Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
BMC Ecol Evol ; 24(1): 81, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872095

RESUMO

BACKGROUND: New Zealand is home to over 120 native endemic species of skinks and geckos that radiated over the last 20-40 million years, likely driven by the exploitation of diverse habitats formed during the Miocene. The recent radiation of animal hosts may facilitate cross-species virus transmission, likely reflecting their close genetic relationships and therefore relatively low barriers for viruses to emerge in new hosts. Conversely, as animal hosts adapt to new niches, even within specific geographic locations, so too could their viruses. Consequently, animals that have niche-specialised following radiations may be expected to harbour genetically distinct viruses. Through a metatranscriptomic analysis of eight of New Zealand's native skink and gecko species, as well as the only introduced lizard species, the rainbow skink (Lampropholis delicata), we aimed to reveal the diversity of viruses in these hosts and determine whether and how the radiation of skinks and geckos in New Zealand has impacted virus diversity and evolution. RESULTS: We identified a total of 15 novel reptilian viruses spanning 11 different viral families, across seven of the nine species sampled. Notably, we detected no viral host-switching among the native animals analysed, even between those sampled from the same geographic location. This is compatible with the idea that host speciation has likely resulted in isolated, niche-constrained viral populations that have prevented cross-species transmission. Using a protein structural similarity-based approach, we further identified a highly divergent bunya-like virus that potentially formed a new family within the Bunyavirales. CONCLUSIONS: This study has broadened our understanding of reptilian viruses within New Zealand and illustrates how niche adaptation may limit viral-host interactions.


Assuntos
Lagartos , Animais , Lagartos/virologia , Nova Zelândia , Vírus/isolamento & purificação , Vírus/genética , Filogenia
2.
Virus Evol ; 10(1): veae033, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756987

RESUMO

The RNA virus family Picobirnaviridae has traditionally been associated with the gastrointestinal systems of terrestrial mammals and birds, with the majority of viruses detected in animal stool samples. Metatranscriptomic studies of vertebrates, invertebrates, microbial communities, and environmental samples have resulted in an enormous expansion of the genomic and phylogenetic diversity of this family. Yet picobirnaviruses remain poorly classified, with only one genus and three species formally ratified by the International Committee of Virus Taxonomy. Additionally, an inability to culture picobirnaviruses in a laboratory setting or isolate them in animal tissue samples, combined with the presence of bacterial genetic motifs in their genomes, suggests that these viruses may represent RNA bacteriophage rather than being associated with animal infection. Utilising a data set of 2,286 picobirnaviruses sourced from mammals, birds, reptiles, fish, invertebrates, microbial communities, and environmental samples, we identified seven consistent phylogenetic clusters likely representing Picobirnavirus genera that we tentatively name 'Alpha-', 'Beta-', 'Gamma-', 'Delta-', 'Epsilon-', 'Zeta-', and 'Etapicobirnavirus'. A statistical analysis of topological congruence between virus-host phylogenies revealed more frequent cross-species transmission than any other RNA virus family. In addition, bacterial ribosomal binding site motifs were more enriched in Picobirnavirus genomes than in the two groups of established RNA bacteriophage-the Leviviricetes and Cystoviridae. Overall, our findings support the hypothesis that the Picobirnaviridae have bacterial hosts and provide a lower-level taxonomic classification for this highly diverse and ubiquitous family of RNA viruses.

3.
Curr Biol ; 34(6): 1247-1257.e3, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38428417

RESUMO

Adaptive radiations are generated through a complex interplay of biotic and abiotic factors. Although adaptive radiations have been widely studied in the context of animal and plant evolution, little is known about how they impact the evolution of the viruses that infect these hosts, which in turn may provide insights into the drivers of cross-species transmission and hence disease emergence. We examined how the rapid adaptive radiation of the cichlid fishes of African Lake Tanganyika over the last 10 million years has shaped the diversity and evolution of the viruses they carry. Through metatranscriptomic analysis of 2,242 RNA sequencing libraries, we identified 121 vertebrate-associated viruses among various tissue types that fell into 13 RNA and 4 DNA virus groups. Host-switching was commonplace, particularly within the Astroviridae, Metahepadnavirus, Nackednavirus, Picornaviridae, and Hepacivirus groups, occurring more frequently than in other fish communities. A time-calibrated phylogeny revealed that hepacivirus diversification was not constant throughout the cichlid radiation but accelerated 2-3 million years ago, coinciding with a period of rapid cichlid diversification and niche packing in Lake Tanganyika, thereby providing more closely related hosts for viral infection. These data depict a dynamic virus ecosystem within the cichlids of Lake Tanganyika, characterized by rapid virus diversification and frequent host jumping, and likely reflecting their close phylogenetic relationships that lower the barriers to cross-species virus transmission.


Assuntos
Ciclídeos , Vírus , Animais , Filogenia , Ecossistema , Tanzânia , Lagos
4.
Zool Res ; 45(2): 429-438, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38485510

RESUMO

The Chinese tree shrew ( Tupaia belangeri chinensis), a member of the mammalian order Scandentia, exhibits considerable similarities with primates, including humans, in aspects of its nervous, immune, and metabolic systems. These similarities have established the tree shrew as a promising experimental model for biomedical research on cancer, infectious diseases, metabolic disorders, and mental health conditions. Herein, we used meta-transcriptomic sequencing to analyze plasma, as well as oral and anal swab samples, from 105 healthy asymptomatic tree shrews to identify the presence of potential zoonotic viruses. In total, eight mammalian viruses with complete genomes were identified, belonging to six viral families, including Flaviviridae, Hepeviridae, Parvovirinae, Picornaviridae, Sedoreoviridae, and Spinareoviridae. Notably, the presence of rotavirus was recorded in tree shrews for the first time. Three viruses - hepacivirus 1, parvovirus, and picornavirus - exhibited low genetic similarity (<70%) with previously reported viruses at the whole-genome scale, indicating novelty. Conversely, three other viruses - hepacivirus 2, hepatovirus A and hepevirus - exhibited high similarity (>94%) to known viral strains. Phylogenetic analyses also revealed that the rotavirus and mammalian orthoreovirus identified in this study may be novel reassortants. These findings provide insights into the diverse viral spectrum present in captive Chinese tree shrews, highlighting the necessity for further research into their potential for cross-species transmission.


Assuntos
Tupaia , Vírus , Animais , Filogenia , Primatas , Musaranhos , Tupaia/fisiologia , Tupaiidae
5.
Virology ; 593: 110007, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38346363

RESUMO

Australia is home to a diverse range of unique native fauna and flora. To address whether Australian ecosystems also harbour unique viruses, we performed meta-transcriptomic sequencing of 16 farmland and sediment samples taken from the east and west coasts of Australia. We identified 2460 putatively novel RNA viruses across 18 orders, the vast majority of which belonged to the microbe-associated phylum Lenarviricota. In many orders, such as the Nodamuvirales and Ghabrivirales, the novel viruses identified here comprised entirely new clades. Novel viruses also fell between established genera or families, such as in the Cystoviridae and Picornavirales, while highly divergent lineages were identified in the Sobelivirales and Ghabrivirales. Viral read abundance and alpha diversity were influenced by sampling site, soil type and land use, but not by depth from the surface. In sum, Australian soils and sediments are home to remarkable viral diversity, reflecting the biodiversity of local fauna and flora.


Assuntos
Vírus de RNA , Vírus , Humanos , Ecossistema , Austrália , Filogenia , Vírus de RNA/genética
6.
Sci China Life Sci ; 67(1): 188-203, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37922067

RESUMO

Brine shrimp (Artemia) has existed on Earth for 400 million years and has major ecological importance in hypersaline ecosystems. As a crucial live food in aquaculture, brine shrimp cysts have become one of the most important aquatic products traded worldwide. However, our understanding of the biodiversity, prevalence and global connectedness of viruses in brine shrimp is still very limited. A total of 143 batches of brine shrimp (belonging to seven species) cysts were collected from six continents including 21 countries and more than 100 geographic locations worldwide during 1977-2019. In total, 55 novel RNA viruses were identified, which could be assigned to 18 different viral families and related clades. Eleven viruses were dsRNA viruses, 16 were +ssRNA viruses, and 28 were-ssRNA viruses. Phylogenetic analyses of the RNA-directed RNA polymerase (RdRp) showed that brine shrimp viruses were often grouped with viruses isolated from other invertebrates and fungi. Remarkably, most brine shrimp viruses were related to those from different hosts that might feed on brine shrimp or share the same ecological niche. A notable case was the novel brine shrimp noda-like virus 3, which shared 79.25% (RdRp) and 63.88% (capsid proteins) amino acid identity with covert mortality nodavirus (CMNV) that may cause losses in aquaculture. In addition, both virome composition and phylogenetic analyses revealed global connectedness in certain brine shrimp viruses, particularly among Asia and Northern America. This highlights the incredible species diversity of viruses in these ancient species and provides essential data for the prevalence of RNA viruses in the global aquaculture industry. More broadly, these findings provide novel insights into the previously unrecognized RNA virosphere in hypersaline ecosystems worldwide and demonstrate that human activity might have driven the global connectedness of brine shrimp viruses.


Assuntos
Cistos , Vírus de RNA , Animais , Humanos , Ecossistema , Artemia , Filogenia , Vírus de RNA/genética , RNA Polimerase Dependente de RNA
7.
Virus Evol ; 9(2): vead061, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941997

RESUMO

Although Australian marsupials are characterised by unique biology and geographic isolation, little is known about the viruses present in these iconic wildlife species. The Dasyuromorphia are an order of marsupial carnivores found only in Australia that include both the extinct Tasmanian tiger (thylacine) and the highly threatened Tasmanian devil. Several other members of the order are similarly under threat of extinction due to habitat loss, hunting, disease, and competition and predation by introduced species such as feral cats. We utilised publicly available RNA-seq data from the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) database to document the viral diversity within four Dasyuromorph species. Accordingly, we identified fifteen novel virus sequences from five DNA virus families (Adenoviridae, Anelloviridae, Gammaherpesvirinae, Papillomaviridae, and Polyomaviridae) and three RNA virus taxa: the order Jingchuvirales, the genus Hepacivirus, and the delta-like virus group. Of particular note was the identification of a marsupial-specific clade of delta-like viruses that may indicate an association of deltaviruses with marsupial species. In addition, we identified a highly divergent hepacivirus in a numbat liver transcriptome that falls outside of the larger mammalian clade. We also detect what may be the first Jingchuvirales virus in a mammalian host-a chu-like virus in Tasmanian devils-thereby expanding the host range beyond invertebrates and ectothermic vertebrates. As many of these Dasyuromorphia species are currently being used in translocation efforts to reseed populations across Australia, understanding their virome is of key importance to prevent the spread of viruses to naive populations.

8.
Vet Microbiol ; 286: 109895, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37890432

RESUMO

First identified in 2002, diphtheritic stomatitis (DS) is a devastating disease affecting yellow-eyed penguins (Megadyptes antipodes, or hoiho in te reo Maori). The disease is associated with oral lesions in chicks and has caused significant morbidity and mortality. DS is widespread among yellow-eyed penguin chicks on mainland New Zealand yet appears to be absent from the subantarctic population. Corynebacterium spp. have previously been suspected as causative agents yet, due to inconsistent cultures and inconclusive pathogenicity, their role in DS is unclear. Herein, we used a metatranscriptomic approach to identify potential causative agents of DS by revealing the presence and abundance of all viruses, bacteria, fungi and protozoa - together, the infectome. Oral and cloacal swab samples were collected from presymptomatic, symptomatic and recovered chicks along with a control group of healthy adults. Two novel viruses from the Picornaviridae were identified, one of which - yellow-eyed penguin megrivirus - was highly abundant in chicks irrespective of health status but not detected in healthy adults. Tissue from biopsied oral lesions also tested positive for the novel megrivirus upon PCR. We found no overall clustering among bacteria, protozoa and fungi communities at the genus level across samples, although Paraclostridium bifermentans was significantly more abundant in oral microbiota of symptomatic chicks compared to other groups. The detection of a novel and highly abundant megrivirus has sparked a new line of inquiry to investigate its potential association with DS.


Assuntos
Picornaviridae , Spheniscidae , Estomatite , Animais , Corynebacterium , Spheniscidae/microbiologia , Spheniscidae/virologia , Estomatite/veterinária
9.
Virus Evol ; 9(2): vead051, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711483

RESUMO

Swine pathogens have a long history of zoonotic transmission to humans, occasionally leading to sustained outbreaks or pandemics. Through a retrospective epidemiological study of swine populations in China, we describe novel lineages of porcine hemagglutinating encephalomyelitis virus (PHEV) complex coronaviruses (CoVs) that cause exclusively respiratory symptoms with no signs of the neurological symptoms typically associated with classical PHEV infection. Through large-scale epidemiological surveillance, we show that these novel lineages have circulated in at least eight provinces in southeastern China. Phylogenetic and recombination analyses of twenty-four genomes identified two major viral lineages causing respiratory symptoms with extensive recombination within them, between them, and between classical PHEV and the novel respiratory variant PHEV (rvPHEV) lineages. Divergence times among the sampled lineages in the PHEV virus complex date back to 1886-1958 (mean estimate 1928), with the two major rvPHEV lineages separating approximately 20 years later. Many rvPHEV viruses show amino acid substitutions at the carbohydrate-binding site of hemagglutinin esterase (HE) and/or have lost the cysteine required for HE dimerization. This resembles the early adaptation of human CoVs, where HE lost its hemagglutination ability to adapt to growth in the human respiratory tract. Our study represents the first report of the evolutionary history of rvPHEV circulating in swine and highlights the importance of characterizing CoV diversity and recombination in swine to identify pathogens with outbreak potential that could threaten swine farming.

10.
Virology ; 586: 43-55, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37487325

RESUMO

More than 70 bat species are found in mainland Australia. While most studies of bat viromes focus on sampling seemingly healthy individuals, little is known about the viruses and bacteria associated with diseased bats. We performed traditional diagnostic techniques and metatranscriptomic sequencing on tissue samples from 43 Australian bats, comprising three flying fox (Pteropodidae) and two microbat species experiencing a range of disease syndromes, including mass mortality, neurological signs, pneumonia and skin lesions. Of note, we identified the recently discovered Hervey pteropid gammaretrovirus in a bat with lymphoid leukemia, with evidence of replication consistent with an exogenous virus. The possible association of Hervey pteropid gammaretrovirus with lymphoid leukemia clearly merits additional investigation. One novel picornavirus and at least three new astroviruses and bat pegiviruses were also identified in a variety of tissue types, as well as a number of likely bacterial pathogens or opportunistic infections, most notably Pseudomonas aeruginosa.


Assuntos
Quirópteros , Gammaretrovirus , Pneumonia , Vírus de RNA , Humanos , Animais , Austrália/epidemiologia , Filogenia
11.
J Virol ; 96(20): e0088622, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36197107

RESUMO

To characterize the ongoing evolution of myxoma virus in Australian rabbits, we used experimental infections of laboratory rabbits to determine the virulence and disease phenotypes of recent virus isolates. The viruses, collected between 2012 and 2015, fell into three lineages, one of which, lineage c, experienced a punctuated increase in evolutionary rate. All viruses were capable of causing acute death with aspects of neutropenic septicemia, characterized by minimal signs of myxomatosis, the occurrence of pulmonary edema and bacteria invasions throughout internal organs, but with no inflammatory response. For the viruses of highest virulence all rabbits usually died at this point. In more attenuated viruses, some rabbits died acutely, while others developed an amyxomatous phenotype. Rabbits that survived for longer periods developed greatly swollen cutaneous tissues with very high virus titers. This was particularly true of lineage c viruses. Unexpectedly, we identified a line of laboratory rabbits with some innate resistance to myxomatosis and used these in direct comparisons with the fully susceptible rabbit line. Importantly, the same disease phenotype occurred in both susceptible and resistant rabbits, although virulence was shifted toward more attenuated grades in resistant animals. We propose that selection against inflammation at cutaneous sites prolongs virus replication and enhances transmission, leading to the amyxomatous phenotype. In some virus backgrounds this creates an immunosuppressive state that predisposes to high virulence and acute death. The alterations in disease pathogenesis, particularly the overwhelming bacterial invasions that characterize the modern viruses, suggest that their virulence grades are not directly comparable with earlier studies. IMPORTANCE The evolution of the myxoma virus (MYXV) following its release as a biological control for European rabbits in Australia is the textbook example of the coevolution of virus virulence and host resistance. However, most of our knowledge of MYXV evolution only covers the first few decades of its spread in Australia and often with little direct connection between how changes in virus phenotype relate to those in the underlying virus genotype. By conducting detailed experimental infections of recent isolates of MYXV in different lines of laboratory rabbits, we examined the ongoing evolution of MYXV disease phenotypes. Our results reveal a wide range of phenotypes, including an amyxomatous type, as well as the impact of invasive bacteria, that in part depended on the level of rabbit host resistance. These results provide a unique insight into the complex virus and host factors that combine to shape disease phenotype and viral evolution.


Assuntos
Myxoma virus , Mixomatose Infecciosa , Animais , Coelhos , Virulência/genética , Austrália , Fenótipo , Genótipo , Mixomatose Infecciosa/genética
12.
Virology ; 576: 42-51, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36150229

RESUMO

Bats are important reservoirs for viruses of public health and veterinary concern. Virus studies in Australian bats usually target the families Paramyxoviridae, Coronaviridae and Rhabdoviridae, with little known about their overall virome composition. We used metatranscriptomic sequencing to characterise the faecal virome of grey-headed flying foxes from three colonies in urban/suburban locations from two Australian states. We identified viruses from three mammalian-infecting (Coronaviridae, Caliciviridae, Retroviridae) and one possible mammalian-infecting (Birnaviridae) family. Of particular interest were a novel bat betacoronavirus (subgenus Nobecovirus) and a novel bat sapovirus (Caliciviridae), the first identified in Australian bats, as well as a potentially exogenous retrovirus. The novel betacoronavirus was detected in two sampling locations 1375 km apart and falls in a viral lineage likely with a long association with bats. This study highlights the utility of unbiased sequencing of faecal samples for identifying novel viruses and revealing broad-scale patterns of virus ecology and evolution.


Assuntos
Quirópteros , Coronavirus , Sapovirus , Animais , Humanos , Retroviridae/genética , Viroma , Austrália , Mamíferos
13.
One Health ; 13: 100360, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34917744

RESUMO

Invasive species exert a serious impact on native fauna and flora and have become the target of eradication and management efforts worldwide. Invasive avian species can also be important pathogen reservoirs, although their viromes and microbiomes have rarely been studied. As one of the top 100 invasive pest species globally, the expansion of Indian mynas (Acridotheres tristis) into peri-urban and rural environments, in conjunction with increasing free-ranging avian agricultural practices, may increase the risk of microbial pathogens jumping species boundaries. Herein, we used a meta-transcriptomic approach to explore the microbes present in brain, liver and large intestine of 16 invasive Indian myna birds in Sydney, Australia. From this, we discovered seven novel viruses from the families Adenoviridae, Caliciviridae, Flaviviridae, Parvoviridae and Picornaviridae. Interestingly, each of the novel viruses identified shared less than 80% genomic similarity with their closest relatives from other avian species, indicative of a lack of detectable virus transmission between invasive mynas to native or domestic species. Of note, we also identified two coccidian protozoa, Isospora superbusi and Isospora greineri, from the liver and gut tissues of mynas. Overall, these data demonstrate that invasive mynas can harbor a diversity of viruses and other microorganisms such that ongoing pathogen surveillance in this species is warranted.

14.
J Gen Virol ; 102(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34130773

RESUMO

In the early phases of the SARS coronavirus type 2 (SARS-CoV-2) pandemic, testing focused on individuals fitting a strict case definition involving a limited set of symptoms together with an identified epidemiological risk, such as contact with an infected individual or travel to a high-risk area. To assess whether this impaired our ability to detect and control early introductions of the virus into the UK, we PCR-tested archival specimens collected on admission to a large UK teaching hospital who retrospectively were identified as having a clinical presentation compatible with COVID-19. In addition, we screened available archival specimens submitted for respiratory virus diagnosis, and dating back to early January 2020, for the presence of SARS-CoV-2 RNA. Our data provides evidence for widespread community circulation of SARS-CoV-2 in early February 2020 and into March that was undetected at the time due to restrictive case definitions informing testing policy. Genome sequence data showed that many of these early cases were infected with a distinct lineage of the virus. Sequences obtained from the first officially recorded case in Nottinghamshire - a traveller returning from Daegu, South Korea - also clustered with these early UK sequences suggesting acquisition of the virus occurred in the UK and not Daegu. Analysis of a larger sample of sequences obtained in the Nottinghamshire area revealed multiple viral introductions, mainly in late February and through March. These data highlight the importance of timely and extensive community testing to prevent future widespread transmission of the virus.


Assuntos
COVID-19/diagnóstico , COVID-19/virologia , Sistema Respiratório/virologia , SARS-CoV-2/isolamento & purificação , Adulto , Idoso , COVID-19/epidemiologia , COVID-19/transmissão , Teste de Ácido Nucleico para COVID-19 , Feminino , Humanos , Masculino , Programas de Rastreamento/métodos , Pessoa de Meia-Idade , Filogenia , RNA Viral/genética , Estudos Retrospectivos , SARS-CoV-2/genética , Reino Unido/epidemiologia
15.
Front Vet Sci ; 8: 778556, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35141306

RESUMO

Rhesus macaques (Macaca mulatta) are the most widely distributed species of Old World monkey and are frequently used as animal models to study human health and disease. Their gastrointestinal microbial community likely plays a major role in their physiology, ecology and evolution. Herein, we compared the fecal microbiome and antibiotic resistance genes in 15 free-ranging and 81 zoo-captive rhesus macaques sampled from two zoos in China, using both 16S amplicon sequencing and whole genome shotgun DNA sequencing approaches. Our data revealed similar levels of microbial diversity/richness among the three groups, although the composition of each group differed significantly and were particularly marked between the two zoo-captive and one wild groups. Zoo-captive animals also demonstrated a greater abundance and diversity of antibiotic genes. Through whole genome shotgun sequencing we also identified a mammalian (simian) associated adenovirus. Overall, this study provides a comprehensive analysis of resistomes and microbiomes in zoo-captive and free-ranging monkeys, revealing that semi-captive wildlife might harbor a higher diversity of antimicrobial resistant genes.

16.
J Virol ; 94(18)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32581107

RESUMO

Wild birds are major natural reservoirs and potential dispersers of a variety of infectious diseases. As such, it is important to determine the diversity of viruses they carry and use this information to help understand the potential risks of spillover to humans, domestic animals, and other wildlife. We investigated the potential viral causes of paresis in long-standing, but undiagnosed, disease syndromes in wild Australian birds. RNA from diseased birds was extracted and pooled based on tissue type, host species, and clinical manifestation for metagenomic sequencing. Using a bulk and unbiased metatranscriptomic approach, combined with clinical investigation and histopathology, we identified a number of novel viruses from the families Astroviridae, Adenoviridae, Picornaviridae, Polyomaviridae, Paramyxoviridae, Parvoviridae, and Circoviridae in common urban wild birds, including Australian magpies, magpie larks, pied currawongs, Australian ravens, and rainbow lorikeets. In each case, the presence of the virus was confirmed by reverse transcription (RT)-PCR. These data revealed a number of candidate viral pathogens that may contribute to coronary, skeletal muscle, vascular, and neuropathology in birds of the Corvidae and Artamidae families and neuropathology in members of the Psittaculidae The existence of such a diverse virome in urban avian species highlights the importance and challenges in elucidating the etiology and ecology of wildlife pathogens in urban environments. This information will be increasingly important for managing disease risks and conducting surveillance for potential viral threats to wildlife, livestock, and human health.IMPORTANCE Wildlife naturally harbor a diverse array of infectious microorganisms and can be a source of novel diseases in domestic animals and human populations. Using unbiased RNA sequencing, we identified highly diverse viruses in native birds from Australian urban environments presenting with paresis. This research included the clinical investigation and description of poorly understood recurring syndromes of unknown etiology: clenched claw syndrome and black and white bird disease. As well as identifying a range of potentially disease-causing viral pathogens, this study describes methods that can effectively and efficiently characterize emergent disease syndromes in free-ranging wildlife and promotes further surveillance for specific pathogens of potential conservation and zoonotic concern.


Assuntos
Animais Selvagens/virologia , Doenças das Aves/epidemiologia , Aves/virologia , Infecções por Vírus de DNA/veterinária , Metagenoma , Infecções por Vírus de RNA/veterinária , Transcriptoma , Adenoviridae/classificação , Adenoviridae/genética , Adenoviridae/isolamento & purificação , Animais , Astroviridae/classificação , Astroviridae/genética , Astroviridae/isolamento & purificação , Austrália/epidemiologia , Doenças das Aves/virologia , Circoviridae/classificação , Circoviridae/genética , Circoviridae/isolamento & purificação , Cidades , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Paramyxoviridae/classificação , Paramyxoviridae/genética , Paramyxoviridae/isolamento & purificação , Parvoviridae/classificação , Parvoviridae/genética , Parvoviridae/isolamento & purificação , Filogenia , Picornaviridae/classificação , Picornaviridae/genética , Picornaviridae/isolamento & purificação , Polyomaviridae/classificação , Polyomaviridae/genética , Polyomaviridae/isolamento & purificação , Infecções por Vírus de RNA/epidemiologia , Infecções por Vírus de RNA/virologia
17.
Proc Natl Acad Sci U S A ; 117(17): 9529-9536, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32284399

RESUMO

Bats are reservoirs of emerging viruses that are highly pathogenic to other mammals, including humans. Despite the diversity and abundance of bat viruses, to date they have not been shown to harbor exogenous retroviruses. Here we report the discovery and characterization of a group of koala retrovirus-related (KoRV-related) gammaretroviruses in Australian and Asian bats. These include the Hervey pteropid gammaretrovirus (HPG), identified in the scat of the Australian black flying fox (Pteropus alecto), which is the first reproduction-competent retrovirus found in bats. HPG is a close relative of KoRV and the gibbon ape leukemia virus (GALV), with virion morphology and Mn2+-dependent virion-associated reverse transcriptase activity typical of a gammaretrovirus. In vitro, HPG is capable of infecting bat and human cells, but not mouse cells, and displays a similar pattern of cell tropism as KoRV-A and GALV. Population studies reveal the presence of HPG and KoRV-related sequences in several locations across northeast Australia, as well as serologic evidence for HPG in multiple pteropid bat species, while phylogenetic analysis places these bat viruses as the basal group within the KoRV-related retroviruses. Taken together, these results reveal bats to be important reservoirs of exogenous KoRV-related gammaretroviruses.


Assuntos
Quirópteros/virologia , Gammaretrovirus/isolamento & purificação , Animais , Austrália , Reservatórios de Doenças/veterinária , Reservatórios de Doenças/virologia , Phascolarctidae/virologia
18.
J Virol ; 94(11)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188733

RESUMO

Ectoparasites play an important role in virus transmission among vertebrates. Little, however, is known about the nature of those viruses that pass between invertebrates and vertebrates. In Australia, flies and fleas support the mechanical transmission of two viral biological controls against wild rabbits-rabbit hemorrhagic disease virus (RHDV) and myxoma virus. We compared virome compositions in rabbits and these ectoparasites, sequencing total RNA from multiple tissues and gut contents of wild rabbits, fleas collected from these rabbits, and flies trapped sympatrically. Meta-transcriptomic analyses identified 50 novel viruses from multiple RNA virus families. Rabbits and their ectoparasites were characterized by markedly different viromes, with virus abundance greatest in flies. Although viral contigs from six virus families/groups were found in both rabbits and ectoparasites, they clustered in distinct host-dependent lineages. A novel calicivirus and a picornavirus detected in rabbit cecal content were vertebrate specific; the newly detected calicivirus was distinct from known rabbit caliciviruses, while the picornavirus clustered with sapeloviruses. Several picobirnaviruses were also identified that fell in diverse phylogenetic positions, compatible with the idea that they are associated with bacteria. Further comparative analysis revealed that the remaining viruses found in rabbits, and all those from ectoparasites, were likely associated with invertebrates, plants, and coinfecting endosymbionts. While no full genomes of vertebrate-associated viruses were detected in ectoparasites, small numbers of reads from rabbit astrovirus, RHDV, and other lagoviruses were present in flies. This supports a role for flies in the mechanical transmission of RHDV, while their involvement in astrovirus transmission merits additional exploration.IMPORTANCE Ectoparasites play an important role in the transmission of many vertebrate-infecting viruses, including Zika and dengue viruses. Although it is becoming increasingly clear that invertebrate species harbor substantial virus diversity, it is unclear how many of the viruses carried by invertebrates have the potential to infect vertebrate species. We used the European rabbit (Oryctolagus cuniculus) as a model species to compare virome compositions in a vertebrate host and known associated ectoparasite mechanical vectors, in this case, fleas and blowflies. In particular, we aimed to infer the extent of viral transfer between these distinct types of host. Our analysis revealed that despite extensive viral diversity in both rabbits and associated ectoparasites, and the close interaction of these vertebrate and invertebrate species, biological viral transmission from ectoparasites to vertebrate species is rare. We did, however, find evidence to support the idea of a role of blowflies in transmitting viruses without active replication in the insect.


Assuntos
Astroviridae , Genoma Viral , Vírus da Doença Hemorrágica de Coelhos , Myxoma virus , RNA Viral/genética , Sifonápteros/virologia , Animais , Astroviridae/classificação , Astroviridae/genética , Vírus da Doença Hemorrágica de Coelhos/classificação , Vírus da Doença Hemorrágica de Coelhos/genética , Myxoma virus/classificação , Myxoma virus/genética , Coelhos
19.
Viruses ; 12(1)2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31968684

RESUMO

Papillomaviruses infect the skin and mucosal surfaces of diverse animal hosts with consequences ranging from asymptomatic colonization to highly malignant epithelial cancers. Increasing evidence suggests a role for papillomaviruses in the most common cutaneous malignancy of domestic cats, squamous cell carcinoma (SCC). Using total DNA sequencing we identified a novel feline papillomavirus in a nasal biopsy taken from a cat presenting with both nasal cavity lymphoma and recurrent squamous cell carcinoma affecting the nasal planum. We designate this novel virus as Felis catus papillomavirus 6 (FcaPV6). The complete FcaPV6 7453 bp genome was similar to those of other feline papillomaviruses and phylogenetic analysis revealed that it was most closely related to FcaPV3, although was distinct enough to represent a new viral type. Classification of FcaPV6 in a new genus alongside FcaPVs 3, 4 and 5 is supported. Archived excisional biopsy of the SCC, taken 20 months prior to presentation, was intensely positive on p16 immunostaining. FcaPV6, amplified using virus-specific, but not consensus, PCR, was the only papillomavirus detected in DNA extracted from the SCC. Conversely, renal lymphoma, sampled at necropsy two months after presentation, tested negative on FcaPV6-specific PCR. In sum, using metagenomics we demonstrate the presence of a novel feline papillomavirus in association with cutaneous squamous cell carcinoma.


Assuntos
Carcinoma de Células Escamosas/veterinária , Carcinoma de Células Escamosas/virologia , Recidiva Local de Neoplasia/veterinária , Papillomaviridae/genética , Infecções por Papillomavirus/veterinária , Neoplasias Cutâneas/veterinária , Animais , Doenças do Gato/diagnóstico , Doenças do Gato/virologia , Gatos , DNA Viral/genética , Genoma Viral , Masculino , Recidiva Local de Neoplasia/virologia , Papillomaviridae/isolamento & purificação , Papillomaviridae/patogenicidade , Infecções por Papillomavirus/diagnóstico , Filogenia , Análise de Sequência de DNA , Pele/patologia , Pele/virologia , Neoplasias Cutâneas/virologia
20.
Diagn Microbiol Infect Dis ; 96(2): 114898, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31753519

RESUMO

We describe a case of meningoencephalitis in which meta-transcriptomic (RNA) sequencing detected human pegivirus (HPgV) in brain tissue, cerebrospinal fluid, and serum in the absence of other pathogens. This is the first detection of HPgV in antemortem brain tissue, although it is uncertain whether HPgV is responsible for the observed encephalitis.


Assuntos
Encéfalo/virologia , Encefalite Viral/diagnóstico , Encefalite Viral/virologia , Infecções por Flaviviridae/diagnóstico , Infecções por Flaviviridae/virologia , Flaviviridae , Adulto , Biomarcadores , Biópsia , Encéfalo/metabolismo , Análise por Conglomerados , Encefalite Viral/genética , Feminino , Flaviviridae/classificação , Flaviviridae/genética , Infecções por Flaviviridae/genética , Perfilação da Expressão Gênica , Humanos , Imageamento por Ressonância Magnética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA