Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
2.
Am J Pathol ; 193(2): 191-200, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36336066

RESUMO

Kidney cyst expansion in tuberous sclerosis complex (TSC) or polycystic kidney disease (PKD) requires active secretion of chloride (Cl-) into the cyst lumen. In PKD, Cl- secretion is primarily mediated via the cystic fibrosis transmembrane conductance regulator (CFTR) in principal cells. Kidney cystogenesis in TSC is predominantly composed of type A intercalated cells, which do not exhibit noticeable expression of CFTR. The identity of the Cl--secreting molecule(s) in TSC cyst epithelia remains speculative. RNA-sequencing analysis results were used to examine the expression of FOXi1, the chief regulator of acid base transporters in intercalated cells, along with localization of Cl- channel 5 (ClC5), in various models of TSC. Results from Tsc2+/- mice showed that the expansion of kidney cysts corresponded to the induction of Foxi1 and correlated with the appearance of ClC5 and H+-ATPase on the apical membrane of cyst epithelia. In various mouse models of TSC, Foxi1 was robustly induced in the kidney, and ClC5 and H+-ATPase were expressed on the apical membrane of cyst epithelia. Expression of ClC5 was also detected on the apical membrane of cyst epithelia in humans with TSC but was absent in humans with autosomal dominant PKD or in a mouse model of PKD. These results indicate that ClC5 is expressed on the apical membrane of cyst epithelia and is a likely candidate mediating Cl- secretion into the kidney cyst lumen in TSC.


Assuntos
Cistos , Doenças Renais Policísticas , Esclerose Tuberosa , Humanos , Animais , Camundongos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Cloretos/metabolismo , Esclerose Tuberosa/metabolismo , Rim/metabolismo , Epitélio/metabolismo , Fatores de Transcrição Forkhead/metabolismo
3.
Respir Res ; 23(1): 232, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068572

RESUMO

BACKGROUND: Alpha-1 antitrypsin deficiency (AATD) is a genetic disorder most commonly secondary to a single mutation in the SERPINA1 gene (PI*Z) that causes misfolding and accumulation of alpha-1 antitrypsin (AAT) in hepatocytes and mononuclear phagocytes which reduces plasma AAT and creates a toxic gain of function. This toxic gain of function promotes a pro-inflammatory phenotype in macrophages that contributes to lung inflammation and early-onset COPD, especially in individuals who smoke cigarettes. The aim of this study is to determine the role of cigarette exposed AATD macrophages and bronchial epithelial cells in AATD-mediated lung inflammation. METHODS: Peripheral blood mononuclear cells from AATD and healthy individuals were differentiated into alveolar-like macrophages and exposed to air or cigarette smoke while in culture. Macrophage endoplasmic reticulum stress was quantified and secreted cytokines were measured using qPCR and cytokine ELISAs. To determine whether there is "cross talk" between epithelial cells and macrophages, macrophages were exposed to extracellular vesicles released by airway epithelial cells exposed to cigarette smoke and their inflammatory response was determined. RESULTS: AATD macrophages spontaneously produce several-fold more pro-inflammatory cytokines as compared to normal macrophages. AATD macrophages have an enhanced inflammatory response when exposed to cigarette smoke-induced extracellular vesicles (EVs) released from airway epithelial cells. Cigarette smoke-induced EVs induce expression of GM-CSF and IL-8 in AATD macrophages but have no effect on normal macrophages. Release of AAT polymers, potent neutrophil chemo attractants, were also increased from AATD macrophages after exposure to cigarette smoke-induced EVs. CONCLUSIONS: The expression of mutated AAT confers an inflammatory phenotype in AATD macrophages which disposes them to an exaggerated inflammatory response to cigarette smoke-induced EVs, and thus could contribute to progressive lung inflammation and damage in AATD individuals.


Assuntos
Fumar Cigarros , Vesículas Extracelulares , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Deficiência de alfa 1-Antitripsina , Fumar Cigarros/efeitos adversos , Citocinas/metabolismo , Células Epiteliais/metabolismo , Vesículas Extracelulares/metabolismo , Leucócitos Mononucleares/metabolismo , Ativação de Macrófagos , Pneumonia/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Nicotiana , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Deficiência de alfa 1-Antitripsina/genética
4.
Front Mol Biosci ; 9: 874186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601831

RESUMO

Background: Several members of the SLC26A family of transporters, including SLC26A3 (DRA), SLC26A5 (prestin), SLC26A6 (PAT-1; CFEX) and SLC26A9, form multi-protein complexes with a number of molecules (e.g., cytoskeletal proteins, anchoring or adaptor proteins, cystic fibrosis transmembrane conductance regulator, and protein kinases). These interactions provide regulatory signals for these molecules. However, the identity of proteins that interact with the Cl-/HCO3 - exchanger, SLC26A4 (pendrin), have yet to be determined. The purpose of this study is to identify the protein(s) that interact with pendrin. Methods: A yeast two hybrid (Y2H) system was employed to screen a mouse kidney cDNA library using the C-terminal fragment of SLC26A4 as bait. Immunofluorescence microscopic examination of kidney sections, as well as co-immunoprecipitation assays, were performed using affinity purified antibodies and kidney protein extracts to confirm the co-localization and interaction of pendrin and the identified binding partners. Co-expression studies were carried out in cultured cells to examine the effect of binding partners on pendrin trafficking and activity. Results: The Y2H studies identified IQ motif-containing GTPase-activating protein 1 (IQGAP1) as a protein that binds to SLC26A4's C-terminus. Co-immunoprecipitation experiments using affinity purified anti-IQGAP1 antibodies followed by western blot analysis of kidney protein eluates using pendrin-specific antibodies confirmed the interaction of pendrin and IQGAP1. Immunofluorescence microscopy studies demonstrated that IQGAP1 co-localizes with pendrin on the apical membrane of B-intercalated cells, whereas it shows basolateral expression in A-intercalated cells in the cortical collecting duct (CCD). Functional and confocal studies in HEK-293 cells, as well as confocal studies in MDCK cells, demonstrated that the co-transfection of pendrin and IQGAP1 shows strong co-localization of the two molecules on the plasma membrane along with enhanced Cl-/HCO3 - exchanger activity. Conclusion: IQGAP1 was identified as a protein that binds to the C-terminus of pendrin in B-intercalated cells. IQGAP1 co-localized with pendrin on the apical membrane of B-intercalated cells. Co-expression of IQGAP1 with pendrin resulted in strong co-localization of the two molecules and increased the activity of pendrin in the plasma membrane in cultured cells. We propose that pendrin's interaction with IQGAP1 may play a critical role in the regulation of CCD function and physiology, and that disruption of this interaction could contribute to altered pendrin trafficking and/or activity in pathophysiologic states.

5.
J Histochem Cytochem ; 70(2): 169-179, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34915746

RESUMO

Osteoclasts are cells whose main function is the resorption of bone matrix. However, several factors, including medications, can interfere with the resorption process. Alendronate (ALN), a nitrogen-containing type of bisphosphonate, and dexamethasone (DEX), a glucocorticoid, are drugs that may affect the resorption activity. The aim of this study is to investigate the effects of ALN, and/or DEX on osteoclast gene expression and resorption activity in primary mouse marrow cultures stimulated with 1,25-dihydroxyvitamin D3, a model for the bone microenvironment. Cultures were treated only with ALN (10-5 M), DEX (10-6 M), and with a combination of both agents. Viability assays performed at days 5, 7, and 9 showed the highest number of viable cells at day 7. All the following assays were then performed at day 7 of cell culture: tartrate resistant acid phosphatase (TRAP) histochemistry, receptor activator of nuclear factor kappa B ligand (RANKL) immunofluorescence, osteoprotegerin (OPG), and RANKL gene expression by qPCR and resorption analysis by scanning electron microscopy. Treatment with ALN, DEX, and the combination of both did not promote significant changes in the number of TRAP+ cells, although larger giant cells were detected in groups treated with DEX. DEX treatment increased the gene expression of RANKL and reduced OPG. The treatment with ALN reduced the depth of the resorption pits, but their inhibitory effect was less effective when administered with DEX.


Assuntos
Alendronato/farmacologia , Medula Óssea/efeitos dos fármacos , Reabsorção Óssea/tratamento farmacológico , Dexametasona/farmacologia , Osteoclastos/efeitos dos fármacos , Animais , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Camundongos , Camundongos Endogâmicos BALB C
6.
Clin Pharmacol Ther ; 110(6): 1558-1569, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34390503

RESUMO

Medication-related osteonecrosis of the jaw (MRONJ) is a rare but serious drug-related adverse event. To identify pharmacogenomic markers of MRONJ associated with bisphosphonate therapy, we conducted a genomewide association study (GWAS) meta-analysis followed by functional analysis of 5,008 individuals of European ancestry treated with bisphosphonates, which includes the largest number of MRONJ cases to date (444 cases and 4,564 controls). Discovery GWAS was performed in randomly selected 70% of the patients with cancer and replication GWAS was performed in the remaining 30% of the patients with cancer treated with intravenous bisphosphonates followed by meta-analysis of all 3,639 patients with cancer. GWAS was also performed in 1,369 patients with osteoporosis treated with oral bisphosphonates. The lead single-nucleotide polymorphism (SNP), rs2736308 on chromosome 8, was associated with an increased risk of MRONJ with an odds ratio (OR) of 2.71 and 95% confidence interval (CI) of 1.90-3.86 (P = 3.57*10-8 ) in the meta-analysis of patients with cancer. This SNP was validated in the MRONJ GWAS in patients with osteoporosis (OR: 2.82, 95% CI: 1.55-4.09, P = 6.84*10-4 ). The meta-analysis combining patients with cancer and patients with osteoporosis yielded the same lead SNP rs2736308 on chromosome 8 as the top SNP (OR: 2.74, 95% CI: 2.09-3.39, P = 9.65*10-11 ). This locus is associated with regulation of the BLK, CTSB, and FDFT1 genes, which had been associated with bone mineral density. FDFT1 encodes a membrane-associated enzyme, which is implicated in the bisphosphonate pathway. This study provides insights into the potential mechanism of MRONJ.


Assuntos
Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/genética , Cromossomos Humanos Par 8/genética , Loci Gênicos/genética , Estudo de Associação Genômica Ampla/métodos , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/diagnóstico , Estudos de Casos e Controles , Difosfonatos/efeitos adversos , Difosfonatos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Osteoporose/tratamento farmacológico , Osteoporose/genética , Polimorfismo de Nucleotídeo Único/genética
7.
Sci Rep ; 11(1): 9214, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911158

RESUMO

The (pro)renin receptor (PRR) is a multifunctional integral membrane protein that serves as a component of the vacuolar H+-ATPase (V-ATPase) and also activates (pro)renin. We recently showed that full-length PRR, found as part of a V-ATPase sub-complex, is abundant in extracellular vesicles shed by osteoclasts. Here, we tested whether these extracellular vesicles stimulate (pro)renin. Extracellular vesicles isolated from the conditioned media of RAW 264.7 osteoclast-like cells or primary osteoclasts were characterized and counted by nanoparticle tracking. Immunoblotting confirmed that full-length PRR was present. Extracellular vesicles from osteoclasts dose-dependently stimulated (pro)renin activity, while extracellular vesicles from 4T1 cancer cells, in which we did not detect PRR, did not activate (pro)renin. To confirm that the ability of extracellular vesicles from osteoclasts to stimulate (pro)renin activity was due to the PRR, the "handle region peptide" from the PRR, a competitive inhibitor of PRR activity, was tested. It dose-dependently blocked the ability of extracellular vesicles to stimulate the enzymatic activity of (pro)renin. In summary, the PRR, an abundant component of extracellular vesicles shed by osteoclasts, stimulates (pro)renin activity. This represents a novel mechanism by which extracellular vesicles can function in intercellular regulation, with direct implications for bone biology.


Assuntos
Angiotensinogênio/metabolismo , Vesículas Extracelulares/metabolismo , Osteoclastos/metabolismo , Receptores de Superfície Celular/metabolismo , Renina/metabolismo , Animais , Camundongos , Osteoclastos/citologia , Receptores de Superfície Celular/genética , Renina/genética , Receptor de Pró-Renina
8.
J Bone Miner Res ; 36(2): 347-356, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32967053

RESUMO

Medication-related osteonecrosis of the jaw (MRONJ) is a rare but serious adverse drug reaction. Our previous whole-exome sequencing study found SIRT1 intronic region single-nucleotide polymorphism (SNP) rs7896005 to be associated with MRONJ in cancer patients treated with intravenous (iv) bisphosphonates (BPs). This study aimed to identify causal variants for this association. In silico analyses identified three SNPs (rs3758391, rs932658, and rs2394443) in the SIRT1 promoter region that are in high linkage disequilibrium (r2 > 0.8) with rs7896005. To validate the association between these SNPs and MRONJ, we genotyped these three SNPs on the germline DNA from 104 cancer patients of European ancestry treated with iv BPs (46 cases and 58 controls). Multivariable logistic regression analysis showed the minor alleles of these three SNPs were associated with lower odds for MRONJ. The odds ratios (95% confidence interval) and p values were 0.351 (0.164-0.751; p = 0.007) for rs3758391, 0.351 (0.164-0.751; p = 0.007) for rs932658, and 0.331 (0.157-0.697; p = 0.0036) for rs2394443, respectively. In the reporter gene assays, constructs containing rs932658 with variant allele A had higher luciferase activity than the reference allele, whereas constructs containing SNP rs3758391 and/or rs2394443 did not significantly affect activity. These results indicate that the promoter SNP rs932658 regulates the expression of SIRT1 and presumably lowers the risk of MRONJ by increasing SIRT1 expression. © 2020 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Osteonecrose da Arcada Osseodentária Associada a Difosfonatos , Conservadores da Densidade Óssea , Osteonecrose , Alelos , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/genética , Difosfonatos , Humanos , Desequilíbrio de Ligação/genética , Polimorfismo de Nucleotídeo Único/genética , Sirtuína 1/genética
10.
Int J Mol Sci ; 21(1)2019 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-31881680

RESUMO

Extracellular vesicles (EVs) are shed by all eukaryotic cells and have emerged as important intercellular regulators. EVs released by osteoclasts were recently identified as important coupling factors in bone remodeling. They are shed as osteoclasts resorb bone and stimulate osteoblasts to form bone to replace the bone resorbed. We reported the proteomic content of osteoclast EVs with data from two-dimensional, high resolution liquid chromatography/mass spectrometry. In this article, we examine in detail the actin and actin-associated proteins found in osteoclast EVs. Like EVs from other cell types, actin and various actin-associated proteins were abundant. These include components of the polymerization machinery, myosin mechanoenzymes, proteins that stabilize or depolymerize microfilaments, and actin-associated proteins that are involved in regulating integrins. The selective incorporation of actin-associated proteins into osteoclast EVs suggests that they have roles in the formation of EVs and/or the regulatory signaling functions of the EVs. Regulating integrins so that they bind extracellular matrix tightly, in order to attach EVs to the extracellular matrix at specific locations in organs and tissues, is one potential active role for actin-associated proteins in EVs.


Assuntos
Actinas/metabolismo , Vesículas Extracelulares/metabolismo , Citoesqueleto de Actina/metabolismo , Exossomos/metabolismo , Humanos , Integrinas/metabolismo , Miosinas/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo
11.
PLoS One ; 14(7): e0219602, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31291376

RESUMO

Extracellular vesicles (EVs) from osteoclasts are important regulators in intercellular communication. Here, we investigated the proteome of EVs from clastic cells plated on plastic (clasts), bone (osteoclasts) and dentin (odontoclasts) by two-dimensional high performance liquid chromatography mass spectrometry seeking differences attributable to distinct mineralized matrices. A total of 1,952 proteins were identified. Of the 500 most abundant proteins in EVs, osteoclast and odontoclast EVs were 83.3% identical, while clasts shared 70.7% of the proteins with osteoclasts and 74.2% of proteins with odontoclasts. For each protein, the differences between the total ion count values were mapped to an expression ratio histogram (Z-score) in order to detect proteins differentially expressed. Stabilin-1 and macrophage mannose receptor-1 were significantly-enriched in EVs from odontoclasts compared with osteoclasts (Z = 2.45, Z = 3.34) and clasts (Z = 13.86, Z = 1.81) and were abundant in odontoclast EVs. Numerous less abundant proteins were differentially-enriched. Subunits of known protein complexes were abundant in clastic EVs, and were present at levels consistent with them being in assembled protein complexes. These included the proteasome, COP1, COP9, the T complex and a novel sub-complex of vacuolar H+-ATPase (V-ATPase), which included the (pro) renin receptor. The (pro) renin receptor was immunoprecipitated using an anti-E-subunit antibody from detergent-solubilized EVs, supporting the idea that the V-ATPase subunits present were in the same protein complex. We conclude that the protein composition of EVs released by clastic cells changes based on the substrate. Clastic EVs are enriched in various protein complexes including a previously undescribed V-ATPase sub-complex.


Assuntos
Vesículas Extracelulares/metabolismo , Osteoclastos/metabolismo , Proteoma/metabolismo , Animais , Células da Medula Óssea , Remodelação Óssea , Células Cultivadas , Camundongos , Osteogênese , Cultura Primária de Células , Proteômica , ATPases Vacuolares Próton-Translocadoras/metabolismo
12.
Bone ; 124: 75-82, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31022475

RESUMO

Osteonecrosis of the jaw (ONJ) is a rare but serious drug induced adverse event, mainly associated with the use of antiresorptive medications, such as intravenous (IV) bisphosphonates (BPs) in cancer patients. In this review, we evaluated all the pharmacogenomic association studies for ONJ published up to December 2018. To date, two SNPs (CYP2C8 rs1934951 and RBMS3 rs17024608) were identified to be associated with ONJ by two genome-wide association studies (GWAS). However, all six subsequent candidate gene studies failed to replicate these results. In addition, six discovery candidate gene studies tried to identify the genetic markers in several genes associated with bone remodeling, bone mineral density, or osteoporosis. After evaluating the results of these 6 studies, none of the SNPs was significantly associated with ONJ. Recently, two whole-exome sequencing (WES) analysis (including one from our group) were performed to identify variants associated with ONJ. So far, only our study successfully replicated discovery result indicating SIRT1 SNP rs7896005 to be associated with ONJ. However, this SNP also did not reach genome-wide significance. The major limitations of these studies include lack of replication phases and limited sample sizes. Even though some studies had larger sample sizes, they recruited healthy individuals as controls, not subjects treated with BPs. We conclude that a GWAS with a larger sample size followed by replication phase will be needed to fully investigate the pharmacogenomic markers of ONJ.


Assuntos
Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/tratamento farmacológico , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/genética , Farmacogenética , Estudo de Associação Genômica Ampla , Humanos , Reprodutibilidade dos Testes , Sequenciamento do Exoma
13.
Sci Rep ; 8(1): 16182, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30385810

RESUMO

Enoxacin and its bone-seeking bisphosphonate derivative, bis-enoxacin, have recently captured attention as potential therapeutic agents for the treatment of cancer and bone disease. No differences in growth or survival of 4T1 murine breast cancer cells were detected at a concentration of 50 µM of enoxacin or bis-enoxacin. Growth was perturbed at higher concentrations. Both 50 µM enoxacin and bis-enoxacin stimulated increases in the number of GW/Processing bodies, but there were minimal changes in microRNA levels. Extracellular vesicles (EVs) released from 4T1 cells treated with 50 µM enoxacin or 50 µM bis-enoxacin stimulated proliferation of RAW 264.7 cells, and both significantly inhibited osteoclastogenesis in calcitriol-stimulated mouse marrow. EVs from 4T1 cells treated with enoxacin and bis-enoxacin displayed small reductions in the amount of microRNA (miR)-146a-5p and let-7b-5p. In marked contrast, miR-214-3p, which has been shown to regulate bone remodeling, was increased 22-fold and 30-fold respectively. We conclude that enoxacin and bis-enoxacin trigger the release of EVs from 4T1 cancer cells that inhibit osteoclastogenesis.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Enoxacino/farmacologia , Glândulas Mamárias Animais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Animais , Células da Medula Óssea/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Calcitriol/farmacologia , Proliferação de Células/efeitos dos fármacos , Difosfonatos/química , Difosfonatos/farmacologia , Enoxacino/análogos & derivados , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Glândulas Mamárias Animais/patologia , Camundongos , MicroRNAs/genética , Osteogênese/genética , Células RAW 264.7
14.
Biotarget ; 12017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30957075

RESUMO

Vacuolar H+-ATPases (V-ATPases) are multi-subunit enzymes that play housekeeping roles in eukaryotic cells by acidifying lysosomes, late endosomes, Golgi, and other membrane-bounded compartments. Beyond that, V-ATPases have specialized functions in certain cell types linked to diseases including osteoporosis and cancer. Efforts to identify strategies to develop inhibitors selective for V-ATPases that are involved in disease progression have been ongoing for more than two decades, but so far have not yielded a therapeutic agent that has been translated to the clinic. Recent basic science studies have identified unexpected roles for V-ATPases in nutrient and energy sensing, and renin/angiotensin signaling, which offer additional incentives for considering V-ATPases as therapeutic targets. This article briefly reviews efforts to utilize inhibitors of V-ATPases as drugs. Primary focus is on recent "rational" efforts to identify small molecule inhibitors of the V-ATPases that are selectively expressed in osteoclasts and cancer cells. Enoxacin and bis-enoxacin are two molecules that emerged from these efforts. These molecules block a binding interaction between V-ATPases and microfilaments that occurs in osteoclasts, but not most other cell types, which relates to the specialized function of V-ATPases in bone resorption. Enoxacin and bis-enoxacin have proven useful in the treatment of bone diseases and cancer in animal models and display therapeutic effects that are different, and perhaps better, than current drugs. These results provide evidence that agents targeting subsets of V-ATPases may prove useful in the clinic.

15.
Hum Gene Ther ; 28(2): 179-189, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27802778

RESUMO

Osteoporosis is a common health problem severely affecting the quality of life of many people, especially women. Current treatment options for osteoporosis are limited due to their association with several side-effects and moderate efficacy. Therefore, novel therapies for osteoporosis are needed. This study tested the feasibility of adipose tissue-derived mesenchymal stem cell (ATMSC)-based human alpha-1 antitrypsin (hAAT, SERPINA1) gene therapy for the prevention of bone loss in an ovariectomized (OVX) mouse model. Eight-week-old female C57BL6 mice underwent ovariectomy and were treated with hAAT (protein therapy), ATMSC (stem-cell therapy), ATMSC + hAAT (combination of ATMSC and hAAT therapy), and ATMSCs infected with lentiviral vectors expressing hAAT (ATMSC-based hAAT gene therapy). The study showed that lenti-hAAT vector-infected ATMSCs (ATMSC-LV-hAAT) produced high levels of hAAT. Transplantation of these cells significantly decreased OVX-induced serum levels of interleukin 6 and interleukin 1 beta, and receptor activator of nuclear factor kappa B gene expression levels in bone tissue. Immunohistological analysis revealed that transplanted cells migrated to the bone tissue and secreted hAAT. Importantly, bone microstructure analysis by microcomputerized tomography showed that this treatment significantly protected against OVX-induced bone loss. The results suggest a novel strategy for the treatment of osteoporosis in humans.


Assuntos
Tecido Adiposo/citologia , Terapia Genética , Vetores Genéticos/administração & dosagem , Lentivirus/genética , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Osteoporose/terapia , alfa 1-Antitripsina/genética , Animais , Densidade Óssea , Terapia Combinada , Modelos Animais de Doenças , Camundongos , Osteoporose/etiologia , Ovariectomia/efeitos adversos
16.
Hum Gene Ther ; 27(9): 679-86, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27158796

RESUMO

Osteoporosis is a major healthcare burden affecting mostly postmenopausal women characterized by compromised bone strength and increased risk of fragility fracture. Although pathogenesis of this disease is complex, elevated proinflammatory cytokine production is clearly involved in bone loss at menopause. Therefore, anti-inflammatory strategies hold a great potential for the prevention of postmenopausal osteoporosis. In this study, we investigated the effect of gene therapy of recombinant adeno-associated virus (rAAV)-mediated human alpha-1 antitrypsin (hAAT), a multifunctional protein that has anti-inflammatory property, on bone loss in an ovariectomy-induced osteoporosis mouse model. Adult ovariectomized (OVX) mice were intraperitoneally (i.p.) injected with hAAT (protein therapy), rAAV8-CB-hAAT (gene therapy), or phosphate buffer saline (PBS). Age-matched and sham-operated animals were used as controls. Eight weeks after the treatment, animals were sacrificed and bone-related biomarkers and vertebral bone structure were evaluated. Results showed that hAAT gene therapy significantly decreased serum IL-6 level and receptor activator of NF-κB (RANK) gene expression in bone. Importantly, hAAT gene therapy increased bone volume/total volume and decreased structure model index (SMI) compared to PBS injection in OVX mice. These results demonstrate that hAAT gene therapy by rAAV vector efficiently mitigates bone loss possibly through inhibition of proinflammatory cytokine IL-6 and RANK gene expression. Considering the safety profile of hAAT and rAAV vector in humans, our results provide a new alternative for the treatment of osteoporosis.


Assuntos
Dependovirus/genética , Terapia Genética , Vetores Genéticos/administração & dosagem , Osteoporose/prevenção & controle , Ovariectomia/efeitos adversos , alfa 1-Antitripsina/genética , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Osteoporose/etiologia
17.
Angle Orthod ; 86(2): 187-92, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26154939

RESUMO

OBJECTIVE: To carry out an immunoassay analysis of biomarkers expressed in gingival crevicular fluid (GCF) with the main goal of finding a useful diagnostic pattern to distinguish between resorbing deciduous teeth and nonresorbing controls. MATERIALS AND METHODS: A split-mouth design was used in this study with a total of 22 GCF samples collected from 11 patients in the mixed dentition. For each child, one deciduous molar with radiographic evidence of root resorption was used as the test tooth whereas the contralateral first permanent molar with formed roots was used as the control tooth. Samples were processed with immunoassays using a panel of selected biomarkers including interleukin-1 beta (IL-1b), interleukin-1 receptor antagonist (IL-1RA), nuclear factor kappa B ligand (RANKL), osteoprotegerin (OPG), matrix metalloproteinase-9 (MMP-9), and dentin sialoprotein (DSP). RESULTS: There were no statistically significant differences in levels of IL-1b, OPG, and MMP-9 between test and control sites (P > .05). IL-1RA was the only biomarker to show a significant down-regulation (P  =  .04) in GCF samples collected from resorbing teeth. RANKL data showed a heavily skewed distribution and was deemed unreliable. Only one deciduous GCF sample had detectable levels of DSP; therefore, no further statistical calculation was applicable because of the limited amount of data for this biomarker. CONCLUSIONS: This study indicated that IL1-RA is down-regulated in GCF from resorbing primary molars, thus suggesting this cytokine as a potential analyte to be included in a panel that can discriminate between resorbing and nonresorbing teeth.


Assuntos
Biomarcadores/química , Líquido do Sulco Gengival/química , Imunoensaio , Proteína Antagonista do Receptor de Interleucina 1/química , Reabsorção da Raiz/diagnóstico , Criança , Proteínas da Matriz Extracelular/química , Humanos , Interleucina-1beta/química , Metaloproteinase 9 da Matriz/química , Dente Molar , Osteoprotegerina/química , Fosfoproteínas/química , Ligante RANK/química , Sialoglicoproteínas/química
18.
Biomacromolecules ; 16(8): 2374-81, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26151628

RESUMO

Polymers of similar molecular weights and chemical constitution but varying in their macromolecular architectures were conjugated to osteoprotegerin (OPG) to determine the effect of polymer topology on protein activity in vitro and in vivo. OPG is a protein that inhibits bone resorption by preventing the formation of mature osteoclasts from the osteoclast precursor cell. Accelerated bone loss disorders, such as osteoporosis, rheumatoid arthritis, and metastatic bone disease, occur as a result of increased osteoclastogenesis, leading to the severe weakening of the bone. OPG has shown promise as a treatment in bone disorders; however, it is rapidly cleared from circulation through rapid liver uptake, and frequent, high doses of the protein are necessary to achieve a therapeutic benefit. We aimed to improve the effectiveness of OPG by creating OPG-polymer bioconjugates, employing reversible addition-fragmentation chain transfer polymerization to create well-defined polymers with branching densities varying from linear, loosely branched to densely branched. Polymers with each of these architectures were conjugated to OPG using a "grafting-to" approach, and the bioconjugates were characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The OPG-polymer bioconjugates showed retention of activity in vitro against osteoclasts, and each bioconjugate was shown to be nontoxic. Preliminary in vivo studies further supported the nontoxic characteristics of the bioconjugates, and measurement of the bone mineral density in rats 7 days post-treatment via peripheral quantitative computed tomography suggested a slight increase in bone mineral density after administration of the loosely branched OPG-polymer bioconjugate.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Reabsorção Óssea/tratamento farmacológico , Osteoporose/tratamento farmacológico , Osteoprotegerina/química , Animais , Artrite Reumatoide/patologia , Densidade Óssea/efeitos dos fármacos , Reabsorção Óssea/patologia , Humanos , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Osteoporose/patologia , Osteoprotegerina/administração & dosagem , Polímeros/administração & dosagem , Polímeros/química , Ratos
19.
Curr Protein Pept Sci ; 13(2): 180-91, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22044158

RESUMO

Binding between vacuolar H+-ATPases (V-ATPases) and microfilaments is mediated by an actin binding domain in the B-subunit. Both isoforms of mammalian B-subunit bind microfilaments with high affinity. A similar actinbinding activity has been demonstrated in the B-subunit of yeast. A conserved "profilin-like" domain in the B-subunit mediates this actin-binding activity, named due to its sequence and structural similarity to an actin-binding surface of the canonical actin binding protein profilin. Subtle mutations in the "profilin-like" domain eliminate actin binding activity without disrupting the ability of the altered protein to associate with the other subunits of V-ATPase to form a functional proton pump. Analysis of these mutated B-subunits suggests that the actin-binding activity is not required for the "housekeeping" functions of V-ATPases, but is important for certain specialized roles. In osteoclasts, the actin-binding activity is required for transport of V-ATPases to the plasma membrane, a prerequisite for bone resorption. A virtual screen led to the identification of enoxacin as a small molecule that bound to the actin-binding surface of the B2-subunit and competitively inhibited B2-subunit and actin interaction. Enoxacin disrupted osteoclastic bone resorption in vitro, but did not affect osteoblast formation or mineralization. Recently, enoxacin was identified as an inhibitor of the virulence of Candida albicans and more importantly of cancer growth and metastasis. Efforts are underway to determine the mechanisms by which enoxacin and other small molecule inhibitors of B2 and microfilament binding interaction selectively block bone resorption, the virulence of Candida, cancer growth, and metastasis.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Candidíase/tratamento farmacológico , Descoberta de Drogas/métodos , Enoxacino/farmacologia , Neoplasias/tratamento farmacológico , Osteoclastos/efeitos dos fármacos , ATPases Vacuolares Próton-Translocadoras/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Animais , Candida/efeitos dos fármacos , Candida/enzimologia , Candidíase/enzimologia , Humanos , Neoplasias/enzimologia , Osteoclastos/enzimologia , Ligação Proteica/efeitos dos fármacos , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/genética
20.
Immunol Cell Biol ; 88(2): 205-12, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19918258

RESUMO

GW bodies (GWB or P bodies) are cytoplasmic foci thought to result from microRNA (miRNA) regulation of messenger RNA (mRNA) targets and subsequent mRNA degradation. The purpose of this study is to examine the effects of lipopolysaccharide (LPS) stimulation of human monocytes on GWB formation, miRNA induction, miRNA target regulation and downstream cytokine and chemokine expression. In response to LPS stimulation, the number of GWB consistently increased by twofold at 8 h after stimulation and this increase was abolished when the miRNA-effector proteins Rck/p54 or argonaute 2 were depleted. As the level of miR-146a increased from 19-fold up to 100-fold during LPS stimulation, the transfection of a miR-146a mimic into THP-1 cells was examined to determine whether miR-146a alone can induce similar changes in GWB. The results showed transfected miR-146a could produce a comparable increase in the number of GWB and this was accompanied by a reduction in major cytokines/chemokines induced by LPS. These data show that the increase in size and number of GWB may serve as a biomarker for miRNA-mediated gene regulation, and miR-146a has a significant role in the regulation of LPS-induced cytokine production in THP-1 cells.


Assuntos
Estruturas Citoplasmáticas/imunologia , Imunidade Inata/imunologia , MicroRNAs/metabolismo , Monócitos/imunologia , Transdução de Sinais/imunologia , Proteínas Argonautas , Biomarcadores/metabolismo , Linhagem Celular , Quimiocinas/biossíntese , Estruturas Citoplasmáticas/efeitos dos fármacos , RNA Helicases DEAD-box/deficiência , RNA Helicases DEAD-box/metabolismo , Fator de Iniciação 2 em Eucariotos/deficiência , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Imunidade Inata/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , MicroRNAs/genética , Modelos Imunológicos , Monócitos/citologia , Monócitos/efeitos dos fármacos , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transfecção , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA