Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RNA Biol ; 21(1): 1-15, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38372062

RESUMO

Although Argonaute (AGO) proteins have been the focus of microRNA (miRNA) studies, we observed AGO-free mature miRNAs directly interacting with RNA-binding proteins, implying the sophisticated nature of fine-tuning gene regulation by miRNAs. To investigate microRNA-binding proteins (miRBPs) globally, we analyzed PAR-CLIP data sets to identify RBP quaking (QKI) as a novel miRBP for let-7b. Potential existence of AGO-free miRNAs were further verified by measuring miRNA levels in genetically engineered AGO-depleted human and mouse cells. We have shown that QKI regulates miRNA-mediated gene silencing at multiple steps, and collectively serves as an auxiliary factor empowering AGO2/let-7b-mediated gene silencing. Depletion of QKI decreases interaction of AGO2 with let-7b and target mRNA, consequently controlling target mRNA decay. This finding indicates that QKI is a complementary factor in miRNA-mediated mRNA decay. QKI, however, also suppresses the dissociation of let-7b from AGO2, and slows the assembly of AGO2/miRNA/target mRNA complexes at the single-molecule level. We also revealed that QKI overexpression suppresses cMYC expression at post-transcriptional level, and decreases proliferation and migration of HeLa cells, demonstrating that QKI is a tumour suppressor gene by in part augmenting let-7b activity. Our data show that QKI is a new type of RBP implicated in the versatile regulation of miRNA-mediated gene silencing.


Assuntos
MicroRNAs , Humanos , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Células HeLa , Inativação Gênica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , RNA Mensageiro/genética
2.
Biosens Bioelectron ; 242: 115694, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37797531

RESUMO

Circulating tumor DNA (ctDNA) analysis has emerged as a highly promising non-invasive assay for detection and monitoring of cancer. However, identification of multiple point-mutant ctDNAs, particularly at extremely low frequencies in early cancer stages, remains a significant challenge. To address this issue, we present a multiplexed ctDNA detection technique, SIMUL (single-molecule detection of multiple low-frequency mutations). SIMUL involves an unbiased preamplification of both wild-type and mutant DNAs, followed by the detection of mutant DNAs through single-molecule multicolor imaging. SIMUL enables highly sensitive and specific detection of multiple single-nucleotide mutations in a short span of time, even in the presence of 10,000-fold excess of wild-type DNA. Importantly, SIMUL can accurately measure mutant fractions due to its linear correlation between the number of single-molecule spots and the variant allele frequency. This breakthrough technique holds immense potential for clinical applications, offering significant improvements for example in early cancer detection and accurate evaluation of anticancer treatment responses.


Assuntos
Técnicas Biossensoriais , DNA Tumoral Circulante , Neoplasias , Humanos , DNA Tumoral Circulante/genética , Neoplasias/diagnóstico , Neoplasias/genética , Mutação , Biomarcadores Tumorais/genética
3.
Commun Biol ; 5(1): 1072, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207395

RESUMO

MicroRNAs (miRNAs) are short regulatory RNAs that control gene expression at the post-transcriptional level. Various miRNAs playing important roles in cancer development are emerging as promising diagnostic biomarkers for early cancer detection. Accurate miRNA detection, however, remains challenging because they are small and highly homologous. Recently developed miRNA detection techniques based on single-molecule imaging enabled highly specific miRNA quantification without amplification, but the time required for these techniques to detect a single miRNA was larger than 10 minutes, making rapid profiling of numerous miRNAs impractical. Here we report a rapid miRNA detection technique, dynamic FRET-FISH, in which single-molecule imaging at high probe concentrations and thus high-speed miRNA detection is possible. Dynamic FRET-FISH can detect miRNAs in 10 s at 1.2 µM probe concentration while maintaining the high-specificity of single-nucleotide discrimination. We expect dynamic FRET-FISH will be utilized for early detection of cancers by profiling hundreds of cancer biomarkers in an hour.


Assuntos
MicroRNAs , Biomarcadores Tumorais/genética , Transferência Ressonante de Energia de Fluorescência , MicroRNAs/genética , MicroRNAs/metabolismo , Nucleotídeos
4.
J Mol Biol ; 433(18): 167114, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34161779

RESUMO

Chromodomain-Helicase DNA binding protein 7 (CHD7) is an ATP dependent chromatin remodeler involved in maintaining open chromatin structure. Mutations of CHD7 gene causes multiple developmental disorders, notably CHARGE syndrome. However, there is not much known about the molecular mechanism by which CHD7 remodels nucleosomes. Here, we performed biochemical and biophysical analysis on CHD7 chromatin remodeler and uncover that N-terminal to the Chromodomain (N-CRD) interacts with nucleosome and contains a high conserved arginine stretch, which is reminiscent of arginine anchor. Importantly, this region is required for efficient ATPase stimulation and nucleosome remodeling activity of CHD7. Furthermore, smFRET analysis shows the mutations in the N-CRD causes the defects in remodeling activity. Collectively, our results uncover the functional importance of a previously unidentified N-terminal region in CHD7 and implicate that the multiple domains in chromatin remodelers are involved in regulating their activities.


Assuntos
Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Mutação , Nucleossomos , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Arginina/química , Arginina/genética , DNA Helicases/química , DNA Helicases/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Conformação Proteica , Homologia de Sequência
5.
Biochemistry ; 59(47): 4481-4487, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33174727

RESUMO

Chromodomain-helicase-DNA-binding protein 1 (CHD1) remodels chromatin by translocating nucleosomes along DNA, but its mechanism remains poorly understood. We use single-molecule fluorescence experiments to clarify the mechanism by which yeast CHD1 (Chd1p) remodels nucleosomes. We find that binding of ATP to Chd1p induces transient unwrapping of the DNA on the exit side of the nucleosome, facilitating nucleosome translocation. ATP hydrolysis is required to induce nucleosome translocation. The unwrapped DNA after translocation is then rewrapped after the release of the hydrolyzed nucleotide and phosphate, revealing that each step of the ATP hydrolysis cycle is responsible for a distinct step of nucleosome remodeling. These results show that Chd1p remodels nucleosomes via a mechanism that is unique among the other ATP-dependent chromatin remodelers.


Assuntos
Trifosfato de Adenosina/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/fisiologia , DNA/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Animais , Sítios de Ligação/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , DNA/química , Hidrólise , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae , Células Sf9 , Spodoptera
6.
Nucleic Acids Res ; 48(16): 9195-9203, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32810236

RESUMO

G-quadruplex (GQ) is formed at various regions of DNA, including telomeres of chromosomes and regulatory regions of oncogenes. Since GQ is important in both gene regulation and genome instability, the biological and medical implications of this abnormal DNA structure have been intensively studied. Its formation mechanisms, however, are not clearly understood yet. We report single-molecule fluorescence experiments to monitor the cotranscriptional GQ formation coupled with R-loop formation using T7 RNA polymerase. The GQ is formed very rarely per single-round transcription. R-loop formation precedes and facilitates GQ formation. Once formed, some GQs are extremely stable, resistant even to RNase H treatment, and accumulate in multiple-round transcription conditions. On the other hand, GQ existing in the non-template strand promotes the R-loop formation in the next rounds of transcription. Our study clearly shows the existence of a positive feedback mechanism of GQ and R-loop formations, which may possibly contribute to gene regulation and genome instability.


Assuntos
DNA/ultraestrutura , Quadruplex G , Estruturas R-Loop/genética , Imagem Individual de Molécula/métodos , RNA Polimerases Dirigidas por DNA/ultraestrutura , Fluorescência , Transferência Ressonante de Energia de Fluorescência , Humanos , Telômero/ultraestrutura , Proteínas Virais/ultraestrutura
7.
Nat Commun ; 10(1): 5718, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31844045

RESUMO

Maintaining stability of replication forks is important for genomic integrity. However, it is not clear how replisome proteins contribute to fork stability under replication stress. Here, we report that ATAD5, a PCNA unloader, plays multiple functions at stalled forks including promoting its restart. ATAD5 depletion increases genomic instability upon hydroxyurea treatment in cultured cells and mice. ATAD5 recruits RAD51 to stalled forks in an ATR kinase-dependent manner by hydroxyurea-enhanced protein-protein interactions and timely removes PCNA from stalled forks for RAD51 recruitment. Consistent with the role of RAD51 in fork regression, ATAD5 depletion inhibits slowdown of fork progression and native 5-bromo-2'-deoxyuridine signal induced by hydroxyurea. Single-molecule FRET showed that PCNA itself acts as a mechanical barrier to fork regression. Consequently, DNA breaks required for fork restart are reduced by ATAD5 depletion. Collectively, our results suggest an important role of ATAD5 in maintaining genome integrity during replication stress.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Rad51 Recombinase/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Bromodesoxiuridina/metabolismo , Linhagem Celular Tumoral , Quebras de DNA/efeitos dos fármacos , Reparo do DNA , Replicação do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Citometria de Fluxo , Transferência Ressonante de Energia de Fluorescência , Técnicas de Silenciamento de Genes , Instabilidade Genômica/efeitos dos fármacos , Células HEK293 , Humanos , Hidroxiureia/farmacologia , Ligação Proteica/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Imagem Individual de Molécula
8.
Cell Rep ; 23(6): 1831-1839, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29742437

RESUMO

Replication fork reversal is one of the major pathways for reactivating stalled DNA replication. Many enzymes with replication fork reversal activity have DNA-unwinding activity as well, but none of the fork reversal enzymes in the SWI/SNF family shows a separate DNA-unwinding activity, raising the question of how they initiate the remodeling process. Here, we found ATP binding to Rad5 induces the unwinding of the leading arm of the replication fork and proximally positions the leading and lagging arms. This facilitates the spontaneous remodeling of the replication fork into a four-way junction. Once the four-way junction is formed, Rad5 migrates the four-way junction at a speed of 7.1 ± 0.14 nt/s. The 3' end anchoring of the leading arm by Rad5's HIRAN domain is critical for both branch migration and the recovery of the three-way junction, but not for the structural transition to the four-way junction.


Assuntos
Trifosfato de Adenosina/metabolismo , DNA Helicases/metabolismo , Replicação do DNA , DNA Cruciforme/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA Helicases/química , Modelos Biológicos , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/química
9.
Opt Express ; 25(25): 32189-32197, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29245882

RESUMO

Real-time optical imaging combined with single-molecule manipulation broadens the horizons for acquiring information about the spatiotemporal localization and the mechanical details of target molecules. To obtain an optical signal outside the focal plane without unintended interruption of the force signal in single-molecule optical imaging-force spectroscopy, we developed an optical method to extend the depth of field in a high numerical aperture objective (≥ 1.2), required to visualize a single fluorophore. By axial scanning, using an electrically tunable lens with a fixed sample, we were successfully able to visualize the epidermal growth factor receptor (EGFR) moving along the three-dimensionally elongated filamentous actin bundles connecting cells (intercellular nanotube), while another EGFR on the intercellular nanotube was trapped by optical tweezers in living cells. Our approach is simple, fast and inexpensive, but it is powerful for imaging target molecules axially in single-molecule optical imaging-force spectroscopy.


Assuntos
Citoesqueleto de Actina/química , Receptores ErbB/análise , Lentes , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Pinças Ópticas , Análise Espectral/métodos , Células HeLa , Humanos , Microscopia de Fluorescência/instrumentação , Nanotubos
10.
Nucleic Acids Res ; 45(8): 4696-4707, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28369616

RESUMO

Cockayne syndrome protein B (CSB) belongs to the SWI2/SNF2 ATP-dependent chromatin remodeler family, and CSB is the only ATP-dependent chromatin remodeler essential for transcription-coupled nucleotide excision DNA repair. CSB alone remodels nucleosomes ∼10-fold slower than the ACF remodeling complex. Strikingly, NAP1-like histone chaperones interact with CSB and greatly enhance CSB-mediated chromatin remodeling. While chromatin remodeling by CSB and NAP1-like proteins is crucial for efficient transcription-coupled DNA repair, the mechanism by which NAP1-like proteins enhance chromatin remodeling by CSB remains unknown. Here we studied CSB's DNA-binding and nucleosome-remodeling activities at the single molecule level in real time. We also determined how the NAP1L1 chaperone modulates these activities. We found that CSB interacts with DNA in two principle ways: by simple binding and a more complex association that involves gross DNA distortion. Remarkably, NAP1L1 suppresses both these interactions. Additionally, we demonstrate that nucleosome remodeling by CSB consists of three distinct phases: activation, translocation and pausing, similar to ACF. Importantly, we found that NAP1L1 promotes CSB-mediated remodeling by accelerating both activation and translocation. Additionally, NAP1L1 increases CSB processivity by decreasing the pausing probability during translocation. Our study, therefore, uncovers the different steps of CSB-mediated chromatin remodeling that can be regulated by NAP1L1.


Assuntos
DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Chaperonas de Histonas/genética , Proteína 1 de Modelagem do Nucleossomo/genética , Transcrição Gênica , Trifosfato de Adenosina/metabolismo , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Reparo do DNA/genética , Humanos , Nucleossomos/genética , Proteínas de Ligação a Poli-ADP-Ribose
11.
Structure ; 24(8): 1292-1300, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27427477

RESUMO

The reactivation of stalled DNA replication via fork regression invokes Holliday junction formation, branch migration, and the recovery of the replication fork after DNA repair or error-free DNA synthesis. The coordination mechanism for these DNA structural transitions by molecular motors, however, remains unclear. Here we perform single-molecule fluorescence experiments with Werner syndrome protein (WRN) and model replication forks. The Holliday junction is readily formed once the lagging arm is unwound, and migrated unidirectionally with 3.2 ± 0.03 bases/s velocity. The recovery of the replication fork was controlled by branch migration reversal of WRN, resulting in repetitive fork regression. The Holliday junction formation, branch migration, and migration direction reversal are all ATP dependent, revealing that WRN uses the energy of ATP hydrolysis to actively coordinate the structural transitions of DNA.


Assuntos
Trifosfato de Adenosina/metabolismo , Replicação do DNA , DNA Cruciforme/química , Proteínas Recombinantes de Fusão/metabolismo , Helicase da Síndrome de Werner/metabolismo , Animais , Pareamento de Bases , Carbocianinas/química , DNA Cruciforme/genética , DNA Cruciforme/metabolismo , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Expressão Gênica , Humanos , Proteínas Recombinantes de Fusão/genética , Células Sf9 , Imagem Individual de Molécula , Spodoptera , Helicase da Síndrome de Werner/genética
12.
Proc Natl Acad Sci U S A ; 109(49): E3340-9, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23129641

RESUMO

The viral sensor MDA5 distinguishes between cellular and viral dsRNAs by length-dependent recognition in the range of ~0.5-7 kb. The ability to discriminate dsRNA length at this scale sets MDA5 apart from other dsRNA receptors of the immune system. We have shown previously that MDA5 forms filaments along dsRNA that disassemble upon ATP hydrolysis. Here, we demonstrate that filament formation alone is insufficient to explain its length specificity, because the intrinsic affinity of MDA5 for dsRNA depends only moderately on dsRNA length. Instead, MDA5 uses a combination of end disassembly and slow nucleation kinetics to "discard" short dsRNA rapidly and to suppress rebinding. In contrast, filaments on long dsRNA cycle between partial end disassembly and elongation, bypassing nucleation steps. MDA5 further uses this repetitive cycle of assembly and disassembly processes to repair filament discontinuities, which often are present because of multiple, internal nucleation events, and to generate longer, continuous filaments that more accurately reflect the length of the underlying dsRNA scaffold. Because the length of the continuous filament determines the stability of the MDA5-dsRNA interaction, the mechanism proposed here provides an explanation for how MDA5 uses filament assembly and disassembly dynamics to discriminate between self vs. nonself dsRNA.


Assuntos
RNA Helicases DEAD-box/metabolismo , Imunidade Inata/fisiologia , Conformação Proteica , RNA de Cadeia Dupla/metabolismo , RNA Viral/metabolismo , Trifosfato de Adenosina/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Hidrólise , Helicase IFIH1 Induzida por Interferon , Cinética , Microscopia Eletrônica de Transmissão , Ligação Proteica , RNA de Cadeia Dupla/imunologia , RNA Viral/imunologia
13.
Proc Natl Acad Sci U S A ; 109(8): 2925-30, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22323612

RESUMO

Topoisomerase II resolves intrinsic topological problems of double-stranded DNA. As part of its essential cellular functions, the enzyme generates DNA breaks, but the regulation of this potentially dangerous process is not well understood. Here we report single-molecule fluorescence experiments that reveal a previously uncharacterized sequence of events during DNA cleavage by topoisomerase II: nonspecific DNA binding, sequence-specific DNA bending, and stochastic cleavage of DNA. We have identified unexpected structural roles of Mg(2+) ions coordinated in the TOPRIM (topoisomerase-primase) domain in inducing cleavage-competent DNA bending. A break at one scissile bond dramatically stabilized DNA bending, explaining how two scission events in opposing strands can be coordinated to achieve a high probability of double-stranded cleavage. Clamping of the protein N-gate greatly enhanced the rate and degree of DNA bending, resulting in a significant stimulation of the DNA cleavage and opening reactions. Our data strongly suggest that the accurate cleavage of DNA by topoisomerase II is regulated through a tight coordination with DNA bending.


Assuntos
Antígenos de Neoplasias/metabolismo , Clivagem do DNA/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/química , DNA/metabolismo , Magnésio/farmacologia , Conformação de Ácido Nucleico/efeitos dos fármacos , Aminoácidos Acídicos/metabolismo , Sequência de Bases , Cátions Bivalentes/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Humanos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA