Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 11: 1289, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670283

RESUMO

Older adults have significantly worse morbidity and mortality after severe trauma than younger cohorts. The competency of the innate immune response decreases with advancing age, especially after an inflammatory insult. Subsequent poor outcomes after trauma are caused in part by dysfunctional leukocytes derived from the host's hematopoietic stem and progenitor cells (HSPCs). Our objective was to analyze the bone marrow (BM) HSPC transcriptomic [mRNA and microRNA (miR)] responses to trauma in older and younger adults. BM was collected intraoperatively <9 days after initial injury from trauma patients with non-mild injury [ISS ≥ 9] or with shock (lactate ≥ 2, base deficit ≥ 5, MAP ≤ 65) who underwent operative fixation of a pelvic or long bone fracture. Samples were also analyzed based on age (<55 years and ≥55 years), ISS score and transfusion in the first 24 h, and compared to age/sex-matched controls from non-cancer elective hip replacement or purchased healthy younger adult human BM aspirates. mRNA and miR expression patterns were calculated from lineage-negative enriched HSPCs. 924 genes were differentially expressed in older trauma subjects vs. age/sex-matched controls, while 654 genes were differentially expressed in younger subjects vs. age/sex-matched control. Only 68 transcriptomic changes were shared between the two groups. Subsequent analysis revealed upregulation of transcriptomic pathways related to quantity, function, differentiation, and proliferation of HSPCs in only the younger cohort. miR expression differences were also identified, many of which were associated with cell cycle regulation. In summary, differences in the BM HSPC mRNA and miR expression were identified between older and younger adult trauma subjects. These differences in gene and miR expression were related to pathways involved in HSPC production and differentiation. These differences could potentially explain why older adult patients have a suboptimal hematopoietic response to trauma. Although immunomodulation of HSPCs may be a necessary consideration to promote host protective immunity after host injury, the age related differences further highlight that patients may require an age-defined medical approach with interventions that are specific to their transcriptomic and biologic response. Also, targeting the older adult miRs may be possible for interventions in this patient population.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , MicroRNAs/genética , RNA Mensageiro/genética , Transcriptoma , Ferimentos e Lesões/genética , Fatores Etários , Idoso , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genômica/métodos , Hematopoese , Humanos , Masculino , Pessoa de Meia-Idade , Interferência de RNA
2.
Crit Care ; 23(1): 355, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31722736

RESUMO

BACKGROUND: Sepsis is an increasingly significant challenge throughout the world as one of the major causes of patient morbidity and mortality. Central to the host immunologic response to sepsis is the increase in circulating myeloid-derived suppressor cells (MDSCs), which have been demonstrated to be present and independently associated with poor long-term clinical outcomes. MDSCs are plastic cells and potentially modifiable, particularly through epigenetic interventions. The objective of this study was to determine how the suppressive phenotype of MDSCs evolves after sepsis in surgical ICU patients, as well as to identify epigenetic differences in MDSCs that may explain these changes. METHODS: Circulating MDSCs from 267 survivors of surgical sepsis were phenotyped at various intervals over 6 weeks, and highly enriched MDSCs from 23 of these samples were co-cultured with CD3/CD28-stimulated autologous T cells. microRNA expression from enriched MDSCs was also identified. RESULTS: We observed that MDSC numbers remain significantly elevated in hospitalized sepsis survivors for at least 6 weeks after their infection. However, only MDSCs obtained at and beyond 14 days post-sepsis significantly suppressed T lymphocyte proliferation and IL-2 production. These same MDSCs displayed unique epigenetic (miRNA) expression patterns compared to earlier time points. CONCLUSIONS: We conclude that in sepsis survivors, immature myeloid cell numbers are increased but the immune suppressive function specific to MDSCs develops over time, and this is associated with a specific epigenome. These findings may explain the chronic and persistent immune suppression seen in these subjects.


Assuntos
Epigênese Genética/fisiologia , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Sepse/complicações , Fatores de Tempo , Idoso , Epigênese Genética/genética , Feminino , Humanos , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , MicroRNAs/imunologia , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Sepse/fisiopatologia
3.
Surgery ; 164(2): 178-184, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29807651

RESUMO

As early as the 1990s, chronic critical illness, a distinct syndrome of persistent high-acuity illness requiring management in the ICU, was reported under a variety of descriptive terms including the "neuropathy of critical illness," "myopathy of critical illness," "ICU-acquired weakness," and most recently "post-intensive care unit syndrome." The widespread implementation of targeted shock resuscitation, improved organ support modalities, and evidence-based protocolized ICU care has resulted in significantly decreased in-hospital mortality within surgical ICUs, specifically by reducing early multiple organ failure deaths. However, a new phenotype of multiple organ failure has now emerged with persistent but manageable organ dysfunction, high resource utilization, and discharge to prolonged care facilities. This new multiple organ failure phenotype is now clinically associated with the rapidly increasing incidence of chronic critical illness in critically ill surgery patients. Although the underlying pathophysiology driving chronic critical illness remains incompletely described, the persistent inflammation, immunosuppression, and catabolism syndrome has been proposed as a mechanistic framework in which to explain the increased incidence of chronic critical illness in surgical ICUs. The purpose of this review is to provide a historic perspective of the epidemiologic evolution of multiple organ failure into persistent inflammation, immunosuppression, and catabolism syndrome; describe the mechanism that drives and sustains chronic critical illness, and review the long-term outcomes of surgical patients who develop chronic critical illness.


Assuntos
Doença Crônica , Estado Terminal , Tolerância Imunológica , Inflamação/complicações , Complicações Pós-Operatórias/etiologia , Humanos , Inflamação/metabolismo , Metabolismo , Insuficiência de Múltiplos Órgãos , Complicações Pós-Operatórias/metabolismo
4.
Front Immunol ; 9: 595, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29670613

RESUMO

Clinical and technological advances promoting early hemorrhage control and physiologic resuscitation as well as early diagnosis and optimal treatment of sepsis have significantly decreased in-hospital mortality for many critically ill patient populations. However, a substantial proportion of severe trauma and sepsis survivors will develop protracted organ dysfunction termed chronic critical illness (CCI), defined as ≥14 days requiring intensive care unit (ICU) resources with ongoing organ dysfunction. A subset of CCI patients will develop the persistent inflammation, immunosuppression, and catabolism syndrome (PICS), and these individuals are predisposed to a poor quality of life and indolent death. We propose that CCI and PICS after trauma or sepsis are the result of an inappropriate bone marrow response characterized by the generation of dysfunctional myeloid populations at the expense of lympho- and erythropoiesis. This review describes similarities among CCI/PICS phenotypes in sepsis, cancer, and aging and reviews the role of aberrant myelopoiesis in the pathophysiology of CCI and PICS. In addition, we characterize pathogen recognition, the interface between innate and adaptive immune systems, and therapeutic approaches including immune modulators, gut microbiota support, and nutritional and exercise therapy. Finally, we discuss the future of diagnostic and prognostic approaches guided by machine and deep-learning models trained and validated on big data to identify patients for whom these approaches will yield the greatest benefits. A deeper understanding of the pathophysiology of CCI and PICS and continued investigation into novel therapies harbor the potential to improve the current dismal long-term outcomes for critically ill post-injury and post-infection patients.


Assuntos
Suscetibilidade a Doenças , Tolerância Imunológica , Imunidade Inata , Inflamação/etiologia , Inflamação/metabolismo , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Doença Crônica , Estado Terminal , Interações Hospedeiro-Patógeno/imunologia , Humanos , Inflamação/mortalidade , Inflamação/terapia , Síndrome Metabólica/mortalidade , Síndrome Metabólica/terapia , Fenótipo , Medicina de Precisão , Sepse/etiologia , Sepse/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA