Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042774

RESUMO

Termites are model social organisms characterized by a polyphenic caste system. Subterranean termites (Rhinotermitidae) are ecologically and economically important species, including acting as destructive pests. Rhinotermitidae occupies an important evolutionary position within the clade representing a transitional taxon between the higher (Termitidae) and lower (other families) termites. Here, we report the genome, transcriptome, and methylome of the Japanese subterranean termite Reticulitermes speratus Our analyses highlight the significance of gene duplication in social evolution in this termite. Gene duplication associated with caste-biased gene expression was prevalent in the R. speratus genome. The duplicated genes comprised diverse categories related to social functions, including lipocalins (chemical communication), cellulases (wood digestion and social interaction), lysozymes (social immunity), geranylgeranyl diphosphate synthase (social defense), and a novel class of termite lineage-specific genes with unknown functions. Paralogous genes were often observed in tandem in the genome, but their expression patterns were highly variable, exhibiting caste biases. Some of the assayed duplicated genes were expressed in caste-specific organs, such as the accessory glands of the queen ovary and the frontal glands of soldier heads. We propose that gene duplication facilitates social evolution through regulatory diversification, leading to caste-biased expression and subfunctionalization and/or neofunctionalization conferring caste-specialized functions.


Assuntos
Genômica , Proteínas de Insetos/metabolismo , Isópteros/fisiologia , Evolução Social , Transcriptoma , Animais , Evolução Biológica , Celulases/metabolismo , Feminino , Duplicação Gênica , Expressão Gênica , Perfilação da Expressão Gênica , Proteínas de Insetos/genética , Isópteros/genética
2.
Biol Lett ; 9(3): 20121153, 2013 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-23515978

RESUMO

In addition to harbouring intestinal symbionts, some animal species also possess intracellular symbiotic microbes. The relative contributions of gut-resident and intracellular symbionts to host metabolism, and how they coevolve are not well understood. Cockroaches and the termite Mastotermes darwiniensis present a unique opportunity to examine the evolution of spatially separated symbionts, as they harbour gut symbionts and the intracellular symbiont Blattabacterium cuenoti. The genomes of B. cuenoti from M. darwiniensis and the social wood-feeding cockroach Cryptocercus punctulatus are each missing most of the pathways for the synthesis of essential amino acids found in the genomes of relatives from non-wood-feeding hosts. Hypotheses to explain this pathway degradation include: (i) feeding on microbes present in rotting wood by ancestral hosts; (ii) the evolution of high-fidelity transfer of gut microbes via social behaviour. To test these hypotheses, we sequenced the B. cuenoti genome of a third wood-feeding species, the phylogenetically distant and non-social Panesthia angustipennis. We show that host wood-feeding does not necessarily lead to degradation of essential amino acid synthesis pathways in B. cuenoti, and argue that ancestral high-fidelity transfer of gut microbes best explains their loss in strains from M. darwiniensis and C. punctulatus.


Assuntos
Aminoácidos/biossíntese , Baratas/fisiologia , Simbiose , Animais , Baratas/genética , Baratas/metabolismo , Comportamento Alimentar , Genoma , Nitrogênio/metabolismo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA