Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
iScience ; 27(3): 108835, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38384849

RESUMO

Airway inflammation underlies cystic fibrosis (CF) pulmonary exacerbations. In a prospective multicenter study of randomly selected, clinically stable adolescents and adults, we assessed relationships between 24 inflammation-associated molecules and the future occurrence of CF pulmonary exacerbation using proportional hazards models. We explored relationships for potential confounding or mediation by clinical factors and assessed sensitivities to treatments including CF transmembrane regulator (CFTR) protein synthesis modulators. Results from 114 participants, including seven on ivacaftor or lumacaftor-ivacaftor, representative of the US CF population during the study period, identified 10 biomarkers associated with future exacerbations mediated by percent predicted forced expiratory volume in 1 s. The findings were not sensitive to anti-inflammatory, antibiotic, and CFTR modulator treatments. The analyses suggest that combination treatments addressing RAGE-axis inflammation, protease-mediated injury, and oxidative stress might prevent pulmonary exacerbations. Our work may apply to other airway inflammatory diseases such as bronchiectasis and the acute respiratory distress syndrome.

2.
Cardiol Cardiovasc Med ; 7(2): 108-116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554658

RESUMO

Objectives: To compare the fractional flow reserve (FFR) and diastolic hyperemia-free ratio (DFR) measurements in a population with intermediate coronary artery stenosis and improve the diagnosis. Background: Visual assessment of coronary artery stenosis severity, particularly in intermediate lesions, is prone to errors in decision-making. FFR provides a reliable assessment of functional severity in these cases but requires hyperemia induction by adenosine, which has side effects and increased cost. DFR is a novel hyperemia-independent index, which could be used as an alternative to adenosine-based hyperemia induction. Methods and Results: Between September 2019 to March 2020, 25 patients with 38 intermediate coronary stenotic lesions were included in the study. All patients underwent assessment of whole cycle Pd/Pa (ratio of distal coronary pressure to proximal aortic pressure), DFR and FFR. Mean whole cycle Pd/Pa, DFR and FFR were 0.93±0.06, 0.88±0.09, and 0.85±0.08, respectively. A significant positive correlation between DFR and FFR [r = 0.74; p<0.001] was observed. Receiver operating characteristic analysis showed an area under the curve of 0.90. DFR-only strategy with a treatment cut-off of ≤0.89 showed a diagnostic agreement with the FFR-only strategy in 74% of lesions, with a sensitivity of 54%, specificity of 82%, a positive predictive value of 60%, and a negative predictive value of 79%. Conclusions: Real-time DFR measurements show a clinically reliable correlation with FFR. Hence, using DFR is likely to avoid adenosine administration as well as reduce the cost and procedural time. Further studies with a larger sample size would be ideal to evaluate specific cut-off values and endpoints.

3.
Free Radic Biol Med ; 195: 261-269, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36586455

RESUMO

The mechanisms underlying muscle dysfunction with Chronic Obstructive Pulmonary Disease (COPD) are poorly understood. Indirect evidence has recently suggested a role of Advanced Glycation End Products (AGEs) and their receptor (RAGE) in the pathophysiology of COPD. Accordingly, this study aimed to examine the redox balance and mitochondrial alterations in the skeletal muscle of a mouse model deficient in the receptor for AGE (RAGE-KO) and wild-type C57BL/6 exposed to cigarette smoke for 8-months using immunoblotting, spectrophotometry, and high-resolution respirometry. Cigarette smoke exposure increased by two-fold 4-HNE levels (P < 0.001), a marker of oxidative stress, and markedly downregulated contractile proteins, mitochondrial respiratory complexes, and uncoupling proteins levels (P < 0.001). Functional alterations with cigarette smoke exposure included a greater reliance on complex-I supported respiration (P < 0.01) and lower relative respiratory capacity for fatty acid (P < 0.05). RAGE knockout resulted in 47% lower 4-HNE protein levels than the corresponding WT control mice exposed to cigarette smoke (P < 0.05), which was partly attributed to increased Complex III protein levels. Independent of cigarette smoke exposure, RAGE KO decreased mitochondrial specific maximal respiration (P < 0.05), resulting in a compensatory increase in mitochondrial content measured by citrate synthase activity (P < 0.001) such that muscle respiratory capacity remained unaltered. Together, these findings suggest that knockout of RAGE protected the skeletal muscle against oxidative damage induced by 8 months of cigarette smoke exposure. In addition, this study supports a role for RAGE in regulating mitochondrial content and function and can thus serve as a potential therapeutic target.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Camundongos , Animais , Receptor para Produtos Finais de Glicação Avançada , Fumar Cigarros/efeitos adversos , Camundongos Knockout , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Mitocôndrias/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Produtos Finais de Glicação Avançada/genética , Produtos Finais de Glicação Avançada/metabolismo
4.
COPD ; 18(6): 737-748, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34615424

RESUMO

Chronic obstructive pulmonary disease (COPD) is a slowly progressive and poorly reversible airway obstruction disease. It is caused either alone or in combination of emphysema, chronic bronchitis (CB), and small airways disease. COPD is thought to be a multi-factorial disorder in which genetic susceptibility, environmental factors and tobacco exposure could be doubly or simultaneously implicated. Available medicines against COPD include anti-inflammatory drugs, such as ß2-agonists and anticholinergics, which efficiently reduce airflow limitation but are unable to avert disease progression and mortality. Advanced glycation end products (AGE) and their receptors i.e. receptor for advanced glycation end products (RAGE) are some molecules that have been implicated in the complication of COPD. Several RAGE single nucleotide polymorphic (SNP) variants are produced by the mammalian cells. Based on the ethnicity some SNPs aggravate the COPD severity. Mammalian cells produce several alternative RAGE splice variants including a soluble RAGE (sRAGE) and an endogenous soluble RAGE (esRAGE). Both of these act as decoy receptor and thus may help to arrest the COPD complications. Several lines of evidences indicate a decreased level of sRAGE in the COPD subjects. One of the new strategies to reduce COPD complication may be sRAGE therapeutic administration to the COPD subjects. This comprehensive discussion sheds light on the role of RAGE and its polymorphic variants in the COPD complication along with sRAGE therapeutic significance in the COPD prevention.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Receptor para Produtos Finais de Glicação Avançada , Animais , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Pulmão , Mamíferos , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/genética , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/uso terapêutico
5.
Am J Physiol Endocrinol Metab ; 321(1): E80-E89, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34121449

RESUMO

Because patients with chronic obstructive pulmonary disease (COPD) are often physically inactive, it is still unclear whether the lower respiratory capacity in the locomotor muscles of these patients is due to cigarette smoking per se or is secondary to physical deconditioning. Accordingly, the purpose of this study was to examine mitochondrial alterations in the quadriceps muscle of 10 mice exposed to 8 mo of cigarette smoke, a sedentary mouse model of emphysema, and 9 control mice, using immunoblotting, spectrophotometry, and high-resolution respirometry in permeabilized muscle fibers. Mice exposed to smoke displayed a twofold increase in the oxidative stress marker, 4-HNE, (P < 0.05) compared with control mice. This was accompanied by significant decrease in protein expression of UCP3 (65%), ANT (58%), and mitochondrial complexes II-V (∼60%-75%). In contrast, maximal ADP-stimulated respiration with complex I and II substrates (CON: 23.6 ± 6.6 and SMO: 19.2 ± 8.2 ρM·mg-1·s-1) or octanoylcarnitine (CON: 21.8 ± 9.0 and SMO: 16.5 ± 6.6 ρM·mg-1·s-1) measured in permeabilized muscle fibers, as well as citrate synthase activity, were not significantly different between groups. Collectively, our findings revealed that sedentary mice exposed to cigarette smoke for 8 mo, which is typically associated with pulmonary inflammation and emphysema, exhibited a preserved mitochondrial respiratory capacity for various substrates, including fatty acid, in the skeletal muscle. However, the mitochondrial adaptations induced by cigarette smoke favored the development of chronic oxidative stress, which can indirectly contribute to augment the susceptibility to muscle fatigue and exercise intolerance.NEW & NOTEWORTHY It is unclear whether the exercise intolerance and skeletal muscle mitochondrial dysfunction observed in patients with COPD is due to cigarette smoke exposure, per se, or if they are secondary consequences to inactivity. Herein, while long-term exposure to cigarette smoke induces oxidative stress and an altered skeletal muscle phenotype, cigarette smoke does not directly contribute to mitochondrial dysfunction. With this evidence, we demonstrate the critical role of physical inactivity in cigarette smoke-related skeletal muscle dysfunction.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/ultraestrutura , Nicotiana , Fumaça/efeitos adversos , Animais , Citrato (si)-Sintase/metabolismo , Modelos Animais de Doenças , Enfisema/patologia , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Estresse Oxidativo , Consumo de Oxigênio , Músculo Quadríceps/ultraestrutura , Comportamento Sedentário
6.
Oncol Lett ; 21(4): 258, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33664821

RESUMO

Approximately 85% of lung cancer cases are recognized as non-small cell lung cancer (NSCLC) with a perilous (13-17%) 5-year survival in Europe and the USA. Although tobacco smoking has consistently emerged as the leading cause of NSCLC complications, its consequences are distinctly manifest with respect to sex bias, due to differential gene and sex hormone expression. Estrogen related receptor α (ERRα), a member of the nuclear orphan receptor superfamily is normally expressed in the lungs, and activates various nuclear genes without binding to the ligands, such as estrogens. In NSCLC ERRα expression is significantly higher compared with healthy individuals. It is well established ERα and ERß' have 93% and 60% identity in the DNA and ligand binding domains, respectively. ERα and ERRα have 69% (70% with ERRα-1) and 34% (35% with ERRα-1) identity, respectively; ERRα and ERRß' have 92 and 61% identity, respectively. However, whether there is distinctive ERRα interaction with mammalian estrogens or concurrent involvement in non-ER signalling pathway activation is not known. Relevant to NSCLC, ERRα promotes proliferation, invasion and migration by silencing the tumor suppressor proteins p53 and pRB, and accelerates G2-M transition during cell division. Epithelial to mesenchymal transition (EMT) and activation of Slug (an EMT associated transcription factor) are the prominent mechanisms by which ERRα activates NSCLC metastasis. Based on these observations, the present article focuses on the feasibility of antiERRα therapy alone and in combination with antiER as a therapeutic strategy for NSCLC complications.

7.
Curr Oncol Rep ; 23(1): 12, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33399986

RESUMO

PURPOSE OF REVIEW: Non-small cell lung cancers (NSCLCs) account for ~ 85% of all lung cancers, and 5-year survival in Europe and the USA is ~ 13-17%. In this review, we focus on the significance of Receptor for Advanced Glycation End products (RAGE) as a diagnostic or post-therapeutic prognostic marker for various forms of NSCLCs. RECENT FINDINGS: The lungs have the highest levels of basal RAGE expression in mammals. The physiologic RAGE in lungs may be involved in adhesion and spreading of AT-1 cells and maintenance of pulmonary homeostasis. However, high level expression of RAGE complicates various diseases including acute lung injury. In NSCLCs, while a number of studies report decreased RAGE expression, inferring a protective role, others suggest that RAGE expression may contribute to NSCLC pathogenesis. Genetic polymorphisms of RAGE are reportedly associated with NSCLC development and complications. RAGE and its polymorphic variants may be useful diagnostic or post-therapeutic prognostic markers of NSCLCs.


Assuntos
Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Receptor para Produtos Finais de Glicação Avançada , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Polimorfismo Genético , Prognóstico , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo
8.
Curr Med Chem ; 28(16): 3061-3106, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32838707

RESUMO

Characterized by the abysmal 18% five year survival chances, non-small cell lung cancers (NSCLCs) claim more than half of their sufferers within the first year of being diagnosed. Advances in biomedical engineering and molecular characterization have reduced the NSCLC diagnosis via timid screening of altered gene expressions and impaired cellular responses. While targeted chemotherapy remains a major option for NSCLCs complications, delayed diagnosis, and concurrent multi-drug resistance remain potent hurdles in regaining normalcy, ultimately resulting in relapse. Curcumin administration presents a benign resolve herein, via simultaneous interception of distinctly expressed pathological markers through its pleiotropic attributes and enhanced tumor cell internalization of chemotherapeutic drugs. Studies on NSCLC cell lines and related xenograft models have revealed a consistent decline in tumor progression owing to enhanced chemotherapeutics cellular internalization via co-delivery with curcumin. This presents an optimum readiness for screening the corresponding effectiveness in clinical subjects. Curcumin is delivered to NSCLC cells either (i) alone, (ii) in stoichiometrically optimal combination with chemotherapeutic drugs, (iii) through nanocarriers, and (iv) nanocarrier co-delivered curcumin and chemotherapeutic drugs. Nanocarriers protect the encapsulated drug from accidental and non-specific spillage. A unanimous trait of all nanocarriers is their moderate drug-interactions, whereby native structural expressions are not tampered. With such insights, this article focuses on the implicit NSCLC curative mechanisms viz-a-viz, free curcumin, nanocarrier delivered curcumin, curcumin + chemotherapeutic drug and nanocarrier assisted curcumin + chemotherapeutic drug delivery.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Curcumina , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Curcumina/uso terapêutico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Recidiva Local de Neoplasia
9.
Curr Med Res Opin ; 37(2): 207-217, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33306409

RESUMO

INTRODUCTION: In December 2019, the first COVID-19 case, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was reported in Wuhan, China. The SARS-CoV-2 rapidly disseminated throughout the world via community spread, acquiring pandemic status with significant fatality. OBSERVATIONS: Rapid SARS-CoV-2 diagnosis was soon perceived critical for arresting community spread and effective therapy development. Human SARS-CoV-2 infection can be diagnosed either by nucleic acid identification or specific antibody detection. Contrary to nucleic acid identification confirmed active SARS-CoV-2 infection; antibody detection confirms a past infection, even in asymptomatic subjects. SARS-CoV-2 specific antibodies augment the ability to effectively counter the virus. A crucial hurdle limiting the steadfast implementation of antibody detection is the time required for threshold B lymphocyte population generation. This process is dependent on precise antigen recognition and MHC class I molecules presentation. CONCLUSIONS: Thus, nucleic acid and antibody dependent tests complement each other in identifying human SARS-CoV-2 infection and shaping up subsequent immunological responses. This article discusses the complimentary association of nucleic acid identification (corresponding to an active infection) and antibody testing (the yester CoV-2 infection vulnerability) as the diagnostic and screening measures of SARS-CoV-2 infection. Highlights Nucleic acid (RNA) identification and specific antibody detection against SARS-CoV-2 are the noted diagnostic mechanisms for screening human SARS-CoV-2 infection. While nucleic acid identification screens prevailing SARS-CoV-2 infection, detection of SARS-CoV-2 specific antibodies signifies a past infection, even in asymptomatic subjects. Antibodies against SARS-CoV-2 provide a potential therapeutic option via transfer from antibody rich plasma of a recovered subject to an infected individual. Nucleic acid identification may not absolutely confirm the infection because of frequent SARS-CoV-2 genome mutations and possible technical errors, while specific antibody detection also needs at least (8-14) days for detectable screening of B-cell generated antibodies. Nucleic acid and antibody tests are complementary to each other as an early stage diagnostic assay for SARS-CoV-2 infection and possible therapy (antibodies). Sufferers with a high clinical suspicion but negative RT-PCR screening could be examined via combined imaging and repeated swab test.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/imunologia , Teste para COVID-19 , Aprovação de Teste para Diagnóstico , Ensaio de Imunoadsorção Enzimática , Humanos , Medições Luminescentes , Programas de Rastreamento , Testes de Neutralização , Pandemias , RNA Viral/isolamento & purificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia
10.
PLoS Genet ; 16(6): e1008756, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32520939

RESUMO

Paternal cigarette smoke (CS) exposure is associated with increased risk of behavioral disorders and cancer in offspring, but the mechanism has not been identified. Here we use mouse models to investigate mechanisms and impacts of paternal CS exposure. We demonstrate that CS exposure induces sperm DNAme changes that are partially corrected within 28 days of removal from CS exposure. Additionally, paternal smoking is associated with changes in prefrontal cortex DNAme and gene expression patterns in offspring. Remarkably, the epigenetic and transcriptional effects of CS exposure that we observed in wild type mice are partially recapitulated in Nrf2-/- mice and their offspring, independent of smoking status. Nrf2 is a central regulator of antioxidant gene transcription, and mice lacking Nrf2 consequently display elevated oxidative stress, suggesting that oxidative stress may underlie CS-induced heritable epigenetic changes. Importantly, paternal sperm DNAme changes do not overlap with DNAme changes measured in offspring prefrontal cortex, indicating that the observed DNAme changes in sperm are not directly inherited. Additionally, the changes in sperm DNAme associated with CS exposure were not observed in sperm of unexposed offspring, suggesting the effects are likely not maintained across multiple generations.


Assuntos
Epigênese Genética , Fator 2 Relacionado a NF-E2/genética , Exposição Paterna , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Metilação de DNA , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/metabolismo , Espermatozoides/metabolismo
11.
Redox Biol ; 34: 101492, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32361680

RESUMO

Myo-satellite cells regenerate and differentiate into skeletal muscle (SM) after acute or chronic injury. Changes in the redox milieu towards the oxidative arm at the wound site are known to compromise SM regeneration. Recently, we reported that abrogation of Nrf2/antioxidant signaling promotes oxidative stress and impairs SM regeneration in C57/Bl6 mice. Here, we investigated whether the activation of intracellular Nrf2 signaling favors antioxidant transcription and promotes myoblast differentiation. Satellite cell-like C2C12 myoblasts were treated with sulforaphane (SF; 1.0 & 5.0 µM) to activate Nrf2/antioxidant signaling during proliferation and differentiation (i.e. formation of myotubes/myofibers). SF-mediated Nrf2 activation resulted in increased expression of Nrf2-antioxidants (e.g. GCLC and G6PD) and augmented the production of reduced glutathione (GSH) leading to a reductive redox state. Surprisingly, this resulted in significant inhibition of myoblast differentiation, as observed from morphological changes and reduced expression of MyoD, Pax7, and Myh2, due to reductive stress (RS). Furthermore, supplementation of N-acetyl-cysteine (NAC) or GSH-ester or genetic knock-down of Keap1 (using siRNA) also resulted in RS-driven inhibition of differentiation. Interestingly, withdrawing Nrf2 activation rescued differentiation potential and formation of myotubes/myofibers from C2C12 myoblasts. Thus, abrogation of physiological ROS signaling through over-activation of Nrf2 (i.e. RS) and developing RS hampers differentiation of muscle satellite cells.


Assuntos
Desenvolvimento Muscular , Fator 2 Relacionado a NF-E2 , Animais , Diferenciação Celular , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
12.
BMC Med Res Methodol ; 19(1): 88, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31027503

RESUMO

BACKGROUND: Biomarkers of inflammation predictive of cystic fibrosis (CF) disease outcomes would increase the power of clinical trials and contribute to better personalization of clinical assessments. A representative patient cohort would improve searching for believable, generalizable, reproducible and accurate biomarkers. METHODS: We recruited patients from Mountain West CF Consortium (MWCFC) care centers for prospective observational study of sputum biomarkers of inflammation. After informed consent, centers enrolled randomly selected patients with CF who were clinically stable sputum producers, 12 years of age and older, without previous organ transplantation. RESULTS: From December 8, 2014 through January 16, 2016, we enrolled 114 patients (53 male) with CF with continuing data collection. Baseline characteristics included mean age 27 years (SD = 12), 80% predicted forced expiratory volume in 1 s (SD = 23%), 1.0 prior year pulmonary exacerbations (SD = 1.2), home elevation 328 m (SD = 112) above sea level. Compared with other patients in the US CF Foundation Patient Registry (CFFPR) in 2014, MWCFC patients had similar distribution of sex, age, lung function, weight and rates of exacerbations, diabetes, pancreatic insufficiency, CF-related arthropathy and airway infections including methicillin-sensitive or -resistant Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia complex, fungal and non-tuberculous Mycobacteria infections. They received CF-specific treatments at similar frequencies. CONCLUSIONS: Randomly-selected, sputum-producing patients within the MWCFC represent sputum-producing patients in the CFFPR. They have similar characteristics, lung function and frequencies of pulmonary exacerbations, microbial infections and use of CF-specific treatments. These findings will plausibly make future interpretations of quantitative measurements of inflammatory biomarkers generalizable to sputum-producing patients in the CFFPR.


Assuntos
Fibrose Cística/patologia , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Seleção de Pacientes , Escarro/microbiologia , Infecções Estafilocócicas/patologia , Adolescente , Adulto , Fibrose Cística/microbiologia , Fibrose Cística/terapia , Feminino , Humanos , Pulmão/microbiologia , Pulmão/patologia , Pulmão/fisiopatologia , Masculino , Staphylococcus aureus Resistente à Meticilina/fisiologia , Pessoa de Meia-Idade , Estudos Prospectivos , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/terapia , Adulto Jovem
13.
Sci Rep ; 9(1): 231, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30659203

RESUMO

The receptor for advanced glycation end products (RAGE), a cell membrane receptor, recognizes ligands produced by cigarette smoke (CS) and has been implicated in the pathogenesis of COPD. We demonstrate that deletion or pharmacologic inhibition of RAGE prevents development of CS-induced emphysema. To identify molecular pathways by which RAGE mediates smoking related lung injury we performed unbiased gene expression profiling of alveolar macrophages (AM) obtained from RAGE null and C57BL/6 WT mice exposed to CS for one week or four months. Pathway analysis of RNA expression identified a number of genes integral to the pathogenesis of COPD impacted by the absence of RAGE. Altered expression of antioxidant response genes and lung protein 4-HNE immunostaining suggest attenuated oxidative stress in the RAGE null mice despite comparable CS exposure and lung leukocyte burden as the WT mice. Reduced endoplasmic reticulum stress in response to CS exposure also was observed in the AM from RAGE null mice. These findings provide novel insight into the sources of oxidative stress, macrophage activation, and the pathogenesis of lung disease due to CS exposure.


Assuntos
Fumar Cigarros/efeitos adversos , Enfisema/fisiopatologia , Pulmão/patologia , Ativação de Macrófagos , Macrófagos Alveolares/imunologia , Estresse Oxidativo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor para Produtos Finais de Glicação Avançada/deficiência , Fumaça/efeitos adversos
14.
Redox Biol ; 9: 77-89, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27423013

RESUMO

Antagonizing TNF-α signaling attenuates chronic inflammatory disease, but is associated with adverse effects on the cardiovascular system. Therefore the impact of TNF-α on basal control of redox signaling events needs to be understand in more depth. This is particularly important for the Keap1/Nrf2 pathway in the heart and in the present study we hypothesized that inhibition of a low level of TNF-α signaling attenuates the TNF-α dependent activation of this cytoprotective pathway. HL-1 cardiomyocytes and TNF receptor1/2 (TNFR1/2) double knockout mice (DKO) were used as experimental models. TNF-α (2-5ng/ml, for 2h) evoked significant nuclear translocation of Nrf2 with increased DNA/promoter binding and transactivation of Nrf2 targets. Additionally, this was associated with a 1.5 fold increase in intracellular glutathione (GSH). Higher concentrations of TNF-α (>10-50ng/ml) were markedly suppressive of the Keap1/Nrf2 response and associated with cardiomyocyte death marked by an increase in cleavage of caspase-3 and PARP. In vivo experiments with TNFR1/2-DKO demonstrates that the expression of Nrf2-regulated proteins (NQO1, HO-1, G6PD) were significantly downregulated in hearts of the DKO when compared to WT mice indicating a weakened antioxidant system under basal conditions. Overall, these results indicate that TNF-α exposure has a bimodal effect on the Keap1/Nrf2 system and while an intense inflammatory activation suppresses expression of antioxidant proteins a low level appears to be protective.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Glutationa/metabolismo , Masculino , Camundongos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo
15.
J Transl Med ; 14: 86, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27048381

RESUMO

BACKGROUND: Anomalies in myocardial structure involving myocyte growth, hypertrophy, differentiation, apoptosis, necrosis etc. affects its function and render cardiac tissue more vulnerable to the development of heart failure. Although oxidative stress has a well-established role in cardiac remodeling and dysfunction, the mechanisms linking redox state to atrial cardiomyocyte hypertrophic changes are poorly understood. Here, we investigated the role of nuclear erythroid-2 like factor-2 (Nrf2), a central transcriptional mediator, in redox signaling under high intensity exercise stress (HIES) in atria. METHODS: Age and sex-matched wild-type (WT) and Nrf2(-/-) mice at >20 months of age were subjected to HIES for 6 weeks. Gene markers of hypertrophy and antioxidant enzymes were determined in the atria of WT and Nrf2(-/-) mice by real-time qPCR analyses. Detection and quantification of antioxidants, 4-hydroxy-nonenal (4-HNE), poly-ubiquitination and autophagy proteins in WT and Nrf2(-/-) mice were performed by immunofluorescence analysis. The level of oxidative stress was measured by microscopical examination of di-hydro-ethidium (DHE) fluorescence. RESULTS: Under the sedentary state, Nrf2 abrogation resulted in a moderate down regulation of some of the atrial antioxidant gene expression (Gsr, Gclc, Gstα and Gstµ) despite having a normal redox state. In response to HIES, enlarged atrial myocytes along with significantly increased gene expression of cardiomyocyte hypertrophy markers (Anf, Bnf and ß-Mhc) were observed in Nrf2(-/-) when compared to WT mice. Further, the transcript levels of Gclc, Gsr and Gstµ and protein levels of NQO1, catalase, GPX1 were profoundly downregulated along with GSH depletion and increased oxidative stress in Nrf2(-/-) mice when compared to its WT counterparts after HIES. Impaired antioxidant state and profound oxidative stress were associated with enhanced atrial expression of LC3 and ATG7 along with increased ubiquitination of ATG7 in Nrf2(-/-) mice subjected to HIES. CONCLUSIONS: Loss of Nrf2 describes an altered biochemical phenotype associated with dysregulation in genes related to redox state, ubiquitination and autophagy in HIES that result in atrial hypertrophy. Therefore, our findings direct that preserving Nrf2-related antioxidant function would be one of the effective strategies to safeguard atrial health.


Assuntos
Antioxidantes/metabolismo , Deleção de Genes , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Condicionamento Físico Animal , Transdução de Sinais , Estresse Fisiológico , Envelhecimento/patologia , Animais , Autofagia , Regulação para Baixo/genética , Imunofluorescência , Glutationa/metabolismo , Hipertrofia , Peroxidação de Lipídeos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fator 2 Relacionado a NF-E2/deficiência , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica , Proteínas Ubiquitinadas/metabolismo
16.
PLoS One ; 10(3): e0121128, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25803612

RESUMO

The nicotinic acetylcholine receptor alpha7 (α7) is expressed by neuronal and non-neuronal cells throughout the body. We examined the mechanisms of the lung inflammatory response to intranasal (i.n.) lipopolysaccharide (LPS) regulated by α7. This was done in mice using homologous recombination to introduce a point mutation in the α7 receptor that replaces the glutamate residue 260 that lines the pore with alanine (α7E260A), which has been implicated in controlling the exceptional calcium ion conductance of this receptor. The α7E260A mice exhibit normal inflammatory cell recruitment to the blood in response to i.n. LPS administration. This differs from the α7knock-out (α7KO) in which upstream signaling to initiate the recruitment to the blood following i.n. LPS is significantly impaired. While hematopoietic cells are recruited to the bloodstream in the α7E260A mouse, they fail to be recruited efficiently into both the interstitium and alveolar spaces of the lung. Bone marrow reconstitution experiments demonstrate that the responsiveness of both CD45+ and CD45- cells of the α7E260A mouse are impaired. The expression of several pro-inflammatory cytokine and chemokine RNAs including TNFα, IL-1α, Ccl2 and Cxcl10 are decreased in the α7E260A mouse. However, there is a substantial increase in IL-13 expression by CD45- lung interstitial cells in the α7E260A mouse. Our results support the conclusion that α7 functional pleiotropy contributes to modulating the tissue response to an inflammatory insult through impacting upon a variety of mechanisms reflecting the individual cell composition of the lung.


Assuntos
Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Líquido da Lavagem Broncoalveolar , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Expressão Gênica , Antígenos Comuns de Leucócito/imunologia , Antígenos Comuns de Leucócito/metabolismo , Pulmão/imunologia , Camundongos , Camundongos Knockout , Pneumonia/genética , Pneumonia/imunologia , Pneumonia/metabolismo , Mutação Puntual , Receptor Nicotínico de Acetilcolina alfa7/genética
17.
Free Radic Biol Med ; 71: 402-414, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24613379

RESUMO

Skeletal muscle redox homeostasis is transcriptionally regulated by nuclear erythroid-2-p45-related factor-2 (Nrf2). We recently demonstrated that age-associated stress impairs Nrf2-ARE (antioxidant-response element) transcriptional signaling. Here, we hypothesize that age-dependent decline or genetic ablation of Nrf2 leads to accelerated apoptosis and skeletal muscle degeneration. Under basal-physiological conditions, disruption of Nrf2 significantly downregulates antioxidants and causes oxidative stress. Surprisingly, Nrf2-null mice had enhanced antioxidant capacity identical to wild-type (WT) upon acute endurance exercise stress (AEES), suggesting activation of Nrf2-independent mechanisms (i.e., PGC1α) against oxidative stress. Analysis of prosurvival pathways in the basal state reveals decreased AKT levels, whereas p-p53, a repressor of AKT, was increased in Nrf2-null vs WT mice. Upon AEES, AKT and p-AKT levels were significantly (p < 0.001) increased (>10-fold) along with profound downregulation of p-p53 (p < 0.01) in Nrf2-null vs WT skeletal muscle, indicating the onset of prosurvival mechanisms to compensate for the loss of Nrf2 signaling. However, we found a decreased stem cell population (PAX7) and MyoD expression (differentiation) along with profound activation of ubiquitin and apoptotic pathways in Nrf2-null vs WT mice upon AEES, suggesting that compensatory prosurvival mechanisms failed to overcome the programmed cell death and degeneration in skeletal muscle. Further, the impaired regeneration was sustained in Nrf2-null vs WT mice after 1 week of post-AEES recovery. In an age-associated oxidative stress condition, ablation of Nrf2 results in induction of apoptosis and impaired muscle regeneration.


Assuntos
Envelhecimento/genética , Músculo Esquelético/metabolismo , Proteína MyoD/genética , Fator 2 Relacionado a NF-E2/genética , Fator de Transcrição PAX7/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Elementos de Resposta Antioxidante , Apoptose , Tolerância ao Exercício/genética , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Músculo Esquelético/patologia , Proteína MyoD/metabolismo , Fator 2 Relacionado a NF-E2/deficiência , Estresse Oxidativo , Fator de Transcrição PAX7/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo
18.
Dis Markers ; 35(5): 513-23, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223463

RESUMO

BACKGROUND: The availability of large complex data sets generated by high throughput technologies has enabled the recent proliferation of disease biomarker studies. However, a recurring problem in deriving biological information from large data sets is how to best incorporate expert knowledge into the biomarker selection process. OBJECTIVE: To develop a generalizable framework that can incorporate expert knowledge into data-driven processes in a semiautomated way while providing a metric for optimization in a biomarker selection scheme. METHODS: The framework was implemented as a pipeline consisting of five components for the identification of signatures from integrated clustering (ISIC). Expert knowledge was integrated into the biomarker identification process using the combination of two distinct approaches; a distance-based clustering approach and an expert knowledge-driven functional selection. RESULTS: The utility of the developed framework ISIC was demonstrated on proteomics data from a study of chronic obstructive pulmonary disease (COPD). Biomarker candidates were identified in a mouse model using ISIC and validated in a study of a human cohort. CONCLUSIONS: Expert knowledge can be introduced into a biomarker discovery process in different ways to enhance the robustness of selected marker candidates. Developing strategies for extracting orthogonal and robust features from large data sets increases the chances of success in biomarker identification.


Assuntos
Processamento Eletrônico de Dados , Proteoma/química , Proteômica/métodos , Adenosina Desaminase/sangue , Animais , Teorema de Bayes , Biomarcadores/análise , Biomarcadores/sangue , Líquido da Lavagem Broncoalveolar/química , Análise por Conglomerados , Bases de Dados de Proteínas , Humanos , Camundongos , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/diagnóstico
19.
Cardiovasc Res ; 100(1): 63-73, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23761402

RESUMO

AIMS: Mutant protein aggregation (PA) cardiomyopathy (MPAC) is characterized by reductive stress (RS), PA (of chaperones and cytoskeletal components), and ventricular dysfunction in transgenic mice expressing human mutant CryAB (hmCryAB). Sustained activation of nuclear erythroid-2 like factor-2 (Nrf2) causes RS, which contributes to proteotoxic cardiac disease. The goals of this pre-clinical study were to (i) investigate whether disrupting Nrf2-antioxidant signalling prevents RS and rescues redox homeostasis in hearts expressing the mutant chaperone and (ii) elucidate mechanisms that could delay proteotoxic cardiac disease. METHODS AND RESULTS: Non-transgenic (NTG), transgenic (TG) with MPAC and MPAC-TG:Nrf2-deficient (Nrf2-def) mice were used in this study. The effects of Nrf2 diminution (Nrf2±) on RS mediated MPAC in TG mice were assessed at 6-7 and 10 months of age. The diminution of Nrf2 prevented RS and prolonged the survival of TG mice (∼50 weeks) by an additional 20-25 weeks. The TG:Nrf2-def mice did not exhibit cardiac hypertrophy at even 60 weeks, while the MPAC-TG mice developed pathological hypertrophy and heart failure starting at 24-28 weeks of age. Aggregation of cardiac proteins was significantly reduced in TG:Nrf2-def when compared with TG mice at 7 months. Preventing RS and maintaining redox homeostasis in the TG:Nrf2-def mice ameliorated PA, leading to decreased ubiquitination of proteins. CONCLUSION: Nrf2 deficiency rescues redox homeostasis, which reduces aggregation of mutant proteins, thereby delaying the proteotoxic pathological cardiac remodelling caused by RS and toxic protein aggregates.


Assuntos
Cardiomiopatia Hipertrófica/etiologia , Fator 2 Relacionado a NF-E2/fisiologia , Estresse Fisiológico , Animais , Estresse do Retículo Endoplasmático , Glutationa/metabolismo , Homeostase , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2/deficiência , Oxirredução , Ubiquitinação
20.
PLoS One ; 7(9): e45697, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029187

RESUMO

Aging promotes accumulation of reactive oxygen/nitrogen species (ROS/RNS) in cardiomyocytes, which leads to contractile dysfunction and cardiac abnormalities. These changes may contribute to increased cardiovascular disease in the elderly. Inducible antioxidant pathways are regulated by nuclear erythroid 2 p45-related factor 2 (Nrf2) through antioxidant response cis-elements (AREs) and are impaired in the aging heart. Whereas acute exercise stress (AES) activates Nrf2 signaling and promotes myocardial antioxidant function in young mice (~2 months), aging mouse (>23 months) hearts exhibit significant oxidative stress as compared to those of the young. The purpose of this study was to investigate age-dependent regulation of Nrf2-antioxidant mechanisms and redox homeostasis in mouse hearts and the impact of exercise. Old mice were highly susceptible to oxidative stress following high endurance exercise stress (EES), but demonstrated increased adaptive redox homeostasis after moderate exercise training (MET; 10m/min, for 45 min/day) for ~6 weeks. Following EES, transcription and protein levels for most of the ARE-antioxidants were increased in young mice but their induction was blunted in aging mice. In contrast, 6-weeks of chronic MET promoted nuclear levels of Nrf2 along with its target antioxidants in the aging heart to near normal levels as seen in young mice. These observations suggest that enhancing Nrf2 function and endogenous cytoprotective mechanisms by MET, may combat age-induced ROS/RNS and protect the myocardium from oxidative stress diseases.


Assuntos
Miocárdio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Condicionamento Físico Animal , Transcrição Gênica , Animais , Western Blotting , Espectroscopia de Ressonância de Spin Eletrônica , Corantes Fluorescentes , Glutationa/metabolismo , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA