Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biophys Chem ; 306: 107174, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211368

RESUMO

The progressive aggregation of misfolded proteins is the underlying molecular cause of numerous pathologies including Parkinson's disease and injection and transthyretin amyloidosis. A growing body of evidence indicates that protein deposits detected in organs and tissues of patients diagnosed with such pathologies contain fragments of lipid membranes. In vitro experiments also showed that lipid membranes could strongly change the aggregation rate of amyloidogenic proteins, as well as alter the secondary structure and toxicity of oligomers and fibrils formed in their presence. In this review, the effect of large unilamellar vesicles (LUVs) composed of zwitterionic and anionic phospholipids on the aggregation rate of insulin, lysozyme, transthyretin (TTR) and α- synuclein (α-syn) will be discussed. The manuscript will also critically review the most recent findings on the lipid-induced changes in the secondary structure of protein oligomers and fibrils, as well as reveal the extent to which lipids could alter the toxicity of protein aggregates formed in their presence.


Assuntos
Amiloidose , Doença de Parkinson , Humanos , Agregados Proteicos , Fosfolipídeos/metabolismo , alfa-Sinucleína/química , Doença de Parkinson/metabolismo , Amiloidose/metabolismo , Proteínas Amiloidogênicas , Amiloide/química
2.
Protein Sci ; 32(12): e4838, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37967043

RESUMO

Transthyretin (TTR) amyloidosis is a progressive disease characterized by an abrupt aggregation of misfolded protein in multiple organs and tissues TTR is a tetrameric protein expressed in the liver and choroid plexus. Protein misfolding triggers monomerization of TTR tetramers. Next, monomers assemble forming oligomers and fibrils. Although the secondary structure of TTR fibrils is well understood, there is very little if anything is known about the structural organization of TTR oligomers. To end this, we used nano-infrared spectroscopy, also known as atomic force microscopy infrared (AFM-IR) spectroscopy. This emerging technique can be used to determine the secondary structure of individual amyloid oligomers and fibrils. Using AFM-IR, we examined the secondary structure of TTR oligomers formed at the early (3-6 h), middle (9-12 h), and late (28 h) of protein aggregation. We found that aggregating, TTR formed oligomers (Type 1) that were dominated by α-helix (40%) and ß-sheet (~30%) together with unordered protein (30%). Our results showed that fibril formation was triggered by another type of TTR oligomers (Type 2) that appeared at 9 h. These new oligomers were primarily composed of parallel ß-sheet (55%), with a small amount of antiparallel ß-sheet, α-helix, and unordered protein. We also found that Type 1 oligomers were not toxic to cells, whereas TTR fibrils formed at the late stages of protein aggregation were highly cytotoxic. These results show the complexity of protein aggregation and highlight the drastic difference in the protein oligomers that can be formed during such processes.


Assuntos
Pré-Albumina , Agregados Proteicos , Pré-Albumina/química , Microscopia de Força Atômica , Amiloide/química , Análise Espectral
3.
J Phys Chem Lett ; 14(49): 10886-10893, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38033106

RESUMO

Transthyretin (TTR) is a small tetrameric protein that aggregates, forming highly toxic oligomers and fibrils. In the blood and cerebrospinal fluid, TTR can interact with various biomolecules, phospho- and sphingolipids, and cholesterol on the red blood cell plasma membrane. However, the role of these molecules in TTR aggregation remains unclear. In this study, we investigated the extent to which phosphatidylcholine (PC), sphingomyelin (SM), and cholesterol (Cho), important components of plasma membranes, could alter the rate of TTR aggregation. We found that PC and SM inhibited TTR aggregation whereas Cho strongly accelerated it. The presence of these lipids during the stage of protein aggregation uniquely altered the morphology and secondary structure of the TTR fibrils, which changed the toxicity of these protein aggregates. These results suggest that interactions of TTR with red blood cells, whose membranes are rich with these lipids, can trigger irreversible aggregation of TTR and cause transthyretin amyloidosis.


Assuntos
Neuropatias Amiloides Familiares , Amiloide , Humanos , Amiloide/química , Esfingomielinas , Pré-Albumina/química , Pré-Albumina/metabolismo , Neuropatias Amiloides Familiares/metabolismo , Agregados Proteicos , Colesterol
4.
Chem Phys Lipids ; 257: 105350, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37858615

RESUMO

Transthyretin (TTR) is a small, ß-sheet-rich tetrameric protein that transports thyroid hormone thyroxine and retinol. Phospholipids, including phosphatidic acid (PA), can uniquely alter the stability of amyloidogenic proteins. However, the role of PA in TTR aggregation remains unclear. In this study, we investigated the effect of saturation of fatty acids (FAs) in PA on the rate of TTR aggregation. We also reveal the extent to which PAs with different length and saturation of FAs altered the morphology and secondary structure of TTR aggregates. Our results showed that TTR aggregation in the equimolar presence of PAs with different length and saturation of FAs yielded structurally and morphologically different fibrils compared to those formed in the lipid-free environment. We also found that PAs drastically lowered the toxicity of TTR aggregates formed in the presence of this phospholipid. These results shed light on the role of PA in the stability of TTR and transthyretin amyloidosis.


Assuntos
Amiloide , Ácidos Graxos , Pré-Albumina , Ácidos Fosfatídicos , Proteínas Amiloidogênicas
5.
Int J Biol Macromol ; 253(Pt 7): 127241, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37804888

RESUMO

Transthyretin amyloidosis is a severe pathology characterized by the progressive accumulation of transthyretin (TTR) in various organs and tissues. This highly conserved through vertebrate evolution protein transports thyroid hormone thyroxine. In our bodies, TTR can interact with a large number of molecules, including ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) that are broadly used as food supplies. In this study, we investigated the effect of ω-3 and ω-6 PUFAs, as well as their fully saturated analog, on TTR aggregation. Our results showed that both ω-3 and ω-6 PUFAs strongly decreased the rate of TTR aggregation. We also found that in the presence of PUFAs, TTR formed morphologically different fibrils compared to the lipid-free environment. Nano-Infrared imaging revealed that these fibrils had drastically different secondary structures compared to the secondary structure of TTR aggregates formed in the PUFAs-free environment. Furthermore, TTR fibrils formed in the presence of ω-3 and ω-6 PUFAs exerted significantly lower cell toxicity compared to the fibrils formed in the absence of fatty acids.


Assuntos
Neuropatias Amiloides Familiares , Pré-Albumina , Humanos , Pré-Albumina/química , Amiloide/química , Neuropatias Amiloides Familiares/metabolismo , Neuropatias Amiloides Familiares/patologia , Estrutura Secundária de Proteína , Ácidos Graxos Insaturados/farmacologia
6.
ACS Chem Neurosci ; 14(18): 3499-3506, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37676231

RESUMO

The progressive accumulation of transthyretin (TTR), a small protein that transports thyroxine, in various organs and tissues is observed upon transthyretin amyloidosis, a severe pathology that affects the central, peripheral, and autonomic nervous systems. Once expressed in the liver and choroid plexus, TTR is secreted into the bloodstream and cerebrospinal fluid. In addition to thyroxine, TTR interacts with a large number of molecules, including retinol-binding protein and lipids. In this study, we examined the extent to which phosphatidylserine (PS), a phospholipid that is responsible for the recognition of apoptotic cells by macrophages, could alter the stability of TTR. Using thioflavin T assay, we investigated the rates of TTR aggregation in the presence of PS with different lengths and saturation of fatty acids (FAs). We found that all analyzed lipids decelerated the rate of TTR aggregation. We also used a set of biophysical methods to investigate the extent to which the presence of PS altered the morphology and secondary structure of TTR aggregates. Our results showed that the length and saturation of fatty acids in PS uniquely altered the morphology and secondary structure of TTR fibrils. As a result, TTR fibrils that were formed in the presence of PS with different lengths and saturation of FAs exerted significantly lower cell toxicity compared with the TTR aggregates grown in the lipid-free environment. These findings help to reveal the role of PS in transthyretin amyloidosis and determine the role of the length and saturation of FAs in PS on the morphology and secondary structure of TTR fibrils.


Assuntos
Neuropatias Amiloides Familiares , Pré-Albumina , Humanos , Ácidos Graxos , Fosfatidilserinas , Tiroxina
7.
ACS Chem Neurosci ; 14(18): 3551-3559, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37682720

RESUMO

Abrupt aggregation of misfolded proteins is the underlying molecular cause of numerous pathologies including diabetes type 2 and injection amyloidosis. Although the exact cause of this process is unclear, a growing body of evidence suggests that protein aggregation is linked to a high protein concentration and the presence of lipid membranes. Endosomes are cell organelles that often possess high concentrations of proteins due to their uptake from the extracellular space. However, the role of endosomes in amyloid pathologies remains unclear. In this study, we used a set of biophysical methods to determine the role of bis(monoacylglycero)phosphate (BMP), the major lipid constituent of late endosomes on the aggregation properties of insulin. We found that both saturated and unsaturated BMP accelerated protein aggregation. However, very little if any changes in the secondary structure of insulin fibrils grown in the presence of BMP were observed. Therefore, no changes in the toxicity of these aggregates compared to the fibrils formed in the lipid-free environment were observed. We also found that the toxicity of insulin oligomers formed in the presence of a 77:23 mol/mol ratio of BMP/PC, which represents the lipid composition of late endosomes, was slightly higher than the toxicity of insulin oligomers formed in the lipid-free environment. However, the toxicity of mature insulin fibrils formed in the presence of BMP/PC mixture was found to be lower or similar to the toxicity of insulin fibrils formed in the lipid-free environment. These results suggest that late endosomes are unlikely to be the source of highly toxic protein aggregates if amyloid proteins aggregate in them.


Assuntos
Diabetes Mellitus Tipo 2 , Insulina , Humanos , Agregados Proteicos , Proteínas Amiloidogênicas , Endossomos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA