Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Med ; 118: 103210, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219560

RESUMO

PURPOSE: A new generation of CT detectors were recently developed with the ability to measure individual photon's energy and thus provide spectral information. The aim of this work was to assess the performance of simultaneous fat and iron quantification using a clinical photon-counting CT (PCCT) and its comparison to dual-energy CT (DECT), MRS and MRI at 3 T. METHODS: Two 3D printed cylindrical phantoms with 32 samples (n = 12 fat fractions between 0 % and 100 %, n = 20 with mixtures of fat and iron) were scanned with PCCT and DECT scanners for comparison. A three-material decomposition approach was used to estimate the volume fractions of fat (FF), iron and soft tissue. The same phantoms were examined by MRI (6-echo DIXON, a.k.a. Q-DIXON) and MRS (multi-echo STEAM, a.k.a. HISTO) at 3 T for comparison. RESULTS: PCCT, DECT, MRI and MRS computed FFs showed correlation with reference fat fraction values in samples with no iron (r > 0.98). PCCT decomposition showed slightly weaker correlation with FFref in samples with added iron (r = 0.586) compared to MRI (r = 0.673) and MRS (r = 0.716) methods. On the other hand, it showed no systematic over- or underestimation. Surprisingly, DECT decomposition-derived FF showed strongest correlation (r = 0.758) in these samples, however systematic overestimation was observed. FF values computed by three-material PCCT decomposition, DECT decomposition, MRI and MRS were unaffected by iron concentration. CONCLUSIONS: This in-vitro study shows for the first time that photon-counting computed tomography may be used for quantification of fat content in the presence of iron deposits.


Assuntos
Ferro , Tomografia Computadorizada por Raios X , Tomografia Computadorizada por Raios X/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Algoritmos
2.
MAGMA ; 35(1): 45-52, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34985589

RESUMO

OBJECTIVE: Oncometabolite D-2-hydroxyglutarate (2HG) is pooled in isocitrate dehydrogenase (IDH)-mutant glioma cells. Detecting 2HG by MR spectroscopy (MRS) has been proven viable in the last decade but has not entirely found its way into the clinical routine. This study aimed to explore the adoption of 2HG MRS while acknowledging factors that influence its performance in the clinical environment. METHODS: Thirty-nine MR spectra were acquired and reported prospectively in patients with suspected glioma using a 3 T system with Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS) sequence utilizing averaged free induction decay (FID) signals. Postprocessing and evaluation of spectra were performed with jMRUI and LCModel. 2HG concentration estimates, 2HG/Cr ratio, together with quality measures, including Cramér-Rao lower bounds (CRLBs), full-width at half-maximum (FWHM) values, and signal-to-noise ratio (SNR) were calculated using LCModel. Immunohistochemistry and genomic analysis results used as a ground truth were available for 15 patients. RESULTS: The threshold for test positivity was set according to the ROC curve at 1 mM. Calculated sensitivity was 57.14% (95% CI 0.20-0.88), specificity 87.5% (95% CI 0.46-0.99), positive predictive value 80%, and negative predictive value 70%. Overall diagnostic accuracy was 73.33% (95% CI 0.45-0.92). The 2HG/Cr ratio with the cutoff value 0.085 significantly improved sensitivity and overall diagnostic accuracy [85.71%, 95% CI 0.42-1.00 and 86.67%, (95% CI 0.60-0.98), respectively]. CONCLUSION: Multiple factors compromising spectral quality in the clinical adoption of edited 2HG MRS resulted in diminished sensitivity but clinically acceptable specificity. Furthermore, the 2HG/Cr ratio performs better than the sole 2HG concentration estimate in the pre-operative setting.


Assuntos
Neoplasias Encefálicas , Glioma , Glutaratos , Espectroscopia de Ressonância Magnética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Glioma/diagnóstico por imagem , Glioma/metabolismo , Glutaratos/análise , Glutaratos/metabolismo , Humanos , Isocitrato Desidrogenase/metabolismo , Espectroscopia de Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA