental contingencies. These findings provide new information on the nature of cancer chemotherapy-induced cognitive impairments, particularly regarding the incongruent vulnerability of episodic memory and new learning following treatment with paclitaxel.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Deficiências da Aprendizagem/induzido quimicamente , Memória Episódica , Paclitaxel/toxicidade , Memória Espacial/efeitos dos fármacos , Análise de Variância , Animais , Peso Corporal/efeitos dos fármacos , Transtornos Cognitivos/induzido quimicamente , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Estimulação Física , Ratos , Ratos Long-Evans
16.
Pharmacol Res ; 114: 75-89, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27773824

RESUMO

Neuropathic pain impacts approximately 3-4.5% of the global population and remains an unresolved health problem. The management of neuropathic pain has two distinct goals-prevention of development and control of established neuropathic pain. We examined the impact of both prophylactic and therapeutic treatments with the tricyclic antidepressant desipramine on the development and maintenance of toxic neuropathic pain induced by the chemotherapeutic agent paclitaxel. We also investigated the involvement of endogenous analgesic (i.e., endogenous opioid and endocannabinoid) systems in the antinociceptive actions of desipramine in these two distinct phases of neuropathic pain. Chronic subcutaneous infusion of desipramine via osmotic pumps suppressed both the development and maintenance of paclitaxel-induced neuropathic pain. However, only prophylactic desipramine treatment blocked the development of neuropathic pain throughout the three month observation interval; neuropathic pain did not return. The opioid receptor antagonist naloxone blocked the antinociceptive effects of both prophylactic and therapeutic desipramine treatments throughout the entire timecourse of desipramine-induced antinociception. By contrast, cannabinoid CB1 and CB2 receptor antagonists partially attenuated the antinociceptive actions of desipramine in a manner that was restricted to the development phase of paclitaxel-induced neuropathic pain only. Paclitaxel decreased cell viability in TMD231 tumor cells in an MTT assay in vitro. Notably, desipramine (1nM-1µM) alone did not alter tumor cell viability and did not prevent the cytotoxic effects of paclitaxel under identical conditions. The highest concentration of desipramine (10µM) reduced tumor cell viability alone and enhanced the cytotoxic effects of paclitaxel. Our study identifies a previously unrecognized preemptive analgesic strategy that prevents development of paclitaxel-induced neuropathic pain, and also dissects receptor mechanisms underlying desipramine-induced antinociceptive effects. This information may be applied to improve current therapeutic strategies with the goal of preventing and managing neuropathic pain induced by chemotherapeutic treatment.


Assuntos
Antidepressivos Tricíclicos/uso terapêutico , Antineoplásicos Fitogênicos/efeitos adversos , Desipramina/uso terapêutico , Neuralgia/induzido quimicamente , Neuralgia/prevenção & controle , Paclitaxel/efeitos adversos , Animais , Antidepressivos Tricíclicos/farmacologia , Desipramina/farmacologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/prevenção & controle , Masculino , Ratos Sprague-Dawley , Receptores de Canabinoides/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Mol Pain ; 122016.
Artigo em Inglês | MEDLINE | ID: mdl-27178246

RESUMO

Fatty-acid amide hydrolase (FAAH) is the major enzyme responsible for degradation of anandamide, an endocannabinoid. Pharmacological inhibition or genetic deletion of FAAH (FAAH KO) produces antinociception in preclinical pain models that is largely attributed to anandamide-induced activation of cannabinoid receptors. However, FAAH metabolizes a wide range of structurally related, biologically active lipid signaling molecules whose functions remain largely unknown. Some of these endogenous lipids, including anandamide itself, may exert pro-nociceptive effects under certain conditions. In our study, FAAH KO mice exhibited a characteristic analgesic phenotype in the tail flick test and in both formalin and carrageenan models of inflammatory nociception. Nonetheless, intradermal injection of the transient receptor potential channel V1 (TRPV1) agonist capsaicin increased nocifensive behavior as well as mechanical and heat hypersensitivity in FAAH KO relative to wild-type mice. This pro-nociceptive phenotype was accompanied by increases in capsaicin-evoked Fos-like immunoreactive (FLI) cells in spinal dorsal horn regions implicated in nociceptive processing and was attenuated by CB1 (AM251) and TRPV1 (AMG9810) antagonists. When central sensitization was established, FAAH KO mice displayed elevated levels of anandamide, other fatty-acid amides, and endogenous TRPV1 agonists in both paw skin and lumbar spinal cord relative to wild-type mice. Capsaicin decreased spinal cord 2-AG levels and increased arachidonic acid and prostaglandin E2 levels in both spinal cord and paw skin irrespective of genotype. Our studies identify a previously unrecognized pro-nociceptive phenotype in FAAH KO mice that was unmasked by capsaicin challenge. The heightened nociceptive response was mediated by CB1 and TRPV1 receptors and accompanied by enhanced spinal neuronal activation. Moreover, genetic deletion of FAAH has a profound impact on the peripheral and central lipidome. Thus, genetic deletion of FAAH may predispose animals to increased sensitivity to certain types of pain. More work is necessary to determine whether such changes could explain the lack of efficacy of FAAH inhibitors in clinical trials.


Assuntos
Amidoidrolases/deficiência , Nociceptividade , Acrilamidas/farmacologia , Acrilamidas/uso terapêutico , Amidoidrolases/metabolismo , Analgesia , Animais , Ácido Araquidônico/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Capsaicina/administração & dosagem , Carragenina , Modelos Animais de Doenças , Etanolaminas/metabolismo , Formaldeído , Genótipo , Hiperalgesia/complicações , Hiperalgesia/tratamento farmacológico , Hiperalgesia/patologia , Inflamação/complicações , Inflamação/tratamento farmacológico , Inflamação/patologia , Injeções Intraperitoneais , Ligantes , Vértebras Lombares/metabolismo , Vértebras Lombares/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nociceptividade/efeitos dos fármacos , Dor/complicações , Dor/tratamento farmacológico , Dor/patologia , Limiar da Dor/efeitos dos fármacos , Fenótipo , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Proteínas Proto-Oncogênicas c-fos/metabolismo , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Pele/metabolismo , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/patologia , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo
18.
PLoS One ; 11(1): e0147620, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26808812

RESUMO

Nicotinamide mononucleotide adenylyl transferases (NMNATs) are essential neuronal maintenance factors postulated to preserve neuronal function and protect against axonal degeneration in various neurodegenerative disease states. We used in vitro and in vivo approaches to assess the impact of NMNAT2 reduction on cellular and physiological functions induced by treatment with a vinca alkaloid (vincristine) and a taxane-based (paclitaxel) chemotherapeutic agent. NMNAT2 null (NMNAT2-/-) mutant mice die at birth and cannot be used to probe functions of NMNAT2 in adult animals. Nonetheless, primary cortical cultures derived from NMNAT2-/- embryos showed reduced cell viability in response to either vincristine or paclitaxel treatment whereas those derived from NMNAT2 heterozygous (NMNAT2+/-) mice were preferentially sensitive to vincristine-induced degeneration. Adult NMNAT2+/- mice, which survive to adulthood, exhibited a 50% reduction of NMNAT2 protein levels in dorsal root ganglia relative to wildtype (WT) mice with no change in levels of other NMNAT isoforms (NMNAT1 or NMNAT3), NMNAT enzyme activity (i.e. NAD/NADH levels) or microtubule associated protein-2 (MAP2) or neurofilament protein levels. We therefore compared the impact of NMNAT2 knockdown on the development and maintenance of chemotherapy-induced peripheral neuropathy induced by vincristine and paclitaxel treatment using NMNAT2+/- and WT mice. NMNAT2+/- did not differ from WT mice in either the development or maintenance of either mechanical or cold allodynia induced by either vincristine or paclitaxel treatment. Intradermal injection of capsaicin, the pungent ingredient in hot chili peppers, produced equivalent hypersensitivity in NMNAT2+/- and WT mice receiving vehicle in lieu of paclitaxel. Capsaicin-evoked hypersensitivity was enhanced by prior paclitaxel treatment but did not differ in either NMNAT2+/- or WT mice. Thus, capsaicin failed to unmask differences in nociceptive behaviors in either paclitaxel-treated or paclitaxel-untreated NMNAT2+/- and WT mice. Moreover, no differences in motor behavior were detected between genotypes in the rotarod test. Our studies do not preclude the possibility that complete knockout of NMNAT2 in a conditional knockout animal could unmask a role for NMNAT2 in protection against detrimental effects of chemotherapeutic treatment.


Assuntos
Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Doenças do Sistema Nervoso Periférico/enzimologia , Doenças do Sistema Nervoso Periférico/genética , Animais , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Feminino , Camundongos , Camundongos Mutantes , Paclitaxel/farmacologia , Gravidez , Vincristina/farmacologia
19.
Biol Psychiatry ; 77(5): 475-87, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24853387

RESUMO

BACKGROUND: Mixed cannabinoid receptor 1 and 2 (CB1 and CB2) agonists such as Δ(9)-tetrahydrocannabinol (Δ(9)-THC) can produce tolerance, physical withdrawal, and unwanted CB1-mediated central nervous system side effects. Whether repeated systemic administration of a CB2-preferring agonist engages CB1 receptors or produces CB1-mediated side effects is unknown. METHODS: We evaluated antiallodynic efficacy, possible tolerance, and cannabimimetic side effects of repeated dosing with a CB2-preferring agonist AM1710 in a model of chemotherapy-induced neuropathy produced by paclitaxel using CB1 knockout (CB1KO), CB2 knockout (CB2KO), and wild-type (WT) mice. Comparisons were made with the prototypic classic cannabinoid Δ(9)-THC. We also explored the site and possible mechanism of action of AM1710. RESULTS: Paclitaxel-induced mechanical and cold allodynia developed to an equivalent degree in CB1KO, CB2KO, and WT mice. Both AM1710 and Δ(9)-THC suppressed established paclitaxel-induced allodynia in WT mice. In contrast to Δ(9)-THC, chronic administration of AM1710 did not engage CB1 activity or produce antinociceptive tolerance, CB1-mediated cannabinoid withdrawal, hypothermia, or motor dysfunction. Antiallodynic efficacy of systemic administration of AM1710 was absent in CB2KO mice and WT mice receiving the CB2 antagonist AM630, administered either systemically or intrathecally. Intrathecal administration of AM1710 also attenuated paclitaxel-induced allodynia in WT mice, but not CB2KO mice, implicating a possible role for spinal CB2 receptors in AM1710 antiallodynic efficacy. Finally, both acute and chronic administration of AM1710 decreased messenger RNA levels of tumor necrosis factor-α and monocyte chemoattractant protein 1 in lumbar spinal cord of paclitaxel-treated WT mice. CONCLUSIONS: Our results highlight the potential of prolonged use of CB2 agonists for managing chemotherapy-induced allodynia with a favorable therapeutic ratio marked by sustained efficacy and absence of tolerance, physical withdrawal, or CB1-mediated side effects.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Paclitaxel/toxicidade , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/agonistas , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Quimiocina CCL2/metabolismo , Cromonas/farmacologia , Modelos Animais de Doenças , Dronabinol/farmacologia , Feminino , Hiperalgesia/fisiopatologia , Indóis/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo , Distribuição Aleatória , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiopatologia , Fator de Necrose Tumoral alfa/metabolismo
20.
Mol Pain ; 10: 56, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25189223

RESUMO

BACKGROUND: Cisplatin, a platinum-derived chemotherapeutic agent, produces antineoplastic effects coupled with toxic neuropathic pain and impaired general health status. These side-effects complicate long term studies of neuropathy or analgesic interventions in animals. We recently demonstrated that pretreatment with sodium bicarbonate (4% NaHCO3) prior to cisplatin (3 mg/kg i.p. weekly up to 5 weeks) was associated with improved health status (i.e. normal weight gain, body temperature, creatinine and ketone levels, and kidney weight ratio) in rats (Neurosci Lett 544:41-46, 2013). To reduce the nephrotoxic effects of cisplatin treatment in mice, we compared effects of sodium bicarbonate (4% NaHCO3 s.c.), vitamin C (25 mg/kg s.c.), resveratrol (25 mg/kg s.c.) and saline (0.9% NaCl) pretreatment on cisplatin-induced changes in animal health status, neuropathic pain and proinflammatory cytokine levels in spinal cord and kidney. RESULTS: Cisplatin-treated mice receiving saline pretreatment exhibited elevated ketone, creatinine and kidney weight ratios, representative of nephrotoxicity. Vitamin C and sodium bicarbonate lowered creatinine/ketone levels and kidney weight ratio whereas resveratrol normalized creatinine levels and kidney weight ratios similar to saline pretreatment. All pretreatments were associated with decreased ketone levels compared to saline pretreatment. Cisplatin-induced neuropathy (i.e. mechanical and cold allodynia) developed equivalently in all pretreatment groups and was similarly reversed by either morphine (6 mg/kg i.p.) or ibuprofen (6 mg/kg i.p.) treatment. RT-PCR showed that mRNA levels for IL-1ß were increased in lumbar spinal cord of cisplatin-treated groups pretreated with either saline, NaHCO3 or resveratrol/cisplatin-treated groups. However, IL-6 and TNF-alpha were elevated in the kidneys in all cisplatin-treated groups. Our studies also demonstrate that 60 days after the last cisplatin treatment, body weight, body temperature, kidney functions and mRNA levels have returned to baseline although the neuropathic pain (mechanical and cold) is maintained. CONCLUSIONS: Studies employing cisplatin should include NaHCO3 or vitamin C pretreatment to improve animal health status and reduce nephrotoxicity (lower creatinine and kidney weight ratio) without affecting the development of chemotherapy-induced neuropathy or analgesic efficacy.


Assuntos
Ácido Ascórbico/administração & dosagem , Nível de Saúde , Doenças do Sistema Nervoso Periférico/prevenção & controle , Bicarbonato de Sódio/administração & dosagem , Vitaminas/administração & dosagem , Animais , Antineoplásicos/toxicidade , Glicemia/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Cisplatino/toxicidade , Creatinina/sangue , Modelos Animais de Doenças , Esquema de Medicação , Hiperalgesia/induzido quimicamente , Hiperalgesia/prevenção & controle , Cetonas/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Limiar da Dor/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/sangue , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA