Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(6): 104755, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37116708

RESUMO

The colony-stimulating factor 3 receptor (CSF3R) controls the growth of neutrophils, the most abundant type of white blood cell. In healthy neutrophils, signaling is dependent on CSF3R binding to its ligand, CSF3. A single amino acid mutation in CSF3R, T618I, instead allows for constitutive, ligand-independent cell growth and leads to a rare type of cancer called chronic neutrophilic leukemia. However, the disease mechanism is not well understood. Here, we investigated why this threonine to isoleucine substitution is the predominant mutation in chronic neutrophilic leukemia and how it leads to uncontrolled neutrophil growth. Using protein domain mapping, we demonstrated that the single CSF3R domain containing residue 618 is sufficient for ligand-independent activity. We then applied an unbiased mutational screening strategy focused on this domain and found that activating mutations are enriched at sites normally occupied by asparagine, threonine, and serine residues-the three amino acids which are commonly glycosylated. We confirmed glycosylation at multiple CSF3R residues by mass spectrometry, including the presence of GalNAc and Gal-GalNAc glycans at WT threonine 618. Using the same approach applied to other cell surface receptors, we identified an activating mutation, S489F, in the interleukin-31 receptor alpha chain. Combined, these results suggest a role for glycosylated hotspot residues in regulating receptor signaling, mutation of which can lead to ligand-independent, uncontrolled activity and human disease.


Assuntos
Leucemia Neutrofílica Crônica , Humanos , Leucemia Neutrofílica Crônica/diagnóstico , Leucemia Neutrofílica Crônica/genética , Leucemia Neutrofílica Crônica/metabolismo , Glicosilação , Ligantes , Mutação , Receptores de Fator Estimulador de Colônias/genética , Receptores de Fator Estimulador de Colônias/metabolismo , Treonina/metabolismo , Fatores Estimuladores de Colônias/genética , Fatores Estimuladores de Colônias/metabolismo
2.
Sci Transl Med ; 13(625): eabg6986, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34936380

RESUMO

Interleukin-2 (IL-2) is a central T cell cytokine that promotes T cell proliferation and effector function; however, toxicity due to its pluripotency limits its application to enhance CAR T cell immunotherapy. Previously, mouse IL-2 and its cognate receptor were engineered to create an orthogonal (ortho) cytokine-cytokine receptor pair capable of delivering an IL-2 signal without toxicity. Here, we engineered a human orthogonal IL-2 (ortho-hIL-2) and human orthogonal IL-2Rß (ortho-hIL-2Rß) pair, containing human-specific mutations. Ortho-hIL-2 is selective toward ortho-hIL-2Rß­expressing cells with no appreciable signaling on wild-type T cells. Ortho-hIL-2 induces IL-2 receptor signaling and supports proliferation of both an IL-2­dependent cell line and primary T cells transduced to express the ortho-hIL-2Rß. Using CD19-specific chimeric antigen receptor (CAR) T cells, we show that ortho-hIL-2 induces a dose-dependent increase in ortho-hIL-2Rß+ CAR T cell expansion in vivo by as much as 1000-fold at 2 weeks after adoptive transfer into immunodeficient mice bearing CD19+ Nalm6 leukemia xenografts. Ortho-hIL-2 can rescue the antileukemic effect of an otherwise suboptimal CAR T cell dose. In addition, ortho-hIL-2 administration initiated at the time of leukemic relapse after CAR T cell therapy can rescue an otherwise failed antileukemic response. These data highlight the potential of combining an orthogonal cytokine approach with T cell­based immunotherapies to augment the antitumor efficacy of engineered T cells.


Assuntos
Interleucina-2 , Leucemia , Animais , Antígenos CD19/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Humanos , Imunoterapia Adotiva , Interleucina-2/metabolismo , Leucemia/metabolismo , Camundongos , Linfócitos T , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cytokine ; 127: 154974, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31978642

RESUMO

Although ischemic heart disease is the leading cause of death worldwide, mainstay treatments ultimately fail because they do not adequately address disease pathophysiology. Restoring the microvascular perfusion deficit remains a significant unmet need and may be addressed via delivery of pro-angiogenic cytokines. The therapeutic effect of cytokines can be enhanced by encapsulation within hydrogels, but current hydrogels do not offer sufficient clinical translatability due to unfavorable viscoelastic mechanical behavior which directly impacts the ability for minimally-invasive catheter delivery. In this report, we examine the therapeutic implications of dual-stage cytokine release from a novel, highly shear-thinning biocompatible catheter-deliverable hydrogel. We chose to encapsulate two protein-engineered cytokines, namely dimeric fragment of hepatocyte growth factor (HGFdf) and engineered stromal cell-derived factor 1α (ESA), which target distinct disease pathways. The controlled release of HGFdf and ESA from separate phases of the hyaluronic acid-based hydrogel allows extended and pronounced beneficial effects due to the precise timing of release. We evaluated the therapeutic efficacy of this treatment strategy in a small animal model of myocardial ischemia and observed a significant benefit in biological and functional parameters. Given the encouraging results from the small animal experiment, we translated this treatment to a large animal preclinical model and observed a reduction in scar size, indicating this strategy could serve as a potential adjunct therapy for the millions of people suffering from ischemic heart disease.


Assuntos
Hidrogéis/administração & dosagem , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Catéteres , Células Cultivadas , Modelos Animais de Doenças , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Ácido Hialurônico/administração & dosagem , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/metabolismo , Miocárdio/patologia , Ratos
4.
Cell ; 177(7): 1757-1770.e21, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31056282

RESUMO

Cells bend their plasma membranes into highly curved forms to interact with the local environment, but how shape generation is regulated is not fully resolved. Here, we report a synergy between shape-generating processes in the cell interior and the external organization and composition of the cell-surface glycocalyx. Mucin biopolymers and long-chain polysaccharides within the glycocalyx can generate entropic forces that favor or disfavor the projection of spherical and finger-like extensions from the cell surface. A polymer brush model of the glycocalyx successfully predicts the effects of polymer size and cell-surface density on membrane morphologies. Specific glycocalyx compositions can also induce plasma membrane instabilities to generate more exotic undulating and pearled membrane structures and drive secretion of extracellular vesicles. Together, our results suggest a fundamental role for the glycocalyx in regulating curved membrane features that serve in communication between cells and with the extracellular matrix.


Assuntos
Forma Celular , Matriz Extracelular/metabolismo , Glicocálix/metabolismo , Glicoproteínas de Membrana/metabolismo , Mucinas/metabolismo , Animais , Linhagem Celular , Matriz Extracelular/genética , Glicocálix/genética , Cavalos , Humanos , Glicoproteínas de Membrana/genética , Mucinas/genética
5.
Elife ; 62017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29266001

RESUMO

Metastasis depends upon cancer cell growth and survival within the metastatic niche. Tumors which remodel their glycocalyces, by overexpressing bulky glycoproteins like mucins, exhibit a higher predisposition to metastasize, but the role of mucins in oncogenesis remains poorly understood. Here we report that a bulky glycocalyx promotes the expansion of disseminated tumor cells in vivo by fostering integrin adhesion assembly to permit G1 cell cycle progression. We engineered tumor cells to display glycocalyces of various thicknesses by coating them with synthetic mucin-mimetic glycopolymers. Cells adorned with longer glycopolymers showed increased metastatic potential, enhanced cell cycle progression, and greater levels of integrin-FAK mechanosignaling and Akt signaling in a syngeneic mouse model of metastasis. These effects were mirrored by expression of the ectodomain of cancer-associated mucin MUC1. These findings functionally link mucinous proteins with tumor aggression, and offer a new view of the cancer glycocalyx as a major driver of disease progression.


Assuntos
Carcinogênese , Ciclo Celular , Proliferação de Células , Glicocálix/metabolismo , Neoplasias Mamárias Animais/secundário , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Glicocálix/genética , Humanos , Camundongos , Mucina-1/genética , Mucina-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA