Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287988

RESUMO

End stage liver disease is marked by portal hypertension, systemic elevations in ammonia, and development of hepatocellular carcinoma (HCC). While these clinical consequences of cirrhosis are well described, it remains poorly understood whether hepatic insufficiency and the accompanying elevations in ammonia contribute to HCC carcinogenesis. Using preclinical models, we discovered that ammonia entered the cell through the transporter SLC4A11 and served as a nitrogen source for amino acid and nucleotide biosynthesis. Elevated ammonia promoted cancer stem cell properties in vitro and tumor initiation in vivo. Enhancing ammonia clearance reduced HCC stemness and tumor growth. In patients, elevations in serum ammonia were associated with an increased incidence of HCC. Taken together, this study forms the foundation for clinical investigations using ammonia lowering agents as potential therapies to mitigate HCC incidence and aggressiveness.

2.
JCI Insight ; 9(6)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376927

RESUMO

Radiotherapy induces a type I interferon-mediated (T1IFN-mediated) antitumoral immune response that we hypothesized could be potentiated by a first-in-class ataxia telangiectasia mutated (ATM) inhibitor, leading to enhanced innate immune signaling, T1IFN expression, and sensitization to immunotherapy in pancreatic cancer. We evaluated the effects of AZD1390 or a structurally related compound, AZD0156, on innate immune signaling and found that both inhibitors enhanced radiation-induced T1IFN expression via the POLIII/RIG-I/MAVS pathway. In immunocompetent syngeneic mouse models of pancreatic cancer, ATM inhibitor enhanced radiation-induced antitumoral immune responses and sensitized tumors to anti-PD-L1, producing immunogenic memory and durable tumor control. Therapeutic responses were associated with increased intratumoral CD8+ T cell frequency and effector function. Tumor control was dependent on CD8+ T cells, as therapeutic efficacy was blunted in CD8+ T cell-depleted mice. Adaptive immune responses to combination therapy provided systemic control of contralateral tumors outside of the radiation field. Taken together, we show that a clinical candidate ATM inhibitor enhances radiation-induced T1IFN, leading to both innate and subsequent adaptive antitumoral immune responses and sensitization of otherwise resistant pancreatic cancer to immunotherapy.


Assuntos
Ataxia Telangiectasia , Interferon Tipo I , Neoplasias Pancreáticas , Piridinas , Quinolonas , Animais , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/radioterapia , Neoplasias Pancreáticas/patologia , Imunidade
3.
Artigo em Inglês | MEDLINE | ID: mdl-37601739

RESUMO

The liver is a functionally unique organ with an immunosuppressive microenvironment. The liver is the sixth most common site of primary cancer in humans and is a frequent site of metastasis from other solid tumors. The development of effective therapies for primary and metastatic liver cancer has been challenging due to the complex metabolic and immune microenvironment of the liver. The liver tumor microenvironment (TME) in primary and secondary (metastatic) liver cancers is heterogenous and consists of unique immune and stromal cell populations. Crosstalk between these cell populations and tumor cells creates an immunosuppressive microenvironment within the liver which potentiates cancer progression. Immune checkpoint inhibitors (ICIs) are now clinically approved for the management of primary and secondary liver cancer and can partially overcome liver immune tolerance, but their efficacy is limited. In this review, we describe the liver microenvironment and the use of immunotherapy in primary and secondary liver cancer. We discuss emerging combination strategies utilizing locoregional and systemic therapy approaches which may enhance efficacy of immunotherapy in primary and secondary liver cancer. A deeper understanding of the immunosuppressive microenvironment of the liver will inform novel therapies and therapeutic combinations in order to improve outcomes of patients with primary and secondary liver cancer.

4.
Front Immunol ; 13: 1041451, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479127

RESUMO

CRISPR screening is a powerful tool that links specific genetic alterations to corresponding phenotypes, thus allowing for high-throughput identification of novel gene functions. Pooled CRISPR screens have enabled discovery of innate and adaptive immune response regulators in the setting of viral infection and cancer. Emerging methods couple pooled CRISPR screens with parallel high-content readouts at the transcriptomic, epigenetic, proteomic, and optical levels. These approaches are illuminating cancer immune evasion mechanisms as well as nominating novel targets that augment T cell activation, increase T cell infiltration into tumors, and promote enhanced T cell cytotoxicity. This review details recent methodological advances in high-content CRISPR screens and highlights the impact this technology is having on tumor immunology.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteômica , Epigenômica
5.
Front Oncol ; 12: 1022542, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387071

RESUMO

Breast cancer is the most prevalent non-skin cancer diagnosed in females and developing novel therapeutic strategies to improve patient outcomes is crucial. The immune system plays an integral role in the body's response to breast cancer and modulating this immune response through immunotherapy is a promising therapeutic option. Although immune checkpoint inhibitors were recently approved for the treatment of breast cancer patients, not all patients respond to immune checkpoint inhibitors as a monotherapy, highlighting the need to better understand the biology underlying patient response. Additionally, as radiotherapy is a critical component of breast cancer treatment, understanding the interplay of radiation and immune checkpoint inhibitors will be vital as recent studies suggest that combined therapies may induce synergistic effects in preclinical models of breast cancer. This review will discuss the mechanisms supporting combined approaches with radiotherapy and immune checkpoint inhibitors for the treatment of breast cancer. Moreover, this review will analyze the current clinical trials examining combined approaches of radiotherapy, immunotherapy, chemotherapy, and targeted therapy. Finally, this review will evaluate data regarding treatment tolerance and potential biomarkers for these emerging therapies aimed at improving breast cancer outcomes.

6.
J Clin Invest ; 132(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35104808

RESUMO

IL-2 is a pleiotropic cytokine. In this issue of the JCI, Ren et al. report on the development of a low-affinity IL-2 paired with anti-PD-1 (PD-1-laIL-2) that reactivates intratumoral CD8+ T cells, but not CD4+ Treg cells. PD-1-laIL-2 treatment synergized with anti-PD-L1 therapy to overcome tumor resistance to immune checkpoint blockade (ICB) in tumor-bearing mice. Rejection of rechallenged tumors following PD-1-laIL-2 therapy demonstrated the establishment of a potent T cell memory response. Furthermore, PD-1-laIL-2 therapy manifested no obvious toxicity. These findings suggest the potential of PD-1-laIL-2 therapy in treating patients with cancer.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Animais , Antígeno B7-H1 , Linfócitos T CD8-Positivos/imunologia , Humanos , Interleucina-2 , Camundongos , Neoplasias/tratamento farmacológico , Linfócitos T Reguladores
7.
Br J Cancer ; 122(7): 1005-1013, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32025027

RESUMO

BACKGROUND: Ibrutinib is a Bruton's tyrosine kinase (BTK) and interleukin-2-inducible kinase (ITK) inhibitor used for treating chronic lymphocytic leukaemia (CLL) and other cancers. Although ibrutinib is known to inhibit the growth of breast cancer cell growth in vitro, its impact on the treatment and metastasis of breast cancer is unclear. METHODS: Using an orthotopic mouse breast cancer model, we show that ibrutinib inhibits the progression and metastasis of breast cancer. RESULTS: Ibrutinib inhibited proliferation of cancer cells in vitro, and Ibrutinib-treated mice displayed significantly lower tumour burdens and metastasis compared to controls. Furthermore, the spleens and tumours from Ibrutinib-treated mice contained more mature DCs and lower numbers of myeloid-derived suppressor cells (MDSCs), which promote disease progression and are linked to poor prognosis. We also confirmed that ex vivo treatment of MDSCs with ibrutinib switched their phenotype to mature DCs and significantly enhanced MHCII expression. Further, ibrutinib treatment promoted T cell proliferation and effector functions leading to the induction of antitumour TH1 and CTL immune responses. CONCLUSIONS: Ibrutinib inhibits tumour development and metastasis in breast cancer by promoting the development of mature DCs from MDSCs and hence could be a novel therapeutic agent for the treatment of breast cancer.


Assuntos
Adenina/análogos & derivados , Neoplasias da Mama/tratamento farmacológico , Células Dendríticas/metabolismo , Células Supressoras Mieloides/metabolismo , Metástase Neoplásica/tratamento farmacológico , Piperidinas/uso terapêutico , Adenina/farmacologia , Adenina/uso terapêutico , Animais , Neoplasias da Mama/patologia , Progressão da Doença , Feminino , Humanos , Camundongos , Piperidinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA