Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 180: 170-180, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36191869

RESUMO

In the current study, the concept of multiparticulate drug delivery systems (MDDS) was applied to tablets intended for the amorphisation of supersaturated granular ASDs in situ, i.e. amorphisation within the final dosage form by microwave irradiation. The MDDS concept was hypothesised to ensure geometric and structural stability of the dosage form and to improve the in vitro disintegration and dissolution characteristics. Granules were prepared in two sizes (small and large) containing the crystalline drug celecoxib (CCX) and polyvinylpyrrolidone/vinyl acetate copolymer (PVP/VA) at a 50 % w/w drug load as well as sodium dihydrogen phosphate monohydrate as the microwave absorbing excipient. The granules were subsequently embedded in an extra-granular tablet phase composed of either the filler microcrystalline cellulose (MCC) or mannitol (MAN), as well as the disintegrant crospovidone and the lubricant magnesium stearate. The tensile strength and disintegration time were investigated prior to and after 10 min of microwave irradiation (800 and 1000 W) and the formed ASDs were characterised by X-ray powder diffraction and modulated differential scanning calorimetry. Additionally, the internal structure was elucidated by X-ray micro-Computed Tomography (XµCT) and, finally, the dissolution performance of selected tablets was investigated. The MDDS tablets displayed no geometrical changes after microwave irradiation, however, the tensile strength and disintegration time generally increased. Complete amorphisation of CCX was achieved only for the MCC-based tablets at a power input of 1000 W, while MAN-based tablets displayed partial amorphisation independent of power input. The complete amorphisation of CCX was associated with the fusion of individual ASD granules within the tablets, which negatively impacted the subsequent disintegration and dissolution performance. For these tablets, supersaturation was only observed after 60 min. On the other hand, the partially amorphised MDDS tablets displayed complete disintegration during the dissolution experiments, resulting in a fast onset of supersaturation within 5 min and an approx. 3.5-fold degree of supersaturation within the experimental timeframe (3 h). Overall, the MDDS concept was shown to potentially be a feasible dosage form for in situ amorphisation, however, there is still room for improvement to obtain a both fully amorphous and disintegrating system.


Assuntos
Química Farmacêutica , Povidona , Humanos , Química Farmacêutica/métodos , Microtomografia por Raio-X , Comprimidos/química , Povidona/química , Excipientes/química , Celecoxib/química , Manitol/química , Sistemas de Liberação de Medicamentos , Solubilidade
2.
Int J Pharm ; 626: 122115, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35985526

RESUMO

This study investigated the ability of in situ amorphisation using microwave irradiation in order to prepare highly supersaturated ASDs, i.e. ASDs with drug loads higher than the saturation solubility in the polymer at ambient temperature. For this purpose, compacts containing the crystalline drug celecoxib (CCX) and polyvinylpyrrolidone (PVP), polyvinylpyrrolidone-vinyl acetate copolymer (PVP/VA), or polyvinyl acetate (PVAc), were prepared at drug loads between 30 and 90 % w/w. Sodium dihydrogen phosphate (NaH2PO4) monohydrate was included in all compacts, as a source of water, to facilitate the dielectric heating of the compacts upon dehydration during microwave irradiation. After processing, the samples were analysed towards their solid state using X-ray powder diffraction (XRPD) and modulated differential scanning calorimetry (mDSC). Complete amorphisation of CCX was achieved across all the investigated polymers and with a maximal drug load of 90, 80, and 50 % w/w in PVP, PVP/VA, and PVAc, respectively. These drug loads corresponded to a 2.3-, 2.4-, and 10.0-fold supersaturation in the investigated polymers at ambient temperature. However, dissolution experiments with the in situ prepared ASDs in fasted state simulated intestinal fluid (FaSSIF), showed a lower initial drug release (0-2 h) compared to equivalent physical mixtures of crystalline CCX and polymers or crystalline CCX alone. The lower drug release rate was explained by the fusion of individual drug and polymer particles during microwave irradiation and, subsequently, a lack of disintegration of the monolithic ASDs. Nevertheless, supersaturation of CCX in FaSSIF was achieved with the in situ amorphised ASDs with PVP and PVP/VA, albeit only after 3-24 h. Overall, the present study confirmed that it is feasible to prepare supersaturated ASDs in situ. However, in the current experimental setup, the monolithic nature of the resulting ASDs is considered a limiting factor in the practical applicability of this preparation method, due to limited disintegration and the associated negative effect on the drug release.


Assuntos
Micro-Ondas , Povidona , Celecoxib/química , Polímeros/química , Polivinil , Povidona/química , Solubilidade , Água
3.
Eur J Pharm Sci ; 163: 105858, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33887432

RESUMO

Amorphisation within the final dosage form, i.e. in situ amorphisation, seeks to circumvent the potential stability issues associated with poorly soluble drugs in amorphous solid dispersions (ASDs). Microwave irradiation has previously been shown to enable in situ preparation of ASDs, when a high amount of microwave absorbing water was introduced into the final dosage form by conditioning at high relative humidity. In this study, an alternative to this conditioning step was investigated by introducing crystal water in form of sodium dihydrogen phosphate (NaH2PO4) di-, and monohydrate, in compacts prepared with 30 % w/w celecoxib (CCX) in polyvinylpyrrolidone K12 (PVP). As controls, compacts prepared with NaH2PO4 anhydrate and without NaH2PO4 were included in the study. The quantification of amorphous CCX after microwave irradiation showed an increase in CCX amorphicity for compacts containing NaH2PO4 di-, and monohydrate with increasing irradiation time. Complete amorphisation of CCX in compacts containing NaH2PO4 di-, and monohydrate was observed after 6 min, while no appreciable amorphisation was observed for the control compacts containing NaH2PO4 anhydrate and without NaH2PO4. Modulated differential scanning calorimetric analysis revealed that a homogenous ASD was formed after 12 min and 6 min for compacts containing NaH2PO4 di-, and monohydrate, respectively. Thermal gravimetric analysis indicated that NaH2PO4 monohydrate showed higher dehydration rates compared to the dihydrate, which in turn resulted in higher compact temperatures, and overall increased the rate of amorphisation and reduced the microwave irradiation time necessary to achieve a homogenous ASD. The present results confirmed the suitability of NaH2PO4 di- and monohydrate as alternative sources of water, the primary microwave absorbing material, for in situ microwave amorphisation. The use of crystalline hydrates as water reservoirs for in situ amorphisation circumvents the time-consuming and highly impractical conditioning step previously reported in order to achieve complete amorphisation. Additionally, it allows for easier and more accurate adjustment of the compacts water content, which directly affects the temperature reached during microwave irradiation, and thus, the rate of amorphisation.


Assuntos
Micro-Ondas , Preparações Farmacêuticas , Varredura Diferencial de Calorimetria , Cristalização , Povidona , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA