Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(25): e2218896120, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37327313

RESUMO

Programmed ferroptotic death eliminates cells in all major organs and tissues with imbalanced redox metabolism due to overwhelming iron-catalyzed lipid peroxidation under insufficient control by thiols (Glutathione (GSH)). Ferroptosis has been associated with the pathogenesis of major chronic degenerative diseases and acute injuries of the brain, cardiovascular system, liver, kidneys, and other organs, and its manipulation offers a promising new strategy for anticancer therapy. This explains the high interest in designing new small-molecule-specific inhibitors against ferroptosis. Given the role of 15-lipoxygenase (15LOX) association with phosphatidylethanolamine (PE)-binding protein 1 (PEBP1) in initiating ferroptosis-specific peroxidation of polyunsaturated PE, we propose a strategy of discovering antiferroptotic agents as inhibitors of the 15LOX/PEBP1 catalytic complex rather than 15LOX alone. Here we designed, synthesized, and tested a customized library of 26 compounds using biochemical, molecular, and cell biology models along with redox lipidomic and computational analyses. We selected two lead compounds, FerroLOXIN-1 and 2, which effectively suppressed ferroptosis in vitro and in vivo without affecting the biosynthesis of pro-/anti-inflammatory lipid mediators in vivo. The effectiveness of these lead compounds is not due to radical scavenging or iron-chelation but results from their specific mechanisms of interaction with the 15LOX-2/PEBP1 complex, which either alters the binding pose of the substrate [eicosatetraenoyl-PE (ETE-PE)] in a nonproductive way or blocks the predominant oxygen channel thus preventing the catalysis of ETE-PE peroxidation. Our successful strategy may be adapted to the design of additional chemical libraries to reveal new ferroptosis-targeting therapeutic modalities.


Assuntos
Ferroptose , Proteína de Ligação a Fosfatidiletanolamina , Glutationa/metabolismo , Ferro/metabolismo , Peroxidação de Lipídeos , Lipídeos , Oxirredução , Proteína de Ligação a Fosfatidiletanolamina/antagonistas & inibidores
2.
Bioorg Med Chem ; 46: 116349, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34500187

RESUMO

Human epithelial 15-lipoxygenase-2 (h15-LOX-2, ALOX15B) is expressed in many tissues and has been implicated in atherosclerosis, cystic fibrosis and ferroptosis. However, there are few reported potent/selective inhibitors that are active ex vivo. In the current work, we report newly discovered molecules that are more potent and structurally distinct from our previous inhibitors, MLS000545091 and MLS000536924 (Jameson et al, PLoS One, 2014, 9, e104094), in that they contain a central imidazole ring, which is substituted at the 1-position with a phenyl moiety and with a benzylthio moiety at the 2-position. The initial three molecules were mixed-type, non-reductive inhibitors, with IC50 values of 0.34 ±â€¯0.05 µM for MLS000327069, 0.53 ±â€¯0.04 µM for MLS000327186 and 0.87 ±â€¯0.06 µM for MLS000327206 and greater than 50-fold selectivity versus h5-LOX, h12-LOX, h15-LOX-1, COX-1 and COX-2. A small set of focused analogs was synthesized to demonstrate the validity of the hits. In addition, a binding model was developed for the three imidazole inhibitors based on computational docking and a co-structure of h15-LOX-2 with MLS000536924. Hydrogen/deuterium exchange (HDX) results indicate a similar binding mode between MLS000536924 and MLS000327069, however, the latter restricts protein motion of helix-α2 more, consistent with its greater potency. Given these results, we designed, docked, and synthesized novel inhibitors of the imidazole scaffold and confirmed our binding mode hypothesis. Importantly, four of the five inhibitors mentioned above are active in an h15-LOX-2/HEK293 cell assay and thus they could be important tool compounds in gaining a better understanding of h15-LOX-2's role in human biology. As such, a suite of similar pharmacophores that target h15-LOX-2 both in vitro and ex vivo are presented in the hope of developing them as therapeutic agents.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Inibidores de Lipoxigenase/farmacologia , Relação Dose-Resposta a Droga , Humanos , Cinética , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Estrutura Molecular , Relação Estrutura-Atividade
3.
Ann Neurol ; 84(6): 854-872, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30294906

RESUMO

OBJECTIVES: N-acetylcysteine (NAC) is a clinically approved thiol-containing redox modulatory compound currently in trials for many neurological and psychiatric disorders. Although generically labeled as an "antioxidant," poor understanding of its site(s) of action is a barrier to its use in neurological practice. Here, we examined the efficacy and mechanism of action of NAC in rodent models of hemorrhagic stroke. METHODS: Hemin was used to model ferroptosis and hemorrhagic stroke in cultured neurons. Striatal infusion of collagenase was used to model intracerebral hemorrhage (ICH) in mice and rats. Chemical biology, targeted lipidomics, arachidonate 5-lipoxygenase (ALOX5) knockout mice, and viral-gene transfer were used to gain insight into the pharmacological targets and mechanism of action of NAC. RESULTS: NAC prevented hemin-induced ferroptosis by neutralizing toxic lipids generated by arachidonate-dependent ALOX5 activity. NAC efficacy required increases in glutathione and is correlated with suppression of reactive lipids by glutathione-dependent enzymes such as glutathione S-transferase. Accordingly, its protective effects were mimicked by chemical or molecular lipid peroxidation inhibitors. NAC delivered postinjury reduced neuronal death and improved functional recovery at least 7 days following ICH in mice and can synergize with clinically approved prostaglandin E2 (PGE2 ). INTERPRETATION: NAC is a promising, protective therapy for ICH, which acted to inhibit toxic arachidonic acid products of nuclear ALOX5 that synergized with exogenously delivered protective PGE2 in vitro and in vivo. The findings provide novel insight into a target for NAC, beyond the generic characterization as an antioxidant, resulting in neuroprotection and offer a feasible combinatorial strategy to optimize efficacy and safety in dosing of NAC for treatment of neurological disorders involving ferroptosis such as ICH. Ann Neurol 2018;84:854-872.


Assuntos
Acetilcisteína/uso terapêutico , Araquidonato 5-Lipoxigenase/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Dinoprostona/metabolismo , Sequestradores de Radicais Livres/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Acetilcisteína/farmacologia , Animais , Araquidonato 5-Lipoxigenase/genética , Proteínas de Transporte de Cátions/genética , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Células Cultivadas , Hemorragia Cerebral/induzido quimicamente , Hemorragia Cerebral/complicações , Colagenases/toxicidade , Citoplasma/metabolismo , Modelos Animais de Doenças , Eicosanoides/metabolismo , Feminino , Sequestradores de Radicais Livres/farmacologia , Glutationa/metabolismo , Hemina/toxicidade , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Acidente Vascular Cerebral/etiologia , Resultado do Tratamento
4.
J Clin Invest ; 128(10): 4639-4653, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30198910

RESUMO

Ferroptosis is a death program executed via selective oxidation of arachidonic acid-phosphatidylethanolamines (AA-PE) by 15-lipoxygenases. In mammalian cells and tissues, ferroptosis has been pathogenically associated with brain, kidney, and liver injury/diseases. We discovered that a prokaryotic bacterium, Pseudomonas aeruginosa, that does not contain AA-PE can express lipoxygenase (pLoxA), oxidize host AA-PE to 15-hydroperoxy-AA-PE (15-HOO-AA-PE), and trigger ferroptosis in human bronchial epithelial cells. Induction of ferroptosis by clinical P. aeruginosa isolates from patients with persistent lower respiratory tract infections was dependent on the level and enzymatic activity of pLoxA. Redox phospholipidomics revealed elevated levels of oxidized AA-PE in airway tissues from patients with cystic fibrosis (CF) but not with emphysema or CF without P. aeruginosa. We believe that the evolutionarily conserved mechanism of pLoxA-driven ferroptosis may represent a potential therapeutic target against P. aeruginosa-associated diseases such as CF and persistent lower respiratory tract infections.


Assuntos
Apoptose , Fibrose Cística/metabolismo , Fosfatidiletanolaminas/metabolismo , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Mucosa Respiratória/metabolismo , Infecções Respiratórias/metabolismo , Linhagem Celular , Fibrose Cística/microbiologia , Fibrose Cística/patologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Humanos , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/patogenicidade , Mucosa Respiratória/microbiologia , Mucosa Respiratória/fisiologia , Infecções Respiratórias/microbiologia , Infecções Respiratórias/patologia
5.
Arterioscler Thromb Vasc Biol ; 36(10): 2068-77, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27470510

RESUMO

OBJECTIVE: Dietary supplementation with polyunsaturated fatty acids has been widely used for primary and secondary prevention of cardiovascular disease in individuals at risk; however, the cardioprotective benefits of polyunsaturated fatty acids remain controversial because of lack of mechanistic and in vivo evidence. We present direct evidence that an omega-6 polyunsaturated fatty acid, dihomo-γ-linolenic acid (DGLA), exhibits in vivo cardioprotection through 12-lipoxygenase (12-LOX) oxidation of DGLA to its reduced oxidized lipid form, 12(S)-hydroxy-8Z,10E,14Z-eicosatrienoic acid (12(S)-HETrE), inhibiting platelet activation and thrombosis. APPROACH AND RESULTS: DGLA inhibited ex vivo platelet aggregation and Rap1 activation in wild-type mice, but not in mice lacking 12-LOX expression (12-LOX(-/-)). Similarly, wild-type mice treated with DGLA were able to reduce thrombus growth (platelet and fibrin accumulation) after laser-induced injury of the arteriole of the cremaster muscle, but not 12-LOX(-/-) mice, supporting a 12-LOX requirement for mediating the inhibitory effects of DGLA on platelet-mediated thrombus formation. Platelet activation and thrombus formation were also suppressed when directly treated with 12(S)-HETrE. Importantly, 2 hemostatic models, tail bleeding and arteriole rupture of the cremaster muscle, showed no alteration in hemostasis after 12(S)-HETrE treatment. Finally, the mechanism for 12(S)-HETrE protection was shown to be mediated via a Gαs-linked G-protein-coupled receptor pathway in human platelets. CONCLUSIONS: This study provides the direct evidence that an omega-6 polyunsaturated fatty acid, DGLA, inhibits injury-induced thrombosis through its 12-LOX oxylipin, 12(S)-HETrE, which strongly supports the potential cardioprotective benefits of DGLA supplementation through its regulation of platelet function. Furthermore, this is the first evidence of a 12-LOX oxylipin regulating platelet function in a Gs α subunit-linked G-protein-coupled receptor-dependent manner.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/farmacologia , Araquidonato 12-Lipoxigenase/sangue , Plaquetas/efeitos dos fármacos , Cromograninas/sangue , Fibrinolíticos/farmacologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/sangue , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Trombose/prevenção & controle , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Araquidonato 12-Lipoxigenase/deficiência , Araquidonato 12-Lipoxigenase/genética , Plaquetas/metabolismo , Moléculas de Adesão Celular/sangue , AMP Cíclico/sangue , Proteínas Quinases Dependentes de AMP Cíclico/sangue , Modelos Animais de Doenças , Fibrinolíticos/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/sangue , Oxirredução , Fosfoproteínas/sangue , Fosforilação , Agregação Plaquetária/efeitos dos fármacos , Complexo Shelterina , Transdução de Sinais/efeitos dos fármacos , Proteínas de Ligação a Telômeros/sangue , Trombose/sangue , Trombose/enzimologia , Trombose/genética , Fatores de Tempo
6.
Diabetologia ; 58(3): 549-57, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25417214

RESUMO

AIMS/HYPOTHESIS: Islet inflammation leads to loss of functional pancreatic beta cell mass. Increasing evidence suggests that activation of 12-lipoxygenase leads to inflammatory beta cell loss. This study evaluates new specific small-molecule inhibitors of 12-lipoxygenase for protecting rodent and human beta cells from inflammatory damage. METHODS: Mouse beta cell lines and mouse and human islets were treated with inflammatory cytokines IL-1ß, TNFα and IFNγ in the absence or presence of novel selective 12-lipoxygenase inhibitors. Glucose-stimulated insulin secretion (GSIS), gene expression, cell survival and 12-S-hydroxyeicosatetraenoic acid (12-S-HETE) levels were evaluated using established methods. Pharmacokinetic analysis was performed with the lead inhibitor in CD1 mice. RESULTS: Inflammatory cytokines led to the loss of human beta cell function, elevated cell death, increased inflammatory gene expression and upregulation of 12-lipoxygenase expression and activity (measured by 12-S-HETE generation). Two 12-lipoxygenase inhibitors, Compounds 5 and 9, produced a concentration-dependent reduction of stimulated 12-S-HETE levels. GSIS was preserved in the presence of the 12-lipoxygenase inhibitors. 12-Lipoxygenase inhibition preserved survival of primary mouse and human islets. When administered orally, Compound 5 reduced plasma 12-S-HETE in CD1 mice. Compounds 5 and 9 preserved the function and survival of human donor islets exposed to inflammatory cytokines. CONCLUSIONS/INTERPRETATION: Selective inhibition of 12-lipoxygenase activity confers protection to beta cells during exposure to inflammatory cytokines. These concept validation studies identify 12-lipoxygenase as a promising target in the prevention of loss of functional beta cells in diabetes.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Inibidores Enzimáticos/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Humanos , Técnicas In Vitro , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Fator de Necrose Tumoral alfa/metabolismo
7.
PLoS One ; 9(8): e104094, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25111178

RESUMO

Lipoxygenase (LOX) enzymes catalyze the hydroperoxidation of arachidonic acid and other polyunsaturated fatty acids to hydroxyeicosatetraenoic acids with varying positional specificity to yield important biological signaling molecules. Human epithelial 15-lipoxygenase-2 (15-LOX-2) is a highly specific LOX isozyme that is expressed in epithelial tissue and whose activity has been correlated with suppression of tumor growth in prostate and other epithelial derived cancers. Despite the potential utility of an inhibitor to probe the specific role of 15-LOX-2 in tumor progression, no such potent/specific 15-LOX-2 inhibitors have been reported to date. This study employs high throughput screening to identify two novel, specific 15-LOX-2 inhibitors. MLS000545091 is a mixed-type inhibitor of 15-LOX-2 with a Ki of 0.9+/-0.4 µM and has a 20-fold selectivity over 5-LOX, 12-LOX, 15-LOX-1, COX-1, and COX-2. MLS000536924 is a competitive inhibitor with a Ki of 2.5+/-0.5 µM and also possesses 20-fold selectivity toward 15-LOX-2 over the other oxygenases, listed above. Finally, neither compound possesses reductive activity towards the active-site ferrous ion.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Ensaios de Triagem em Larga Escala , Inibidores de Lipoxigenase/farmacologia , Araquidonato 15-Lipoxigenase/química , Avaliação Pré-Clínica de Medicamentos , Epitélio/enzimologia , Humanos , Cinética , Inibidores de Lipoxigenase/química , Inibidores de Lipoxigenase/metabolismo , Simulação de Acoplamento Molecular , Conformação Proteica
8.
Biochemistry ; 53(27): 4407-19, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24893149

RESUMO

5-Lipoxygenase (5-LOX) reacts with arachidonic acid (AA) to first generate 5(S)-hydroperoxy-6(E),8(Z),11(Z),14(Z)-eicosatetraenoic acid [5(S)-HpETE] and then an epoxide from 5(S)-HpETE to form leukotriene A4, from a single polyunsaturated fatty acid. This work investigates the kinetic mechanism of these two processes and the role of ATP in their activation. Specifically, it was determined that epoxidation of 5(S)-HpETE (dehydration of the hydroperoxide) has a rate of substrate capture (Vmax/Km) significantly lower than that of AA hydroperoxidation (oxidation of AA to form the hydroperoxide); however, hyperbolic kinetic parameters for ATP activation indicate a similar activation for AA and 5(S)-HpETE. Solvent isotope effect results for both hydroperoxidation and epoxidation indicate that a specific step in its molecular mechanism is changed, possibly because of a lowering of the dependence of the rate-limiting step on hydrogen atom abstraction and an increase in the dependency on hydrogen bond rearrangement. Therefore, changes in ATP concentration in the cell could affect the production of 5-LOX products, such as leukotrienes and lipoxins, and thus have wide implications for the regulation of cellular inflammation.


Assuntos
Trifosfato de Adenosina/química , Araquidonato 5-Lipoxigenase/química , Ácido Araquidônico/química , Leucotrienos/química , Regulação Alostérica , Cálcio/química , Ativação Enzimática , Compostos de Epóxi/química , Humanos , Leucotrieno A4/química , Peróxidos/química , Estereoisomerismo , Viscosidade
9.
J Med Chem ; 57(2): 495-506, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24393039

RESUMO

Human lipoxygenases (LOXs) are a family of iron-containing enzymes which catalyze the oxidation of polyunsaturated fatty acids to provide the corresponding bioactive hydroxyeicosatetraenoic acid (HETE) metabolites. These eicosanoid signaling molecules are involved in a number of physiologic responses such as platelet aggregation, inflammation, and cell proliferation. Our group has taken a particular interest in platelet-type 12-(S)-LOX (12-LOX) because of its demonstrated role in skin diseases, diabetes, platelet hemostasis, thrombosis, and cancer. Herein, we report the identification and medicinal chemistry optimization of a 4-((2-hydroxy-3-methoxybenzyl)amino)benzenesulfonamide-based scaffold. Top compounds, exemplified by 35 and 36, display nM potency against 12-LOX, excellent selectivity over related lipoxygenases and cyclooxygenases, and possess favorable ADME properties. In addition, both compounds inhibit PAR-4 induced aggregation and calcium mobilization in human platelets and reduce 12-HETE in ß-cells.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Derivados de Benzeno/síntese química , Inibidores de Lipoxigenase/síntese química , Sulfonamidas/síntese química , Animais , Derivados de Benzeno/química , Derivados de Benzeno/farmacologia , Disponibilidade Biológica , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Cálcio/metabolismo , Humanos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/enzimologia , Inibidores de Lipoxigenase/química , Inibidores de Lipoxigenase/farmacologia , Camundongos , Agregação Plaquetária/efeitos dos fármacos , Relação Estrutura-Atividade , Sulfonamidas/química , Sulfonamidas/farmacologia
10.
Mol Cell Endocrinol ; 358(1): 88-95, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22502743

RESUMO

Elevated cellular reactive species, which can be produced by diabetic serum conditions such as elevated inflammatory cytokines, lipotoxicity or glucotoxicity contribute to islet beta cell dysfunction and cell death. Cellular pathways that result in beta cell oxidative stress are poorly resolved. In this study, stimulation of human donor islets, primary mouse islets or homogeneous beta cell lines with a cocktail of inflammatory cytokines (TNFα, IL-1ß, and INFγ) significantly induced NADPH oxidase-1 (NOX-1) gene expression (p<0.05). This pro-inflammatory cytokine cocktail concomitantly induced loss of islet glucose stimulated insulin response (p<0.05), elevated expression of MCP-1 (p<0.01), increased cellular reactive oxygen species (ROS) and induced cell death. Inhibitors of NADPH oxidase, apocynin and diphenyleneiodonium, and a dual selective NOX1/4 inhibitor, blocked ROS generation (p<0.01) and induction of MCP-1 (p<0.05) by pro-inflammatory cytokines in beta cells. It has previously been reported that pro-inflammatory cytokine stimulation induces 12-lipoxygenase (12-LO) expression in human islets. 12-Hydroxyeicosatetraenoic acid (12-HETE), a product of 12-LO activity, stimulated NOX-1 expression in human islets (p<0.05). A novel selective inhibitor of 12-LO blocked induction of NOX-1, production of ROS and pro-caspase 3 cleavage by pro-inflammatory cytokines in INS-1 beta cells (p<0.01). Inhibition was not seen with a structurally related but inactive analog. Importantly, islets from human type 2 diabetic donors have an elevated expression of NOX-1 (p<0.05). This study describes an integrated pathway in beta cells that links beta cell dysfunction induced by pro-inflammatory cytokines with 12-lipoxygenase and NADPH oxidase (NOX-1) activation. Inhibitors of this pathway may provide a new therapeutic strategy to preserve beta cell mass in diabetes.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Células Secretoras de Insulina/metabolismo , NADH NADPH Oxirredutases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Acetofenonas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Quimiocina CCL2/biossíntese , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/antagonistas & inibidores , Ácido Eicosapentaenoico/farmacologia , Ativação Enzimática , Humanos , Células Secretoras de Insulina/patologia , Interferon gama/farmacologia , Interleucina-1beta/farmacologia , Camundongos , NADH NADPH Oxirredutases/antagonistas & inibidores , NADPH Oxidase 1 , Oniocompostos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
11.
J Med Chem ; 53(20): 7392-404, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-20866075

RESUMO

There are a variety of lipoxygenases in the human body (hLO), each having a distinct role in cellular biology. Human reticulocyte 15-lipoxygenase-1 (15-hLO-1), which catalyzes the dioxygenation of 1,4-cis,cis-pentadiene-containing polyunsaturated fatty acids, is implicated in a number of diseases including cancer, atherosclerosis, and neurodegenerative conditions. Despite the potential therapeutic relevance of this target, few inhibitors have been reported that are both potent and selective. To this end, we have employed a quantitative high-throughput (qHTS) screen against ∼74000 small molecules in search of reticulocyte 15-hLO-1 selective inhibitors. This screen led to the discovery of a novel chemotype for 15-hLO-1 inhibition, which displays nM potency and is >7500-fold selective against the related isozymes, 5-hLO, platelet 12-hLO, epithelial 15-hLO-2, ovine cyclooxygenase-1, and human cyclooxygenase-2. In addition, kinetic experiments were performed which indicate that this class of inhibitor is tight binding, reversible, and appears not to reduce the active-site ferric ion.


Assuntos
Inibidores de Lipoxigenase , Oxidiazóis/síntese química , Reticulócitos/enzimologia , Alcinos/síntese química , Alcinos/química , Araquidonato 15-Lipoxigenase/química , Benzoatos/síntese química , Benzoatos/química , Sítios de Ligação , Ésteres , Humanos , Cinética , Modelos Moleculares , Naftalenos/síntese química , Naftalenos/química , Oxidiazóis/química , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Sulfetos/síntese química , Sulfetos/química , Tiofenos/síntese química , Tiofenos/química
12.
Biochemistry ; 48(36): 8721-30, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19645454

RESUMO

Allosteric regulation of human lipoxygenase (hLO) activity has recently been implicated in the cellular biology of prostate cancer. In the current work, we present isotope effect, pH, and substrate inhibitor data of epithelial 15-hLO-2, which probe the allosteric effects on its mechanistic behavior. The Dk(cat)/KM for 15-hLO-2, with AA and LA as substrate, is large indicating hydrogen atom abstraction is the principle rate-determining step, involving a tunneling mechanism for both substrates. For AA, there are multiple rate determining steps (RDS) at both high and low temperatures, with both diffusion and hydrogen bonding rearrangements contributing at high temperature, but only hydrogen bonding rearrangements contributing at low temperature. The observed kinetic dependency on the hydrogen bonding rearrangement is eliminated upon addition of the allosteric effector, 13-(S)-hydroxyoctadecadienoic acid (13-HODE), and no allosteric effects were seen on diffusion or hydrogen atom abstraction. The (k(cat)/KM)AA/(k(cat)/KM)LA ratio was observed to have a pH dependence, which was fit with a titration curve (pKa = 7.7), suggesting the protonation of a histidine residue, which could hydrogen bond with the carboxylate of 13-HODE. Assuming this interaction, 13-HODE was docked to the solvent exposed histidines of a 15-hLO-2 homology model and found to bind well with H627, suggesting a potential location for the allosteric site. Utilizing d31-LA as an inhibitor, it was demonstrated that the binding of d31-LA to the allosteric site changes the conformation of 15-hLO-2 such that the affinity for substrate increases. This result suggests that allosteric binding locks the enzyme into a catalytically competent state, which facilitates binding of LA and decreases the (k(cat)/KM)AA/(k(cat)/KM)LA ratio. Finally, the magnitude of the 13-HODE KD for 15-hLO-2 is over 200-fold lower than that of 13-HODE for 15-hLO-1, changing the substrate specificity of 15-hLO-2 to 1.9. This would alter the LO product distribution and increase the production of the pro-tumorigenic, 13-HODE, possibly representing a pro-tumorigenic feedback loop for 13-HODE and 15-hLO-2.


Assuntos
Sítio Alostérico , Araquidonato 15-Lipoxigenase/química , Araquidonato 15-Lipoxigenase/metabolismo , Ácido Araquidônico/química , Ácido Araquidônico/metabolismo , Ligação Competitiva , Medição da Troca de Deutério , Células Epiteliais/enzimologia , Histidina/química , Histidina/metabolismo , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Inibidores de Lipoxigenase , Masculino , Modelos Moleculares , Próstata/citologia , Próstata/enzimologia , Ligação Proteica , Solventes/química , Homologia Estrutural de Proteína , Especificidade por Substrato , Espectrometria de Massas em Tandem
13.
Biochemistry ; 48(26): 6259-67, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19469483

RESUMO

Human reticulocyte 15-lipoxygenase-1 (15-hLO-1) and human platelet 12-lipoxygenase (12-hLO) have been implicated in a number of diseases, with differences in their relative activity potentially playing a central role. In this work, we characterize the catalytic mechanism of these two enzymes with arachidonic acid (AA) as the substrate. Using variable-temperature kinetic isotope effects (KIE) and solvent isotope effects (SIE), we demonstrate that both k(cat)/K(M) and k(cat) for 15-hLO-1 and 12-hLO involve multiple rate-limiting steps that include a solvent-dependent step and hydrogen atom abstraction. A relatively low k(cat)/K(M) KIE of 8 was determined for 15-hLO-1, which increases to 18 upon the addition of the allosteric effector molecule, 12-hydroxyeicosatetraenoic acid (12-HETE), indicating a tunneling mechanism. Furthermore, the addition of 12-HETE lowers the observed k(cat)/K(M) SIE from 2.2 to 1.4, indicating that the rate-limiting contribution from a solvent sensitive step in the reaction mechanism of 15-hLO-1 has decreased, with a concomitant increase in the C-H bond abstraction contribution. Finally, the allosteric binding of 12-HETE to 15-hLO-1 decreases the K(M)[O(2)] for AA to 15 microM but increases the K(M)[O(2)] for linoleic acid (LA) to 22 microM, such that the k(cat)/K(M)[O(2)] values become similar for both substrates (approximately 0.3 s(-1) microM(-1)). Considering that the oxygen concentration in cancerous tissue can be less than 5 microM, this result may have cellular implications with respect to the substrate specificity of 15-hLO-1.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Ácido Araquidônico/metabolismo , Biocatálise , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/química , Regulação Alostérica , Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/genética , Plaquetas/enzimologia , Isótopos de Carbono/química , Humanos , Cinética , Leucotrienos/química , Ácido Linoleico/química , Ácidos Linoleicos/química , Peróxidos Lipídicos/química , Modelos Químicos , Oxigênio/química , Proteínas Recombinantes/química , Reticulócitos/enzimologia , Solventes/química , Temperatura
14.
Org Biomol Chem ; 6(22): 4242-52, 2008 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-18972057

RESUMO

Lipoxygenases catalyse the oxidation of polyunsaturated fatty acids and have been invoked in many diseases including cancer, atherosclerosis and Alzheimer's disease. Currently, no X-ray structures are available with substrate or substrate analogues bound in a productive conformation. Such structures would be very useful for examining interactions between substrate and active site residues. Reported here are the syntheses of linoleic acid analogues containing a sulfur atom at the 11 or 14 positions. The key steps in the syntheses were the incorporation of sulfur using nucleophilic attack of metallated alkynes on electrophilic sulfur compounds and the subsequent stereospecific tantalum-mediated reduction of the alkynylsulfide to the cis-alkenylsulfide. Kinetic assays performed with soybean lipoxygenase-1 showed that both 11-thialinoleic acid and 14-thialinoleic acid were competitive inhibitors with respect to linoleic acid with K(i) values of 22 and 35 microM, respectively. On the other hand, 11-thialinoleic acid was a noncompetitive inhibitor with respect to arachidonic acid with K(is) and K(ii) values of 48 and 36 microM, respectively. 11-Thialinoleic acid was also a noncompetitive inhibitor of human 15-lipoxygenase-1 with arachidonic acid (K(is) = 11.4 microM, K(ii) = 18.1 microM) or linoleic acid as substrate (K(is) = 20.1 microM, K(ii) = 20.0 microM), and a competitive inhibitor of human 12-lipoxygenase with arachidonic acid as substrate (K(i) = 2.5 microM). The presence of inhibitor did not change the regioselectivity of soybean lipoxygenase-1, human 12- or 15-lipoxygenase-1.


Assuntos
Glycine max/enzimologia , Ácido Linoleico/síntese química , Ácido Linoleico/farmacologia , Ácidos Linoleicos/síntese química , Ácidos Linoleicos/farmacologia , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/farmacologia , Lipoxigenase/metabolismo , Ácido Araquidônico/metabolismo , Ligação Competitiva , Biocatálise , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Oxirredução , Especificidade por Substrato
15.
Inorg Chem ; 47(24): 11543-50, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18656914

RESUMO

The mononuclear nonheme iron active site of N694C soybean lipoxygenase (sLO1) has been investigated in the resting ferrous form using a combination of Fe-K-pre-edge, near-edge (using the minuit X-ray absorption near-edge full multiple-scattering approach), and extended X-ray absorption fine structure (EXAFS) methods. The results indicate that the active site is six-coordinate (6C) with a large perturbation in the first-shell bond distances in comparison to the more ordered octahedral site in wild-type sLO1. Upon mutation of the asparagine to cysteine, the short Fe-O interaction with asparagine is replaced by a weak Fe-(H(2)O), which leads to a distorted 6C site with an effective 5C ligand field. In addition, it is shown that near-edge multiple scattering analysis can give important three-dimensional structural information, which usually cannot be accessed using EXAFS analysis. It is further shown that, relative to EXAFS, near-edge analysis is more sensitive to partial coordination numbers and can be potentially used as a tool for structure determination in a mixture of chemical species.


Assuntos
Absorciometria de Fóton/métodos , Lipoxigenase/química , Substituição de Aminoácidos , Asparagina , Domínio Catalítico , Cisteína , Ligação de Hidrogênio , Compostos Inorgânicos/química , Lipoxigenase/genética , Mutagênese Sítio-Dirigida , Glycine max/enzimologia , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
16.
Biochemistry ; 47(28): 7364-75, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18570379

RESUMO

Human reticulocyte 15-lipoxygenase (15-hLO-1) and epithelial 15-lipoxygenase (15-hLO-2) have been implicated in a number of human diseases, with differences in their substrate specificity potentially playing a central role. In this paper, we present a novel method for accurately measuring the substrate specificity of the two 15-hLO isozymes and demonstrate that both cholate and specific LO products affect substrate specificity. The linoleic acid (LA) product, 13-hydroperoxyoctadienoic acid (13-HPODE), changes the ( k cat/ K m) (AA)/( k cat/ K m) (LA) ratio more than 5-fold for 15-hLO-1 and 3-fold for 15-hLO-2, while the arachidonic acid (AA) product, 12-( S)-hydroperoxyeicosatetraenoic acid (12-HPETE), affects only the ratio of 15-hLO-1 (more than 5-fold). In addition, the reduced products, 13-( S)-hydroxyoctadecadienoic acid (13-HODE) and 12-( S)-hydroxyeicosatetraenoic acid (12-HETE), also affect substrate specificity, indicating that iron oxidation is not responsible for the change in the ( k cat/ K m) (AA)/( k cat/ K m) (LA) ratio. These results, coupled with the dependence of the 15-hLO-1 k cat/ K m kinetic isotope effect ( (D) k cat/ K m) on the presence of 12-HPETE and 12-HETE, indicate that the allosteric site, previously identified in 15-hLO-1 [Mogul, R., Johansen, E., and Holman, T. R. (1999) Biochemistry 39, 4801-4807], is responsible for the change in substrate specificity. The ability of LO products to regulate substrate specificity may be relevant with respect to cancer progression and warrants further investigation into the role of this product-feedback loop in the cell.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Células Epiteliais/enzimologia , Reticulócitos/enzimologia , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/farmacologia , Regulação Alostérica , Araquidonato 15-Lipoxigenase/sangue , Araquidonato 15-Lipoxigenase/genética , Humanos , Cinética , Leucotrienos/metabolismo , Leucotrienos/farmacologia , Ácidos Linoleicos/metabolismo , Peróxidos Lipídicos/metabolismo , Masculino , Próstata/enzimologia , Especificidade por Substrato
17.
Bioorg Med Chem ; 15(23): 7408-25, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17869117

RESUMO

Human lipoxygenase (hLO) isozymes have been implicated in a number of disease states and have attracted much attention with respect to their inhibition. One class of inhibitors, the flavonoids, have been shown to be potent lipoxygenase inhibitors but their study has been restricted to those compounds found in nature, which have limited structural variability. We have therefore carried out a comprehensive study to determine the structural requirements for flavonoid potency and selectivity against platelet 12-hLO, reticulocyte 15-hLO-1, and prostate epithelial 15-hLO-2. We conclude from this study that catechols are essential for high potency, that isoflavones and isoflavonones tend to select against 12-hLO, that isoflavons tend to select against 15-hLO-1, but few flavonoids target 15-hLO-2.


Assuntos
Células Epiteliais/enzimologia , Flavonoides/farmacologia , Inibidores de Lipoxigenase , Inibidores de Lipoxigenase/farmacologia , Reticulócitos/enzimologia , Araquidonato 12-Lipoxigenase/sangue , Araquidonato 12-Lipoxigenase/isolamento & purificação , Araquidonato 15-Lipoxigenase/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos , Flavonoides/síntese química , Flavonoides/química , Humanos , Concentração Inibidora 50 , Isoenzimas/antagonistas & inibidores , Isoenzimas/isolamento & purificação , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Masculino , Modelos Moleculares , Estrutura Molecular , Próstata/enzimologia , Estereoisomerismo , Relação Estrutura-Atividade
18.
Bioorg Med Chem ; 15(22): 6900-8, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17826100

RESUMO

Human lipoxygenases (hLO) have been implicated in a variety of diseases and cancers and each hLO isozyme appears to have distinct roles in cellular biology. This fact emphasizes the need for discovering selective hLO inhibitors for both understanding the role of specific lipoxygenases in the cell and developing pharmaceutical therapeutics. To this end, we have modified a known lipoxygenase assay for high-throughput (HTP) screening of both the National Cancer Institute (NCI) and the UC Santa Cruz marine extract library (UCSC-MEL) in search of platelet-type 12-hLO (12-hLO) selective inhibitors. The HTP screen led to the characterization of five novel 12-hLO inhibitors from the NCI repository. One is the potent but non-selective michellamine B, a natural product, anti-viral agent. The other four compounds were selective inhibitors against 12-hLO, with three being synthetic compounds and one being alpha-mangostin, a natural product, caspase-3 pathway inhibitor. In addition, a selective inhibitor was isolated from the UCSC-MEL (neodysidenin), which has a unique chemical scaffold for a hLO inhibitor. Due to the unique structure of neodysidenin, steady-state inhibition kinetics were performed and its mode of inhibition against 12-hLO was determined to be competitive (K(i)=17microM) and selective over reticulocyte 15-hLO-1 (K(i) 15-hLO-1/12-hLO>30).


Assuntos
Plaquetas/enzimologia , Bases de Dados Factuais , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores de Lipoxigenase , Inibidores de Lipoxigenase/farmacologia , Técnicas de Química Combinatória , Avaliação Pré-Clínica de Medicamentos/estatística & dados numéricos , Humanos , Isoenzimas/antagonistas & inibidores , Cinética , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Estrutura Molecular , Reprodutibilidade dos Testes , Relação Estrutura-Atividade
19.
J Nat Prod ; 70(3): 383-90, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17291044

RESUMO

The budding yeast Saccharomyces cerevisiae, a powerful model system for the study of basic eukaryotic cell biology, has been used increasingly as a screening tool for the identification of bioactive small molecules. We have developed a novel yeast toxicity screen that is easily automated and compatible with high-throughput screening robotics. The new screen is quantitative and allows inhibitory potencies to be determined, since the diffusion of the sample provides a concentration gradient and a corresponding toxicity halo. The efficacy of this new screen was illustrated by testing materials including 3104 compounds from the NCI libraries, 167 marine sponge crude extracts, and 149 crude marine-derived fungal extracts. There were 46 active compounds among the NCI set. One very active extract was selected for bioactivity-guided fractionation, resulting in the identification of crambescidin 800 as a potent antifungal agent.


Assuntos
Antifúngicos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Guanidina/análogos & derivados , Modelos Biológicos , Poríferos/química , Saccharomyces cerevisiae/metabolismo , Compostos de Espiro/farmacologia , Animais , Técnicas de Química Combinatória , Guanidina/farmacologia , Estrutura Molecular
20.
J Nat Prod ; 70(1): 95-9, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17253856

RESUMO

A re-collection of Plakortis quasiamphiaster from Vanuatu in 2003 resulted in the isolation of three known compounds, plakinidine A (1) and amphiasterins B1 (6) and B2 (7). Also isolated was a new bis-oxygenated pyrroloacridine alkaloid, plakinidine E (8), with a unique O-substitution versus N-substitution at position C-12 in 1. The biological evaluation of the active compounds in two assays provided complementary data. Plakinidine A (1) exhibited cytotoxicity against human colon H-116 cells with an IC50 of 0.23 microg/mL, but there were no effects against the yeast Saccharomyces cerevisiae diploid homozygous deletion strain of topoisomerase I (top1Delta). By contrast, 8 was inactive against H-116 cells but was potent in the yeast halo screen.


Assuntos
Alcaloides/isolamento & purificação , Antineoplásicos/isolamento & purificação , Plakortis/química , Alcaloides/química , Alcaloides/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Saccharomyces cerevisiae/efeitos dos fármacos , Vanuatu
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA