Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
J Appl Toxicol ; 42(12): 2005-2015, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35894097

RESUMO

The extraction of bitumen from surface mining in the Athabasca Oil Sands Region (AOSR) produces large quantities of oil sands process-affected water (OSPW) that needs to be stored in settling basins near extraction sites. Chemical constituents of OSPW are known to impair bone health in some organisms, which can lead to increased fracture risk and lower reproductive fitness. Naphthenic acid fraction components (NAFCs) are thought to be among the most toxic class of compounds in OSPW; however, the effect of NAFCs on osteoblast development is largely unknown. In this study, we demonstrate that NAFCs from OSPW inhibit osteoblast differentiation and deposition of extracellular matrix, which is required for bone formation. Extracellular matrix deposition was inhibited in osteoblasts exposed to 12.5-125 mg/L of NAFC for 21 days. We also show that components within NAFCs inhibit the expression of gene markers of osteoblast differentiation and function, namely, alkaline phosphatase (Alp), osteocalcin, and collagen type 1 alpha 1 (Col1a1). These effects were partially mediated by the induction of glucocorticoid receptor (GR) activity; NAFC induces the expression of the GR activity marker genes Sgk1 (12.5 mg/L) and p85a (125 mg/L) and inhibits GR protein (125 mg/L) and Opg RNA (12.5 mg/L) expression. This study provides evidence that NAFC concentrations of 12.5 mg/L and above can directly act on osteoblasts to inhibit bone formation and suggests that NAFCs contain components that can act as GR agonists, which may have further endocrine disrupting effects on exposed wildlife.


Assuntos
Campos de Petróleo e Gás , Poluentes Químicos da Água , Animais , Camundongos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Osteogênese , Ácidos Carboxílicos/química , Água/química , Osteoblastos
2.
Reprod Toxicol ; 111: 59-67, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35588954

RESUMO

While the effects of delta-9-tetrahydrocannabinol (THC), the psychoactive component of cannabis, have been studied extensively in the central nervous system, there is limited knowledge about its effects on the female reproductive system. The aim of this study was to assess the effect of THC on the expression and secretion of the angiogenic factor vascular endothelial growth factor (VEGF) in the ovary, and to determine if these effects were mediated by prostaglandins. Spontaneously immortalized rat granulosa cells (SIGCs) were exposed to THC for 24 h. Gene expression, proliferation and TNFα-induced apoptosis were evaluated in the cells and concentrations of VEGF and prostaglandin E2 (PGE2), a known regulator of VEGF production, were determined in the media. To evaluate the role of the prostanoid pathway, cells were pre-treated with cyclooxygenase (COX) inhibitors prior to THC exposure. THC-exposed SIGCs had a significant increase in VEGF and PGE2 secretion, along with an increase in proliferation and cell survival when challenged with an apoptosis-inducing factor. Pre-treatment with COX inhibitors reversed the THC-induced increase in both PGE2 and VEGF secretion. Alterations in granulosa cell function, such as the ones observed after THC exposure, may impact essential ovarian processes including folliculogenesis and ovulation, which could in turn affect female reproductive health and fertility. With the ongoing increase in cannabis use and potency, further study on the impact of cannabis and its constituents on female reproductive health is required.


Assuntos
Cannabis , Fator A de Crescimento do Endotélio Vascular , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Dronabinol/toxicidade , Feminino , Células da Granulosa/metabolismo , Prostaglandinas E , Ratos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular
3.
Toxicol Appl Pharmacol ; 441: 115970, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35259347

RESUMO

Exposure to compounds present in petroleum and wastewaters from oil and gas extraction sites in the Alberta Oil Sands Region can impair reproductive health. It has been established that acid extractable organics found in oil sands process-affected water (OSPW) such as naphthenic acids (NA-fraction components; NAFC) can adversely affect reproductive outcomes. We have shown that NAFC exposure results in a significant upregulation of GDF15 in placental trophoblasts, a cellular stress marker known to be involved in human embryonic development and necessary for the maintenance of pregnancy. However, little is known regarding the mechanism(s) underlying NAFC-induced increases in GDF15 production during early placentation. The goal of this study was to examine the effects of NAFC exposure on the regulation of critical transcription factors of GDF15 in extravillous trophoblast cells. Of these transcription factors, inflammatory mediators including prostaglandins have been reported to inhibit proliferation and migration of trophoblast cells in vitro. Hence, the secondary goal of this study was to determine whether inflammation mediated through prostaglandin production is critical to GDF15 secretion. HTR-8/SVneo cells were exposed to an NAFC for 6 and 24 h to assess the expression of key transcriptional regulators, GDF15 secretion, and prostaglandin (PGE2) output. Treatment with NAFC (125 mg/L only) significantly increased GDF15 expression and secretion in association with upregulation of the transcription factors KLF4, EGR1, ATF3 and TP53. Similarly, PTGS2 (i.e. COX2) expression and PGE2 output were significantly increased at the same concentration. However, co-treatment with a COX2 selective antagonist (SC236) only partially blocked the NAFC-induced increase in PGE2 output and did not block GDF15 expression or secretion. These findings suggest that while NAFC may affect GDF15 production, it is not exclusively a result of prostaglandin-mediated inflammation. This study provides new insights into the mechanisms by which NAFC may adversely affect placental trophoblast cell function in mammals.


Assuntos
Campos de Petróleo e Gás , Poluentes Químicos da Água , Animais , Ácidos Carboxílicos , Ciclo-Oxigenase 2 , Feminino , Fator 15 de Diferenciação de Crescimento/genética , Humanos , Inflamação , Mamíferos , Placenta , Gravidez , Prostaglandinas , Prostaglandinas E/farmacologia , Fatores de Transcrição , Trofoblastos , Água
4.
J Dev Orig Health Dis ; 13(2): 156-160, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34047687

RESUMO

Prenatal exposure to nicotine, tobacco's major addictive constituent, has been shown to reduce birth weight and increases apoptosis, oxidative stress, and mitochondrial dysfunction in the postnatal pancreas. Given that upregulated levels of the pro-oxidative adapter protein p66shc is observed in growth-restricted offspring and is linked to beta-cell apoptosis, the goal of this study was to investigate whether alterations in p66shc expression underlie the pancreatic deficits in nicotine-exposed offspring. Maternal administration of nicotine in rats increased p66shc expression in the neonatal pancreas. Similarly, nicotine treatment augmented p66shc expression in INS-1E pancreatic beta cells. Increased p66shc expression was also associated with decreased histone H3 lysine 9 methylation. Finally, nicotine increased the expression of Kdm4c, a key histone lysine demethylase, and decreased Suv39h1, a critical histone lysine methyltransferase. Collectively, these results suggest that upregulation of p66shc through posttranslational histone modifications may underlie the reported adverse outcomes of nicotine exposure on pancreatic function.


Assuntos
Histonas , Nicotina , Animais , Feminino , Lisina/metabolismo , Metilação , Nicotina/toxicidade , Pâncreas , Gravidez , Ratos , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo
5.
Nat Commun ; 12(1): 5163, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34453052

RESUMO

Obesity results from a caloric imbalance between energy intake, absorption and expenditure. In both rodents and humans, diet-induced thermogenesis contributes to energy expenditure and involves the activation of brown adipose tissue (BAT). We hypothesize that environmental toxicants commonly used as food additives or pesticides might reduce BAT thermogenesis through suppression of uncoupling protein 1 (UCP1) and this may contribute to the development of obesity. Using a step-wise screening approach, we discover that the organophosphate insecticide chlorpyrifos suppresses UCP1 and mitochondrial respiration in BAT at concentrations as low as 1 pM. In mice housed at thermoneutrality and fed a high-fat diet, chlorpyrifos impairs BAT mitochondrial function and diet-induced thermogenesis, promoting greater obesity, non-alcoholic fatty liver disease (NAFLD) and insulin resistance. This is associated with reductions in cAMP; activation of p38MAPK and AMPK; protein kinases critical for maintaining UCP1 and mitophagy, respectively in BAT. These data indicate that the commonly used pesticide chlorpyrifos, suppresses diet-induced thermogenesis and the activation of BAT, suggesting its use may contribute to the obesity epidemic.


Assuntos
Tecido Adiposo Marrom/fisiopatologia , Clorpirifos/metabolismo , Obesidade/fisiopatologia , Praguicidas/metabolismo , Termogênese/efeitos dos fármacos , Quinases Proteína-Quinases Ativadas por AMP , Animais , Clorpirifos/toxicidade , AMP Cíclico/metabolismo , Metabolismo Energético , Contaminação de Alimentos/análise , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/induzido quimicamente , Obesidade/metabolismo , Praguicidas/toxicidade , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Can J Physiol Pharmacol ; 99(9): 983-988, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33517848

RESUMO

Fluoxetine, a commonly prescribed selective serotonin reuptake inhibitor antidepressant, has been shown to increase hepatic lipid accumulation, a key factor in the development of nonalcoholic fatty liver disease. Interestingly, fluoxetine has also been reported to increase peripheral serotonin synthesis. As emerging evidence suggests that serotonin may be involved in the development of nonalcoholic fatty liver disease, we sought to determine if fluoxetine-induced hepatic lipid accumulation is mediated via altered serotonin production. Fluoxetine treatment increased lipid accumulation in association with increased mRNA expression of tryptophan hydroxylase 1 (Tph1, serotonin biosynthetic enzyme) and intracellular serotonin content. Serotonin alone had a similar effect to increase lipid accumulation. Moreover, blocking serotonin synthesis reversed the fluoxetine-induced increases in lipid accumulation. Collectively, these data suggest that fluoxetine-induced lipid accumulation can be mediated, in part, by elevated serotonin production. These results suggest a potential therapeutic target to ameliorate the adverse metabolic effects of fluoxetine exposure.


Assuntos
Fluoxetina/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Serotonina/biossíntese , Linhagem Celular Tumoral , Humanos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Triptofano Hidroxilase/genética
7.
J Dev Orig Health Dis ; 12(6): 865-869, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33407988

RESUMO

With the legalization of marijuana (Cannabis sativa) and increasing use during pregnancy, it is important to understand its impact on exposed offspring. Specifically, the effects of Δ-9-tetrahydrocannabinol (Δ9-THC), the major psychoactive component of cannabis, on fetal ovarian development and long-term reproductive health are not fully understood. The aim of this study was to assess the effect of prenatal exposure to Δ9-THC on ovarian health in adult rat offspring. At 6 months of age, Δ9-THC-exposed offspring had accelerated folliculogenesis with apparent follicular development arrest, but no persistent effects on circulating steroid levels. Ovaries from Δ9-THC-exposed offspring had reduced blood vessel density in association with decreased expression of the pro-angiogenic factor VEGF and its receptor VEGFR-2, as well as an increase in the anti-angiogenic factor thrombospondin 1 (TSP-1). Collectively, these data suggest that exposure to Δ9-THC during pregnancy alters follicular dynamics during postnatal life, which may have long-lasting detrimental effects on female reproductive health.


Assuntos
Dronabinol/efeitos adversos , Folículo Ovariano/efeitos dos fármacos , Indutores da Angiogênese/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Modelos Animais de Doenças , Dronabinol/metabolismo , Dronabinol/farmacologia , Feminino , Exposição Materna/efeitos adversos , Folículo Ovariano/fisiopatologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Ratos Wistar/metabolismo
8.
J Appl Toxicol ; 41(9): 1367-1379, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33314207

RESUMO

Worldwide demand for petroleum products has resulted in increased oil and gas activities in many countries. Conventional and unconventional oil and gas extraction, production, and transport lead to increased levels of petroleum-derived polycyclic aromatic hydrocarbons (PAHs) in the environment. PAH exposure has profound effects on reproduction by affecting pathways involved in placental trophoblast cell function and impairing normal placental development and function-key contributors to reproductive success. However, other components found in petroleum and wastewaters from oil and gas extraction, including the sulfur-containing heterocyclic aromatic compounds such as dibenzothiophene (DBT) and its alkylated derivatives, may also impact reproductive success. The goal of this study was to examine the effect of exposure to DBT, a compound commonly detected in the environment, and one of its alkylated analogues, 2,4,7-trimethyldibenzothiophene (2,4,7-DBT), on steroidogenic and angiogenic pathways critical for mammalian development in placental trophoblast cells (HTR-8/SVneo cells). 2,4,7-DBT but not DBT increased estradiol output in association with increased tube-like formation (surrogate for angiogenesis). These changes in angiogenesis did not appear to be related to altered expression of the key placental angiogenic gene targets (ANGPTL4, VEGFA, and PGF). Neither compound showed a concentration related effect on progesterone synthesis or its receptor expression. Our results suggest that 2,4,7-DBT can disrupt key pathways important for placental trophoblast function and highlight the importance of determining the impact of exposure to both parent and alkylated compounds. Further, these data suggest that exposure to sulfur-containing heterocyclic aromatic compounds may lead to placental dysfunction and impact reproductive success at environmentally relevant levels.


Assuntos
Placenta/efeitos dos fármacos , Tiofenos/toxicidade , Trofoblastos/efeitos dos fármacos , Alquilação , Proteína 4 Semelhante a Angiopoietina/efeitos dos fármacos , Proteína 4 Semelhante a Angiopoietina/genética , Linhagem Celular , Disruptores Endócrinos/toxicidade , Estradiol/metabolismo , Feminino , Humanos , Indústrias , Neovascularização Fisiológica/efeitos dos fármacos , Petróleo , Gravidez , Prostaglandinas F/metabolismo , Tiofenos/química , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/genética
9.
Biol Lett ; 16(9): 20200361, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32961088

RESUMO

E-cigarette use (vaping) during pregnancy has been increasing, and the potential exists for the developing brain in utero to be exposed to chemical constituents in the vape. Vapes come in over 7000 unique flavours with and without nicotine, and while nicotine is a known neurotoxicant, the effects of vape flavouring alone, in the absence of nicotine, on brain function are not well understood. Here, we performed a screen of vape aerosol extracts (VAEs) to determine the potential for prenatal neurotoxicity using the zebrafish embryo photomotor response (PMR)-a translational biosensor of neurobehavioural effects. We screened three commonly used aerosolized vape liquids (flavoured and flavourless) either with or without nicotine. No neurobehavioural effects were detected in flavourless, nicotine-free VAEs, while the addition of nicotine to this VAE dulled sensory perception. Flavoured nicotine-free VAEs also dulled sensory perception and caused hyperactivity in zebrafish embryos. The combination of flavour and nicotine produced largely additive effects. Flavoured VAEs without nicotine had similar neuroactive potency to nicotine. Together, using zebrafish PMR as a high throughput translational behavioural model for prenatal exposure, our results demonstrate that e-cigarette flavourants that we screened elicit neurobehavioural effects worthy of further investigation for long-term neurotoxic potential and also have the potential to modulate nicotine impact on the developing brain.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Animais , Nicotina/toxicidade , Percepção , Peixe-Zebra
10.
Toxicol Sci ; 178(1): 3-15, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32766841

RESUMO

Cigarette smoking during pregnancy is associated with numerous obstetrical, fetal, and developmental complications, as well as an increased risk of adverse health consequences in the adult offspring. Nicotine replacement therapy and electronic nicotine delivery systems (e-cigarettes) have been developed as a pharmacotherapy for smoking cessation and are considered safer alternatives for women to smoke during pregnancy. The safety of nicotine replacement therapy use during pregnancy has been evaluated in a limited number of short-term human trials, but there is currently no information on the long-term effects of developmental nicotine exposure in humans. However, animal studies suggest that nicotine alone may be a key chemical responsible for many of the long-term effects associated with maternal cigarette smoking on the offspring and increases the risk of adverse neurobehavioral outcomes, dysmetabolism, respiratory illness, and cancer. This review will examine the long-term effects of fetal and neonatal nicotine exposure on postnatal health.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Neoplasias/etiologia , Nicotina , Efeitos Tardios da Exposição Pré-Natal , Abandono do Hábito de Fumar , Animais , Criança , Feminino , Humanos , Recém-Nascido , Nicotina/toxicidade , Gravidez , Dispositivos para o Abandono do Uso de Tabaco
11.
Sci Rep ; 10(1): 544, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953475

RESUMO

1 in 5 women report cannabis use during pregnancy, with nausea cited as their primary motivation. Studies show that (-)-△9-tetrahydrocannabinol (Δ9-THC), the major psychoactive ingredient in cannabis, causes fetal growth restriction, though the mechanisms are not well understood. Given the critical role of the placenta to transfer oxygen and nutrients from mother, to the fetus, any compromise in the development of fetal-placental circulation significantly affects maternal-fetal exchange and thereby, fetal growth. The goal of this study was to examine, in rats, the impact of maternal Δ9-THC exposure on fetal development, neonatal outcomes, and placental development. Dams received a daily intraperitoneal injection (i.p.) of vehicle control or Δ9-THC (3 mg/kg) from embryonic (E)6.5 through 22. Dams were allowed to deliver normally to measure pregnancy and neonatal outcomes, with a subset sacrificed at E19.5 for placenta assessment via immunohistochemistry and qPCR. Gestational Δ9-THC exposure resulted in pups born with symmetrical fetal growth restriction, with catch up growth by post-natal day (PND)21. During pregnancy there were no changes to maternal food intake, maternal weight gain, litter size, or gestational length. E19.5 placentas from Δ9-THC-exposed pregnancies exhibited a phenotype characterized by increased labyrinth area, reduced Epcam expression (marker of labyrinth trophoblast progenitors), altered maternal blood space, decreased fetal capillary area and an increased recruitment of pericytes with greater collagen deposition, when compared to vehicle controls. Further, at E19.5 labyrinth trophoblast had reduced glucose transporter 1 (GLUT1) and glucocorticoid receptor (GR) expression in response to Δ9-THC exposure. In conclusion, maternal exposure to Δ9-THC effectively compromised fetal growth, which may be a result of the adversely affected labyrinth zone development. These findings implicate GLUT1 as a Δ9-THC target and provide a potential mechanism for the fetal growth restriction observed in women who use cannabis during pregnancy.


Assuntos
Vasos Sanguíneos/efeitos dos fármacos , Dronabinol/efeitos adversos , Retardo do Crescimento Fetal/induzido quimicamente , Placenta/irrigação sanguínea , Animais , Molécula de Adesão da Célula Epitelial/metabolismo , Feminino , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/patologia , Retardo do Crescimento Fetal/fisiopatologia , Transportador de Glucose Tipo 1/metabolismo , Placenta/efeitos dos fármacos , Gravidez , Ratos , Receptores de Glucocorticoides/metabolismo , Trofoblastos/efeitos dos fármacos , Trofoblastos/patologia
12.
J Dev Orig Health Dis ; 11(6): 623-631, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31806062

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) may contribute to obesity. Childhood obesity is a strong predictor of adult obesity and morbidity; however, the relationship between PAHs and obesity in young children (e.g., aged 3-5) has not been studied. We examined the association between urinary PAH metabolites and measures of obesity in children. We analyzed data from 3667 children aged 3-18 years who participated in the Canadian Health Measures Survey (CHMS, 2009-2015). We ran separate multivariable linear models to estimate the association between quartiles of PAH metabolites and each of body mass index (BMI) percentile, waist circumference (WC), and waist-to-height ratio (WHtR) in the total population, as well as in the age subgroups 3-5, 6-11, and 12-18, adjusting for age, sex, ethnicity, education, income quintile, diet, creatinine, and exposure to environmental tobacco smoke. A multinomial logistic regression model estimated adjusted odds ratios for risk of central obesity. BMI, WC, and WHtR were positively associated with total PAH and naphthalene metabolites in the total population aged 3-18 and in age groups 6-11 and 12-18. In 3-5 year olds, WHtR, but not BMI, was significantly associated with total PAH, naphthalene, and phenanthrene metabolites. Overall, those in the highest quartile for naphthalene or total PAH metabolites had three times greater odds of having central obesity compared with those in the lowest quartile. Urinary PAH metabolites are associated with WHtR, an indicator of central obesity and predictor of health risks associated with obesity, in children as young as 3-5.


Assuntos
Exposição Ambiental/efeitos adversos , Poluentes Ambientais/urina , Obesidade Abdominal/epidemiologia , Obesidade Infantil/epidemiologia , Hidrocarbonetos Policíclicos Aromáticos/urina , Adolescente , Índice de Massa Corporal , Canadá/epidemiologia , Criança , Pré-Escolar , Estudos Transversais , Poluentes Ambientais/efeitos adversos , Feminino , Inquéritos Epidemiológicos/estatística & dados numéricos , Humanos , Masculino , Obesidade Abdominal/etiologia , Obesidade Abdominal/metabolismo , Obesidade Abdominal/urina , Obesidade Infantil/etiologia , Obesidade Infantil/metabolismo , Obesidade Infantil/urina , Hidrocarbonetos Policíclicos Aromáticos/metabolismo
13.
Reprod Toxicol ; 90: 126-133, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31520688

RESUMO

There is considerable concern that naphthenic acids (NA) related to oil extraction can negatively impact reproduction in mammals yet the mechanisms are unknown. Since placental dysfunction is central to many adverse pregnancy outcomes, the goal of this study was to determine the effects of NA exposure on placental trophoblast cell function. Htr-8/SVneo cells were exposed to a commercial technical NA mixture (Sigma-Aldrich) for 24 h to assess steroid production, markers of inflammation and oxidative stress. NA treatment significantly altered steroid production; progesterone was decreased at all doses tested, whereas there was a significant increase in testosterone production (125 mg/L only). There were no effects on estradiol production. In addition, NA treatment resulted in increased markers of inflammation (interleukin 1ß and prostaglandin E2) and oxidative damage to lipids and nucleic acids. These findings suggest that it is biologically plausible that NA exposure may contribute to placental dysfunction.


Assuntos
Ácidos Carboxílicos/toxicidade , Trofoblastos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Linhagem Celular , Dinoprostona/metabolismo , Feminino , Humanos , Interleucina-1beta/genética , Campos de Petróleo e Gás , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Progesterona/metabolismo , Saúde Reprodutiva , Testosterona/metabolismo , Trofoblastos/metabolismo
14.
Reprod Toxicol ; 87: 21-31, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31054322

RESUMO

While studies have demonstrated that the main psychoactive component of cannabis, Δ9-tetrahydrocannabinol (Δ9-THC) alone induces placental insufficiency and fetal growth restriction, the underlying mechanisms remain elusive. Given that both (i) endoplasmic reticulum (ER) stress in pregnancy and (ii) gestational exposure to Δ9-THC leads to placental deficiency, we hypothesized that Δ9-THC may directly induce placental ER stress, influencing trophoblast gene expression and mitochondrial function. BeWo human trophoblast cells treated with Δ9-THC (3-30 µM) led to a dose-dependent increase in all ER stress markers and CHOP; these effects could be blocked with CB1R/CB2R antagonists. Moreover, expression of ER stress-sensitive genes ERRγ, VEGFA, and FLT-1 were increased by Δ9-THC, and abrogated with the ER stress inhibitor TUDCA. Δ9-THC also diminished mitochondrial respiration and ATP-coupling due to decreased abundance of mitochondrial chain complex proteins. Collectively, these findings indicate that Δ9-THC can directly augment ER stress resulting in aberrant placental gene expression and impaired mitochondrial function.


Assuntos
Dronabinol/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Alucinógenos/toxicidade , Mitocôndrias/efeitos dos fármacos , Trofoblastos/efeitos dos fármacos , Antagonistas de Receptores de Canabinoides/farmacologia , Linhagem Celular Tumoral , Humanos , Mitocôndrias/metabolismo , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/antagonistas & inibidores , Trofoblastos/metabolismo
15.
Bioorg Med Chem Lett ; 29(11): 1395-1398, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30952594

RESUMO

The development of aqueous Wittig methodology for the synthesis of α-methylstilbenes using tripropylphosphine-derived phosphonium salts is described. The Wittig olefination reaction was high yielding and allowed isolation of stilbenes by simple filtration and washing with water. The novel phosphonium salts employed were accessed via a highly efficient, regioselective addition of hydrogen bromide to styrenes. Application of the α-methylstilbenes toward the synthesis of a collection of stilbenoid-triazoles is reported and their inhibition of CYP450 19A1 (aromatase) investigated. The overall structure-activity profile provided additional evidence on the aryl halide-ketone bioisostere hypothesis and identified 6c as a potent inhibitor of aromatase in vitro (Ki = 8 nM).


Assuntos
Inibidores da Aromatase/farmacologia , Aromatase/metabolismo , Desenvolvimento de Medicamentos , Estilbenos/farmacologia , Inibidores da Aromatase/síntese química , Inibidores da Aromatase/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Estilbenos/síntese química , Estilbenos/química , Relação Estrutura-Atividade , Água/química
16.
J Ovarian Res ; 12(1): 3, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30646937

RESUMO

There has been increasing interest in the role of endocannabinoids as critical modulators of the female reproductive processes. Endocannabinoids are natural ligands of cannabinoid, vanilloid, and peroxisome proliferator-activated receptors. Together with their receptors, enzymes and downstream signaling targets, they form the endocannabinoid system (ECS). While the ECS is known to modulate pain and neurodevelopment, it is also known to impact the female reproductive system where it affects folliculogenesis, oocyte maturation, and ovarian endocrine secretion. In addition, the ECS affects oviductal embryo transport, implantation, uterine decidualization and placentation. There is a complex interplay between the ECS and the hypothalamic-pituitary-ovarian axis, and an intricate crosstalk between the ECS and steroid hormone production and secretion. Exogenous cannabinoids, derived from plants such as Cannabis sativa, are also ligands for cannabinoid receptors. These have been shown to have clinical outcomes related to ECS dysregulation, including multiple sclerosis, Alzheimer's disease, and amyotrophic lateral sclerosis, along with adverse effects on female reproduction. The aim of this review is to describe and discuss data from human, animal, and in vitro studies that support the important role of the endocannabinoid system in female reproductive tissues and processes. In particular, we will discuss some of the mechanisms by which endocannabinoid signaling can affect ovarian function in both physiological and pathophysiological states.


Assuntos
Endocanabinoides/metabolismo , Doenças Ovarianas/metabolismo , Ovário/metabolismo , Animais , Feminino , Humanos , Sistema Hipotálamo-Hipofisário , Reprodução
17.
Reprod Toxicol ; 81: 115-121, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30048688

RESUMO

Despite evidence that maternal smoking is associated with numerous adverse outcomes, 10-35% of women still smoke during pregnancy. Recently, many smokers have turned to electronic cigarettes (e-cigarettes) as a smoking cessation tool. However, there is considerable uncertainty regarding their safety for use during pregnancy. The goal of this study was to examine the effects of e-cigarette vapour on placental trophoblast function. HTR-8/SVneo cells were exposed to unflavored e-cigarette vapour-conditioned media with and without nicotine to assess cell viability, proliferation, migration (wound healing assay), invasion (transwell extracellular matrix invasion assay), and tube formation, a surrogate for angiogenesis. While there was no effect on cell viability, proliferation or migration (all p > 0.05), e-cigarette conditioned media significantly reduced trophoblast invasion and tube formation; these effects could not be solely attributed to the presence of nicotine. These results suggest that an evaluation of the safety of e-cigarette use during pregnancy is urgently required.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Fumaça/efeitos adversos , Trofoblastos/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Nicotina/efeitos adversos , Placenta/citologia , Gravidez , Trofoblastos/fisiologia
18.
Toxicol Sci ; 164(1): 72-84, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29617909

RESUMO

Globally, approximately 10%-25% of women smoke during pregnancy. Since nicotine is highly addictive, women may use nicotine-containing products like nicotine replacement therapies for smoking cessation, but the long-term consequences of early life exposure to nicotine remain poorly defined. Our laboratory has previously demonstrated that maternal nicotine exposed (MNE) rat offspring exhibit hypertriglyceridemia due to increased hepatic de novo lipogenesis. Hypertriglyceridemia may also be attributed to impaired white adipose tissue (WAT) lipid storage; however, the effects of MNE on WAT are not completely understood. We hypothesize that nicotine-induced alterations in adipose function (eg, lipid storage) underlie dyslipidemia in MNE adults. Female 6-month-old rats exposed to nicotine during gestation and lactation exhibited significantly decreased visceral adipocyte cell area by 40%, attributed, in part, to a 3-fold increase in adipose triglyceride lipase (ATGL) protein expression compared with vehicle. Given ATGL has antioxidant properties and in utero nicotine exposure promotes oxidative stress in various tissues, we next investigated if there was evidence of increased oxidative stress in MNE WAT. At both 3 weeks and 6 months, MNE offspring expressed 37%-48% higher protein levels of superoxide dismutase-1 and -2 in WAT. Since oxidative stress can induce inflammation, we examined the inflammatory profile of WAT and found increased expression of cytokines (interleukin-1ß, tumor necrosis factor α, and interleukin-6) by 44%-61% at 6 months. Collectively, this suggests that the expression of WAT ATGL may be induced to counter MNE-induced oxidative stress and inflammation. However, higher levels of ATGL would further promote lipolysis in WAT, culminating in impaired lipid storage and long-term dyslipidemia.


Assuntos
Tecido Adiposo Branco/efeitos dos fármacos , Antioxidantes/metabolismo , Lipase/genética , Exposição Materna/efeitos adversos , Nicotina/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/enzimologia , Tecido Adiposo Branco/embriologia , Tecido Adiposo Branco/enzimologia , Tecido Adiposo Branco/crescimento & desenvolvimento , Animais , Proteínas de Escherichia coli/efeitos dos fármacos , Feminino , Lipogênese/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/enzimologia , Efeitos Tardios da Exposição Pré-Natal/genética , Ratos Wistar
19.
Artigo em Inglês | MEDLINE | ID: mdl-29103948

RESUMO

INTRODUCTION: Metabolic effects of anthropogenic chemicals are a focus of environmental health research due to the significant public health implications. Conventional glucose tolerance tests (GTTs) do not generally examine multiple metabolic, inflammatory, and endocrine factors; however, responses to exogenous glucose can provide insight into mode-of-action and disease processes, and warrant consideration in developing models for toxicological assessment. METHODS: GTTs were conducted on male Fischer-344 rats to 1) assess the feasibility of measuring multiple analytes in small sample volumes; 2) monitor analyte response; and 3) determine whether route of glucose delivery (oral, OGTT vs. intraperitoneal, IPGTT, 2g/kg) modified responses. Plasma samples (0, 30, 60, 90, 120min post-glucose administration) were analyzed for triglycerides; hormones involved in glucose regulation (insulin, glucagon, glucagon-like peptide (GLP)-1)), energy homeostasis (ghrelin, leptin), and stress response (corticosterone); cytokines (TNF, IL-6); and markers of endothelial dysfunction (VEGF, PAI-1). RESULTS: Glucose peaked at 30min during the IPGTT but not the OGTT (p<0.001), a trend paralleled by insulin, while triglycerides decreased following the IPGTT (transient) and the OGTT (sustained). GLP-1 was transiently decreased while ghrelin and leptin levels increased progressively during the IPGTT alone. Corticosterone was increased during both the IPGTT (sustained) and OGTT (transient). TNF and VEGF were unchanged, while PAI-1 and IL-6 were not detected. Increasing the oral glucose dose to 3g/kg did not significantly alter profiles. DISCUSSION: Results confirm the feasibility of measuring multiple analytes during a GTT, and indicate that administration of glucose can impact metabolic and endocrine profiles in a route-dependent manner.


Assuntos
Biomarcadores/metabolismo , Glucose/administração & dosagem , Inflamação/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Administração Oral , Animais , Glicemia/efeitos dos fármacos , Corticosterona/metabolismo , Grelina/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Teste de Tolerância a Glucose/métodos , Injeções Intraperitoneais/métodos , Insulina/metabolismo , Leptina/metabolismo , Masculino , Ratos , Ratos Endogâmicos F344 , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
J Appl Toxicol ; 37(12): 1517-1526, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28681937

RESUMO

Smoking throughout pregnancy can lead to complications during gestation, parturition and neonatal development. Thus, nicotine replacement therapies are a popular alternative thought to be safer than cigarettes. However, recent studies in rodents suggest that fetal and neonatal nicotine exposure alone results in cardiac dysfunction and high blood pressure. While it is well known that perinatal nicotine exposure causes increased congenital abnormalities, the mechanisms underlying longer-term deficits in cardiac function are not completely understood. Recently, our laboratory demonstrated that nicotine impairs placental protein disulfide isomerase (PDI) triggering an increase in endoplasmic reticulum stress, leading us to hypothesize that this may also occur in the heart. At 3 months of age, nicotine-exposed offspring had 45% decreased PDI levels in the absence of endoplasmic reticulum stress. Given the association of PDI and superoxide dismutase enzymes, we further observed that antioxidant superoxide dismutase-2 levels were reduced by 32% in these offspring concomitant with a 26-49% decrease in mitochondrial complex proteins (I, II, IV and V) and tissue inhibitor of metalloproteinase-4, a critical matrix metalloprotease for cardiac contractility and health. Collectively, this study suggests that perinatal nicotine exposure decreases PDI, which can promote oxidative damage and mitochondrial damage, associated with a premature decline in cardiac function.


Assuntos
Exposição Materna/efeitos adversos , Mitocôndrias Cardíacas/efeitos dos fármacos , Miocárdio/enzimologia , Nicotina/toxicidade , Efeitos Tardios da Exposição Pré-Natal/etiologia , Isomerases de Dissulfetos de Proteínas/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Proteínas Mitocondriais/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/enzimologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA