Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Aktuelle Urol ; 55(2): 134-138, 2024 Apr.
Artigo em Alemão | MEDLINE | ID: mdl-38537660

RESUMO

In case of newly diagnosed metastasised hormone-sensitive prostate cancer, there are two indications for local treatment: to reduce or avoid local symptoms thus improving quality of life and prolonging survival in a subset of patients. Local treatment must be seen in a multimodal treatment approach and is not a replacement of systemic treatment. In the following review, we highlight the current literature for the different local treatment options, radiotherapy and radical prostatectomy, and try to give indications for which option should be offered to which patient.


Assuntos
Neoplasias da Próstata , Qualidade de Vida , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/diagnóstico , Próstata , Prostatectomia , Hormônios
2.
Stem Cell Res Ther ; 11(1): 105, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32138773

RESUMO

BACKGROUND: The use of mesenchymal stromal cells (MSCs) for research and clinical application is hampered by cellular heterogeneity and replicative senescence. Generation of MSC-like cells from induced pluripotent stem cells (iPSCs) may circumvent these limitations, and such iPSC-derived MSCs (iMSCs) are already tested in clinical trials. So far, a comparison of MSCs and iMSCs was particularly addressed in bulk culture. Despite the high hopes in cellular therapy, only little is known how the composition of different subclones changes in these cell preparations during culture expansion. METHODS: In this study, we used multicolor lentiviral genetic barcoding for the marking of individual cells within cell preparations. Based on this, we could track the clonal composition of syngenic MSCs, iPSCs, and iMSCs during culture expansion. Furthermore, we analyzed DNA methylation patterns at senescence-associated genomic regions by barcoded bisulfite amplicon sequencing. The proliferation and differentiation capacities of individual subclones within MSCs and iMSCs were investigated with limiting dilution assays. RESULTS: Overall, the clonal composition of primary MSCs and iPSCs gradually declined during expansion. In contrast, iMSCs became oligoclonal early during differentiation, indicating that they were derived from few individual iPSCs. This dominant clonal outgrowth of iMSCs was not associated with changes in chromosomal copy number variation. Furthermore, clonal dynamics were not clearly reflected by stochastically acquired DNA methylation patterns. Limiting dilution assays revealed that iMSCs are heterogeneous in colony formation and in vitro differentiation potential, while this was even more pronounced in primary MSCs. CONCLUSIONS: Our results indicate that the subclonal diversity of MSCs and iPSCs declines gradually during in vitro culture, whereas derivation of iMSCs may stem from few individual iPSCs. Differentiation regimen needs to be further optimized to achieve homogeneous differentiation of iPSCs towards iMSCs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Diferenciação Celular , Células Cultivadas , Variações do Número de Cópias de DNA
3.
Stem Cell Reports ; 14(2): 201-209, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31983656

RESUMO

Long-term culture of primary cells is characterized by functional and secretory changes, which ultimately result in replicative senescence. It is largely unclear how the metabolome of cells changes during replicative senescence and if such changes are consistent across different cell types. We have directly compared culture expansion of primary mesenchymal stromal cells (MSCs) and induced pluripotent stem cell-derived MSCs (iMSCs) until they reached growth arrest. Both cell types acquired similar changes in morphology, in vitro differentiation potential, senescence-associated ß-galactosidase, and DNA methylation. Furthermore, MSCs and iMSCs revealed overlapping gene expression changes, particularly in functional categories related to metabolic processes. We subsequently compared the metabolomes of MSCs and iMSCs and observed overlapping senescence-associated changes in both cell types, including downregulation of nicotinamide ribonucleotide and upregulation of orotic acid. Taken together, replicative senescence is associated with a highly reproducible senescence-associated metabolomics phenotype, which may be used to monitor the state of cellular aging.


Assuntos
Senescência Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Metabolômica , Idoso , Células Cultivadas , Senescência Celular/genética , Metabolismo Energético , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Redes e Vias Metabólicas , Metaboloma/genética , Pessoa de Meia-Idade , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA