Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 96: 104785, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37672868

RESUMO

BACKGROUND: In individuals with malignancy or HIV-1 infection, antigen-specific cytotoxic T lymphocytes (CTLs) often display an exhausted phenotype with impaired capacity to eliminate the disease. Existing cell-based immunotherapy strategies are often limited by the requirement for adoptive transfer of CTLs. We have developed an immunotherapy technology in which potent CTL responses are generated in vivo by vaccination and redirected to eliminate target cells using a bispecific Redirector of Vaccine-induced Effector Responses (RoVER). METHODS: Following Yellow fever (YF) 17D vaccination of 51 healthy volunteers (NCT04083430), single-epitope YF-specific CTL responses were quantified by tetramer staining and multi-parameter flow cytometry. RoVER-mediated redirection of YF-specific CTLs to kill antigen-expressing Raji-Env cells, autologous CD19+ B cells or CD4+ T cells infected in vitro with a full-length HIV-1-eGFP was assessed in cell killing assays. Moreover, secreted IFN-γ, granzyme B, and TNF-α were analyzed by mesoscale multiplex assays. FINDINGS: YF-17D vaccination induced strong epitope-specific CTL responses in the study participants. In cell killing assays, RoVER-mediated redirection of YF-specific CTLs to autologous CD19+ B cells or HIV-1-infected CD4+ cells resulted in 58% and 53% killing at effector to target ratio 1:1, respectively. INTERPRETATION: We have developed an immunotherapy technology in which epitope-specific CTLs induced by vaccination can be redirected to kill antigen-expressing target cells by RoVER linking. The RoVER technology is highly specific and can be adapted to recognize various cell surface antigens. Importantly, this technology obviates the need for adoptive transfer of CTLs. FUNDING: This work was funded by the Novo Nordisk Foundation (Hallas Møller NNF10OC0054577).

2.
Nature ; 597(7874): 114-118, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34261128

RESUMO

In mammals, cyclic GMP-AMP (cGAMP) synthase (cGAS) produces the cyclic dinucleotide 2'3'-cGAMP in response to cytosolic DNA and this triggers an antiviral immune response. cGAS belongs to a large family of cGAS/DncV-like nucleotidyltransferases that is present in both prokaryotes1 and eukaryotes2-5. In bacteria, these enzymes synthesize a range of cyclic oligonucleotides and have recently emerged as important regulators of phage infections6-8. Here we identify two cGAS-like receptors (cGLRs) in the insect Drosophila melanogaster. We show that cGLR1 and cGLR2 activate Sting- and NF-κB-dependent antiviral immunity in response to infection with RNA or DNA viruses. cGLR1 is activated by double-stranded RNA to produce the cyclic dinucleotide 3'2'-cGAMP, whereas cGLR2 produces a combination of 2'3'-cGAMP and 3'2'-cGAMP in response to an as-yet-unidentified stimulus. Our data establish cGAS as the founding member of a family of receptors that sense different types of nucleic acids and trigger immunity through the production of cyclic dinucleotides beyond 2'3'-cGAMP.


Assuntos
Drosophila melanogaster/imunologia , Nucleotidiltransferases/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Vírus/imunologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/virologia , Feminino , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Ligantes , Masculino , Proteínas de Membrana/metabolismo , Modelos Moleculares , NF-kappa B/metabolismo , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/classificação , Nucleotidiltransferases/deficiência , Nucleotidiltransferases/metabolismo , RNA de Cadeia Dupla/análise , RNA de Cadeia Dupla/imunologia , RNA de Cadeia Dupla/metabolismo , Receptores de Reconhecimento de Padrão/classificação , Receptores de Reconhecimento de Padrão/deficiência , Receptores de Reconhecimento de Padrão/imunologia
3.
Sci Signal ; 13(660)2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262294

RESUMO

We previously reported that an ortholog of STING regulates infection by picorna-like viruses in Drosophila In mammals, STING is activated by the cyclic dinucleotide 2'3'-cGAMP produced by cGAS, which acts as a receptor for cytosolic DNA. Here, we showed that injection of flies with 2'3'-cGAMP induced the expression of dSTING-regulated genes. Coinjection of 2'3'-cGAMP with a panel of RNA or DNA viruses resulted in substantially reduced viral replication. This 2'3'-cGAMP-mediated protection was still observed in flies with mutations in Atg7 and AGO2, genes that encode key components of the autophagy and small interfering RNA pathways, respectively. By contrast, this protection was abrogated in flies with mutations in the gene encoding the NF-κB transcription factor Relish. Transcriptomic analysis of 2'3'-cGAMP-injected flies revealed a complex response pattern in which genes were rapidly induced, induced after a delay, or induced in a sustained manner. Our results reveal that dSTING regulates an NF-κB-dependent antiviral program that predates the emergence of interferons in vertebrates.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas de Membrana/metabolismo , NF-kappa B/metabolismo , Nucleotídeos Cíclicos/metabolismo , Fatores de Transcrição/metabolismo , Vírus/metabolismo , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas de Membrana/genética , Mutação , NF-kappa B/genética , Nucleotídeos Cíclicos/genética , Fatores de Transcrição/genética , Vírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA