Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 43(1): 107, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594748

RESUMO

BACKGROUND: Tumor cells have the ability to invade and form small clusters that protrude into adjacent tissues, a phenomenon that is frequently observed at the periphery of a tumor as it expands into healthy tissues. The presence of these clusters is linked to poor prognosis and has proven challenging to treat using conventional therapies. We previously reported that p60AmotL2 expression is localized to invasive colon and breast cancer cells. In vitro, p60AmotL2 promotes epithelial cell invasion by negatively impacting E-cadherin/AmotL2-related mechanotransduction. METHODS: Using epithelial cells transfected with inducible p60AmotL2, we employed a phenotypic drug screening approach to find compounds that specifically target invasive cells. The phenotypic screen was performed by treating cells for 72 h with a library of compounds with known antitumor activities in a dose-dependent manner. After assessing cell viability using CellTiter-Glo, drug sensitivity scores for each compound were calculated. Candidate hit compounds with a higher drug sensitivity score for p60AmotL2-expressing cells were then validated on lung and colon cell models, both in 2D and in 3D, and on colon cancer patient-derived organoids. Nascent RNA sequencing was performed after BET inhibition to analyse BET-dependent pathways in p60AmotL2-expressing cells. RESULTS: We identified 60 compounds that selectively targeted p60AmotL2-expressing cells. Intriguingly, these compounds were classified into two major categories: Epidermal Growth Factor Receptor (EGFR) inhibitors and Bromodomain and Extra-Terminal motif (BET) inhibitors. The latter consistently demonstrated antitumor activity in human cancer cell models, as well as in organoids derived from colon cancer patients. BET inhibition led to a shift towards the upregulation of pro-apoptotic pathways specifically in p60AmotL2-expressing cells. CONCLUSIONS: BET inhibitors specifically target p60AmotL2-expressing invasive cancer cells, likely by exploiting differences in chromatin accessibility, leading to cell death. Additionally, our findings support the use of this phenotypic strategy to discover novel compounds that can exploit vulnerabilities and specifically target invasive cancer cells.


Assuntos
Neoplasias do Colo , Mecanotransdução Celular , Humanos , Linhagem Celular Tumoral , Detecção Precoce de Câncer , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética
2.
Cells ; 12(17)2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37681890

RESUMO

Preserving an accurate cell count is crucial for maintaining homeostasis. Apical extrusion, a process in which redundant cells are eliminated by neighboring cells, plays a key role in this regard. Recent studies have revealed that apical extrusion can also be triggered in cells transformed by oncogenes, suggesting it may be a mechanism through which tumor cells escape their microenvironment. In previous work, we demonstrated that p60AmotL2 modulates the E-cadherin function by inhibiting its connection to radial actin filaments. This isoform of AmotL2 is expressed in invasive breast and colon tumors and promotes invasion in vitro and in vivo. Transcriptionally regulated by c-Fos, p60AmotL2 is induced by local stress signals such as severe hypoxia. In this study, we investigated the normal role of p60AmotL2 in epithelial tissues. We found that this isoform is predominantly expressed in the gut, where cells experience rapid turnover. Through time-lapse imaging, we present evidence that cells expressing p60AmotL2 are extruded by their normal neighboring cells. Based on these findings, we hypothesize that tumor cells exploit this pathway to detach from normal epithelia and invade surrounding tissues.


Assuntos
Citoesqueleto de Actina , Neoplasias do Colo , Humanos , Contagem de Células , Epitélio , Homeostase , Microambiente Tumoral
3.
Cells ; 12(13)2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37443716

RESUMO

The spread of tumor cells and the formation of distant metastasis remain the main causes of mortality in cancer patients. However, the mechanisms governing the release of cells from micro-environmental constraints remain unclear. E-cadherin negatively controls the invasion of epithelial cells by maintaining cell-cell contacts. Furthermore, the inactivation of E-cadherin triggers invasion in vitro. However, the role of E-cadherin is complex, as metastasizing cells maintain E-cadherin expression, which appears to have a positive role in the survival of tumor cells. In this report, we present a novel mechanism delineating how E-cadherin function is modulated to promote invasion. We have previously shown that E-cadherin is associated with p100AmotL2, which is required for radial actin formation and the transmission of mechanical force. Here, we present evidence that p60AmotL2, which is expressed in invading tumor cells, binds to the p100AmotL2 isoform and uncouples the mechanical constraint of radial actin filaments. We show for the first time that the coupling of E-cadherin to the actin cytoskeleton via p100AmotL2 is directly connected to the nuclear membrane. The expression of p60AmotL2 inactivates this connection and alters the properties of the nuclear lamina, potentiating the invasion of cells into micropores of the extracellular matrix. In summary, we propose that the balance of the two AmotL2 isoforms is important in the modulation of E-cadherin function and that an imbalance of this axis promotes ameboid cell invasion.


Assuntos
Amoeba , Humanos , Amoeba/metabolismo , Caderinas/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Células Epiteliais/metabolismo
4.
Cell Rep ; 36(8): 109616, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34433061

RESUMO

Vascular development is a complex multistep process involving the coordination of cellular functions such as migration, proliferation, and differentiation. How mechanical forces generated by cells and transmission of these physical forces control vascular development is poorly understood. Using an endothelial-specific genetic model in mice, we show that deletion of the scaffold protein Angiomotin (Amot) inhibits migration and expansion of the physiological and pathological vascular network. We further show that Amot is required for tip cell migration and the extension of cellular filopodia. Exploiting in vivo and in vitro molecular approaches, we show that Amot binds Talin and is essential for relaying forces between fibronectin and the cytoskeleton. Finally, we provide evidence that Amot is an important component of the endothelial integrin adhesome and propose that Amot integrates spatial cues from the extracellular matrix to form a functional vascular network.


Assuntos
Citoesqueleto/metabolismo , Fibronectinas/metabolismo , Integrinas/metabolismo , Neovascularização Fisiológica/fisiologia , Angiomotinas/metabolismo , Animais , Membrana Celular/metabolismo , Movimento Celular/fisiologia , Endotélio/metabolismo , Camundongos Transgênicos , Substitutos do Plasma/farmacologia , Pseudópodes/metabolismo
5.
J Clin Invest ; 130(10): 5508-5522, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32673292

RESUMO

To improve the clinical outcome of adoptive NK cell therapy in patients with solid tumors, NK cells need to persist within the tumor microenvironment (TME) in which the abundance of ROS could dampen antitumor immune responses. In the present study, we demonstrated that IL-15-primed NK cells acquired resistance against oxidative stress through the thioredoxin system activated by mTOR. Mechanistically, the activation of thioredoxin showed dependence on localization of thioredoxin-interacting protein. We show that NK cells residing in the tumor core expressed higher thiol densities that could aid in protecting other lymphocytes against ROS within the TME. Furthermore, the prognostic value of IL15 and the NK cell gene signature in tumors may be influenced by tobacco smoking history in patients with non-small-cell lung cancer (NSCLC). Collectively, the levels of reducing antioxidants in NK cells may not only predict better tumor penetrance but potentially even the immune therapy response.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Tiorredoxinas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Humanos , Imunoterapia Adotiva , Interleucina-15/genética , Células K562 , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Estresse Oxidativo , Prognóstico , Serina-Treonina Quinases TOR/metabolismo , Tiorredoxinas/genética , Fumar Tabaco/efeitos adversos , Fumar Tabaco/imunologia , Fumar Tabaco/metabolismo , Microambiente Tumoral/imunologia , Regulação para Cima
6.
Sci Rep ; 7(1): 9540, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28842668

RESUMO

Epithelial cells connect via cell-cell junctions to form sheets of cells with separate cellular compartments. These cellular connections are essential for the generation of cellular forms and shapes consistent with organ function. Tissue modulation is dependent on the fine-tuning of mechanical forces that are transmitted in part through the actin connection to E-cadherin as well as other components in the adherens junctions. In this report we show that p100 amotL2 forms a complex with E-cadherin that associates with radial actin filaments connecting cells over multiple layers. Genetic inactivation or depletion of amotL2 in epithelial cells in vitro or zebrafish and mouse in vivo, resulted in the loss of contractile actin filaments and perturbed epithelial packing geometry. We further showed that AMOTL2 mRNA and protein was expressed in the trophectoderm of human and mouse blastocysts. Genetic inactivation of amotL2 did not affect cellular differentiation but blocked hatching of the blastocysts from the zona pellucida. These results were mimicked by treatment with the myosin II inhibitor blebbistatin. We propose that the tension generated by the E-cadherin/AmotL2/actin filaments plays a crucial role in developmental processes such as epithelial geometrical packing as well as generation of forces required for blastocyst hatching.


Assuntos
Citoesqueleto de Actina/metabolismo , Blastocisto/metabolismo , Caderinas/metabolismo , Proteínas de Transporte/metabolismo , Células Epiteliais/metabolismo , Angiomotinas , Animais , Blastocisto/citologia , Proteínas de Transporte/genética , Linhagem Celular , Células Epiteliais/citologia , Epitélio/metabolismo , Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Junções Intercelulares/metabolismo , Camundongos , Complexos Multiproteicos/metabolismo , Ligação Proteica , Pele/citologia , Pele/metabolismo , Estresse Mecânico , Peixe-Zebra
7.
Sci Rep ; 6: 30622, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27464479

RESUMO

Transmission of mechanical force via cell junctions is an important component that molds cells into shapes consistent with proper organ function. Of particular interest are the cadherin transmembrane proteins, which play an essential role in connecting cell junctions to the intra-cellular cytoskeleton. Understanding how these biomechanical complexes orchestrate intrinsic and extrinsic forces is important for our understanding of the underlying mechanisms driving morphogenesis. We have previously identified the Amot protein family, which are scaffold proteins that integrate polarity, junctional, and cytoskeletal cues to modulate cellular shape in endothelial as well as epithelial cells. In this report, we show that AmotL1 is a novel partner of the N-cadherin protein complex. We studied the role of AmotL1 in normal retinal as well as tumor angiogenesis using inducible endothelial-specific knock-out mice. We show that AmotL1 is essential for normal establishment of vascular networks in the post-natal mouse retina as well as in a transgenic breast cancer model. The observed phenotypes were consistent with a non-autonomous pericyte defect. We show that AmotL1 forms a complex with N-cadherin present on both endothelial cells and pericytes. We propose that AmotL1 is an essential effector of the N-cadherin mediated endothelial/pericyte junctional complex.


Assuntos
Caderinas/metabolismo , Células Endoteliais/fisiologia , Junções Intercelulares , Proteínas de Membrana/metabolismo , Neovascularização Patológica , Neovascularização Fisiológica , Pericitos/fisiologia , Proteína 1 Semelhante a Angiopoietina , Animais , Neoplasias da Mama/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Retina/fisiologia
8.
Oncoimmunology ; 4(5): e1005500, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26155401

RESUMO

Maternal immunization is successfully applied against some life-threatening infectious diseases as it can protect the mother and her offspring through the passive transfer of maternal antibodies. Here, we sought to evaluate whether the concept of maternal immunization could also be applied to cancer immune-prevention. We have previously shown that antibodies induced by DNA vaccination against rat Her2 (neu) protect heterozygous neu-transgenic female (BALB-neuT) mice from autochthonous mammary tumor development. We, herein, seek to evaluate whether a similar maternal immunization can confer antitumor protection to BALB-neuT offspring. Significantly extended tumor-free survival was observed in BALB-neuT offspring born and fed by mothers vaccinated against neu, as compared to controls. Maternally derived anti-neu immunoglobulin G (IgG) was successfully transferred from mothers to newborns and was responsible for the protective effect. Vaccinated mothers and offspring also developed active immunity against neu as revealed by the presence of T-cell-mediated cytotoxicity against the neu immunodominant peptide. This active response was due to the milk transfer of immune complexes that were formed between the neu extracellular domain, shed from vaccine-transfected muscle cells, and the anti-neu IgG induced by the vaccine. These findings show that maternal immunization has the potential to hamper mammary cancer in genetically predestinated offspring and to develop into applications against lethal neonatal cancer diseases for which therapeutic options are currently unavailable.

9.
Nat Commun ; 5: 4557, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25080976

RESUMO

The establishment and maintenance of apical-basal cell polarity is essential for the functionality of glandular epithelia. Cell polarity is often lost in advanced tumours correlating with acquisition of invasive and malignant properties. Despite extensive knowledge regarding the formation and maintenance of polarity, the mechanisms that deregulate polarity in metastasizing cells remain to be fully characterized. Here we show that AmotL2 expression correlates with loss of tissue architecture in tumours from human breast and colon cancer patients. We further show that hypoxic stress results in activation of c-Fos-dependent expression of AmotL2 leading to loss of polarity. c-Fos/hypoxia-induced p60 AmotL2 interacts with the Crb3 and Par3 polarity complexes retaining them in large vesicles and preventing them from reaching the apical membrane. The resulting loss of polarity potentiates the response to invasive cues in vitro and in vivo in mice. These data provide a molecular mechanism how hypoxic stress deregulates cell polarity during tumour progression.


Assuntos
Neoplasias da Mama/genética , Proteínas de Transporte/genética , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Hipóxia/genética , Proteínas Adaptadoras de Transdução de Sinal , Angiomotinas , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Células CACO-2 , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Polaridade Celular , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Neoplasias do Colo/cirurgia , Feminino , Células HeLa , Humanos , Hipóxia/metabolismo , Hipóxia/patologia , Linfonodos/metabolismo , Linfonodos/patologia , Linfonodos/cirurgia , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Glândulas Mamárias Humanas/cirurgia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos SCID , Invasividade Neoplásica , Estadiamento de Neoplasias , Transplante de Neoplasias , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transdução de Sinais , Vesículas Transportadoras/metabolismo
10.
EJNMMI Res ; 4(1): 17, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24670127

RESUMO

BACKGROUND: Vascular endothelial growth factor receptor 2 (VEGFR2) is a crucial mediator of tumour angiogenesis. High expression levels of the receptor have been correlated to poor prognosis in cancer patients. Reliable imaging biomarkers for stratifying patients for anti-angiogenic therapy could therefore be valuable for increasing treatment success rates. The aim of this study was to investigate the pharmacokinetics and angiogenesis imaging abilities of the VEGFR2-targeting positron emission tomography (PET) tracer (R)-[11C]PAQ. METHODS: (R)-[11C]PAQ was evaluated in the mouse mammary tumour virus-polyoma middle T (MMTV-PyMT) model of metastatic breast cancer. Mice at different stages of disease progression were imaged with (R)-[11C]PAQ PET, and results were compared to those obtained with [18 F]FDG PET and magnetic resonance imaging. (R)-[11C]PAQ uptake levels were also compared to ex vivo immunofluorescence analysis of tumour- and angiogenesis-specific biomarkers. Additional pharmacokinetic studies were performed in rat and mouse. RESULTS: A heterogeneous uptake of (R)-[11C]PAQ was observed in the tumorous mammary glands. Ex vivo analysis confirmed the co-localization of areas with high radioactivity uptake and areas with elevated levels of VEGFR2. In some animals, a high focal uptake was observed in the lungs. The lung uptake correlated to metastatic and angiogenic activity, but not to uptake of [18 F]FDG PET. The pharmacokinetic studies revealed a limited metabolism and excretion during the 1-h scan and a distribution of radioactivity mainly to the liver, kidneys and lungs. In rat, a high uptake was additionally observed in adrenal and parathyroid glands. CONCLUSION: The results indicate that (R)-[11C]PAQ is a promising imaging biomarker for visualization of angiogenesis, based on VEGFR2 expression, in primary tumours and during metastasis development.

11.
Sci Signal ; 6(291): ra77, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-24003254

RESUMO

The Hippo-Yap signaling pathway regulates a number of developmental and adult cellular processes, including cell fate determination, tissue growth, and tumorigenesis. Members of the scaffold protein angiomotin (Amot) family interact with several Hippo pathway components, including Yap (Yes-associated protein), and either stimulate or inhibit Yap activity. We used a combination of genetic, biochemical, and transcriptional approaches to assess the functional consequences of the Amot-Yap interaction in mice and in human cells. Mice with a liver-specific Amot knockout exhibited reduced hepatic "oval cell" proliferation and tumorigenesis in response to toxin-induced injury or when crossed with mice lacking the tumor suppressor Nf2. Biochemical examination of the Amot-Yap interaction revealed that the p130 splicing isoform of Amot (Amot-p130) and Yap interacted in both the cytoplasm and nucleus, which involved binding of PPxY and LPxY motifs in Amot-p130 to WW domains of Yap. In the cytoplasm, Amot-p130 prevented the phosphorylation of Yap by blocking access of the WW domains to the kinase Lats1. Within the nucleus, Amot-p130 was associated with the transcriptional complex containing Yap and Teads (TEA domain family members) and contributed to the regulation of a subset of Yap target genes, many of which are associated with tumorigenesis. These findings indicated that Amot acts as a Yap cofactor, preventing Yap phosphorylation and augmenting its activity toward a specific set of genes that facilitate tumorigenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transformação Celular Neoplásica/metabolismo , Células Epiteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Motivos de Aminoácidos , Angiomotinas , Animais , Proteínas de Ciclo Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Células Epiteliais/patologia , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas de Neoplasias/genética , Fosfoproteínas/genética , Fosforilação/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Fatores de Transcrição , Proteínas de Sinalização YAP
12.
Nat Commun ; 4: 1672, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23575676

RESUMO

Vascular endothelial growth factor (VEGF) guides the path of new vessel sprouts by inducing VEGF receptor-2 activity in the sprout tip. In the stalk cells of the sprout, VEGF receptor-2 activity is downregulated. Here, we show that VEGF receptor-2 in stalk cells is dephosphorylated by the endothelium-specific vascular endothelial-phosphotyrosine phosphatase (VE-PTP). VE-PTP acts on VEGF receptor-2 located in endothelial junctions indirectly, via the Angiopoietin-1 receptor Tie2. VE-PTP inactivation in mouse embryoid bodies leads to excess VEGF receptor-2 activity in stalk cells, increased tyrosine phosphorylation of VE-cadherin and loss of cell polarity and lumen formation. Vessels in ve-ptp(-/-) teratomas also show increased VEGF receptor-2 activity and loss of endothelial polarization. Moreover, the zebrafish VE-PTP orthologue ptp-rb is essential for polarization and lumen formation in intersomitic vessels. We conclude that the role of Tie2 in maintenance of vascular quiescence involves VE-PTP-dependent dephosphorylation of VEGF receptor-2, and that VEGF receptor-2 activity regulates VE-cadherin tyrosine phosphorylation, endothelial cell polarity and lumen formation.


Assuntos
Polaridade Celular , Endotélio Vascular/citologia , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Animais , Endotélio Vascular/enzimologia , Endotélio Vascular/metabolismo , Junções Intercelulares , Camundongos , Fosforilação , Receptor TIE-2/metabolismo
13.
J Biol Chem ; 288(13): 8991-9000, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23389031

RESUMO

The melanoma cell adhesion molecule (CD146) contains a circulating proteolytic variant (sCD146), which is involved in inflammation and angiogenesis. Its circulating level is modulated in different pathologies, but its intracellular transduction pathways are still largely unknown. Using peptide pulldown and mass spectrometry, we identified angiomotin as a sCD146-associated protein in endothelial progenitor cells (EPC). Interaction between angiomotin and sCD146 was confirmed by enzyme-linked immunosorbent assay (ELISA), homogeneous time-resolved fluorescence, and binding of sCD146 on both immobilized recombinant angiomotin and angiomotin-transfected cells. Silencing angiomotin in EPC inhibited sCD146 angiogenic effects, i.e. EPC migration, proliferation, and capacity to form capillary-like structures in Matrigel. In addition, sCD146 effects were inhibited by the angiomotin inhibitor angiostatin and competition with recombinant angiomotin. Finally, binding of sCD146 on angiomotin triggered the activation of several transduction pathways that were identified by antibody array. These results delineate a novel signaling pathway where sCD146 binds to angiomotin to stimulate a proangiogenic response. This result is important to find novel target cells of sCD146 and for the development of therapeutic strategies based on EPC in the treatment of ischemic diseases.


Assuntos
Antígeno CD146/sangue , Endotélio Vascular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Neovascularização Patológica , Células-Tronco/citologia , Angiomotinas , Angiostatinas/metabolismo , Capilares/metabolismo , Colágeno/química , Combinação de Medicamentos , Células Endoteliais/citologia , Ensaio de Imunoadsorção Enzimática/métodos , Inativação Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Laminina/química , Espectrometria de Massas/métodos , Proteínas dos Microfilamentos , Microscopia de Fluorescência/métodos , Proteoglicanas/química , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Espectrometria de Fluorescência/métodos , Cicatrização
14.
Angiogenesis ; 15(2): 305-16, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22426512

RESUMO

Angiomotin (Amot) is one of several identified angiostatin receptors expressed by the endothelia of angiogenic tissues. We have shown that a DNA vaccine targeting Amot overcome immune tolerance and induce an antibody response that hampers the progression of incipient tumors. Following our observation of increased Amot expression on tumor endothelia concomitant with the progression from pre-neoplastic lesions to full-fledged carcinoma, we evaluated the effect of anti-Amot vaccination on clinically evident tumors. Electroporation of plasmid coding for the human Amot (pAmot) significantly delayed the progression both of autochthonous tumors in cancer prone BALB-neuT and PyMT genetically engineered mice and transplantable TUBO tumor in wild-type BALB/c mice. The intensity of the inhibition directly correlated with the titer of anti-Amot antibodies induced by the vaccine. Tumor inhibition was associated with an increase of vessels diameter with the formation of lacunar spaces, increase in vessel permeability, massive tumor perivascular necrosis and an effective epitope spreading that induces an immune response against other tumor associated antigens. Greater tumor vessel permeability also markedly enhances the antitumor effect of doxorubicin. These data provide a rationale for the development of novel anticancer treatments based on anti-Amot vaccination in conjunction with chemotherapy regimens.


Assuntos
Vacinas Anticâncer/farmacologia , Permeabilidade Capilar/imunologia , Tolerância Imunológica , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Proteínas dos Microfilamentos/imunologia , Neoplasias Experimentais/terapia , Neovascularização Patológica/terapia , Vacinas de DNA/farmacologia , Angiomotinas , Animais , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Permeabilidade Capilar/genética , Linhagem Celular Tumoral , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Neoplasias Experimentais/genética , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Neovascularização Patológica/patologia , Ratos , Vacinas de DNA/genética , Vacinas de DNA/imunologia
15.
Cancer Cell ; 19(4): 527-40, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21481793

RESUMO

The Merlin/NF2 tumor suppressor restrains cell growth and tumorigenesis by controlling contact-dependent inhibition of proliferation. We have identified a tight-junction-associated protein complex comprising Merlin, Angiomotin, Patj, and Pals1. We demonstrate that Angiomotin functions downstream of Merlin and upstream of Rich1, a small GTPase Activating Protein, as a positive regulator of Rac1. Merlin, through competitive binding to Angiomotin, releases Rich1 from the Angiomotin-inhibitory complex, allowing Rich1 to inactivate Rac1, ultimately leading to attenuation of Rac1 and Ras-MAPK pathways. Patient-derived Merlin mutants show diminished binding capacities to Angiomotin and are unable to dissociate Rich1 from Angiomotin or inhibit MAPK signaling. Depletion of Angiomotin in Nf2(-/-) Schwann cells attenuates the Ras-MAPK signaling pathway, impedes cellular proliferation in vitro and tumorigenesis in vivo.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Proteínas de Membrana/fisiologia , Proteínas dos Microfilamentos/fisiologia , Neurofibromina 2/fisiologia , Transdução de Sinais/fisiologia , Junções Íntimas/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Sequência de Aminoácidos , Angiomotinas , Animais , Proliferação de Células , Proteínas Ativadoras de GTPase/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos SCID , Dados de Sequência Molecular , Núcleosídeo-Fosfato Quinase/fisiologia , Nervos Periféricos/química , Células de Schwann/química , Proteínas de Junções Íntimas , Proteínas rac1 de Ligação ao GTP/fisiologia
16.
Free Radic Biol Med ; 50(7): 811-20, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21215310

RESUMO

Alterations in mitochondrial structure and function are a hallmark of cancer cells compared to normal cells and thus targeting mitochondria has emerged as an novel approach to cancer therapy. The mitochondrial thioredoxin 2 (Trx2) system is critical for cell viability, but its role in cancer biology is not well understood. Recently some cationic triphenylmethanes such as brilliant green (BG) and gentian violet were shown to have antitumor and antiangiogenic activity with unknown mechanisms. Here we demonstrate that BG killed cells at nanomolar concentrations and targeted mitochondrial Trx2, which was oxidized and degraded. HeLa cells were more sensitive to BG than fibroblasts. In HeLa cells, Trx2 down-regulation by siRNA resulted in increased sensitivity to BG, whereas for fibroblasts, the same treatments had no effect. BG was observed to accumulate in mitochondria and cause a rapid and dramatic decrease in mitochondrial Trx2 protein. With a redox Western blot method, we found that treatment with BG caused oxidation of both Trx1 and Trx2, followed by release of cytochrome c and apoptosis-inducing factor from the mitochondria into the cytosol. Moreover, this treatment resulted in an elevation of the mRNA level of Lon protease, a protein quality control enzyme in the mitochondrial matrix, suggesting that the oxidized Trx2 may be degraded by Lon protease.


Assuntos
Apoptose/efeitos dos fármacos , Violeta Genciana/farmacologia , Mitocôndrias/metabolismo , Compostos de Amônio Quaternário/farmacologia , Tiorredoxinas/antagonistas & inibidores , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Fator de Indução de Apoptose/análise , Fator de Indução de Apoptose/metabolismo , Cátions/química , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/análise , Citocromos c/metabolismo , Fibroblastos , Violeta Genciana/química , Violeta Genciana/uso terapêutico , Células HeLa , Humanos , Neoplasias/tratamento farmacológico , Oxirredução , Protease La/metabolismo , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/uso terapêutico , RNA Interferente Pequeno/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxinas/biossíntese , Compostos de Tritil/química , Compostos de Tritil/farmacologia , Compostos de Tritil/uso terapêutico , Regulação para Cima
17.
Mol Cancer Res ; 8(9): 1198-206, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20736295

RESUMO

Tumors implanted near the scapulae have been shown to grow four times faster than the same tumors implanted at the iliac crest. Although there were marked differences in the vascularization of tumors from these two different sites, the mechanism controlling regional angiogenesis was not identified. Here, we show site-specific growth of intraperitoneal tumor implants in the mouse abdomen. Our data indicate that the angiogenic response of the host differs significantly between the upper and lower sites in the mouse abdomen and reveal that the expansion of tumor mass is restricted to sites with low angiogenic responses, such as the bowel mesentery in the lower abdomen. We show that, in this model, this suppression of angiogenesis is due to an expression gradient of thrombospondin-1 (TSP-1), a potent endogenous angiogenesis inhibitor. Mice with a targeted deletion of TSP-1 no longer show regional restriction of tumor growth. The physiologic relevance of these findings may be seen in patients with peritoneal carcinomatosis, whereby tumors spread within the peritoneal cavity and show differential growth in the upper and lower abdomen. We hypothesize that the difference in tumor growth in these patients may be due to a gradient of TSP-1 expression in stroma. Finally, our studies suggest that upregulation of TSP-1 in tumor cells is one method to suppress the growth of tumors in the upper abdomen.


Assuntos
Neoplasias/patologia , Especificidade de Órgãos , Abdome/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Camundongos , Microvasos/patologia , Transplante de Neoplasias , Neoplasias/irrigação sanguínea , Neoplasias/genética , Neovascularização Patológica/patologia , Cavidade Peritoneal/patologia , Peritônio/patologia , Trombospondina 1/genética , Trombospondina 1/metabolismo , Microambiente Tumoral/fisiologia
18.
Biochem Biophys Res Commun ; 396(1): 147-51, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20494129

RESUMO

Horizontal or lateral gene transfer is an effective mechanism for the exchange of genetic information in bacteria allowing bacterial diversification and facilitating adaptation to new environments. Recent data demonstrate that DNA may also be transferred between somatic cells via the uptake of apoptotic bodies. This process allows transfer of viral genes that have been incorporated into the genome in a receptor-independent fashion. Transferred DNA is replicated and propagated in daughter cells in cell that have an inactivated DNA response which may impact tumor progression.


Assuntos
Apoptose , Transferência Genética Horizontal , Instabilidade Genômica , Neoplasias/genética , Aneuploidia , Animais , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Camundongos , Neoplasias/patologia , Proteína Supressora de Tumor p53/metabolismo , Vírus/genética
19.
Circ Res ; 105(3): 260-70, 2009 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-19590046

RESUMO

RATIONALE: We have previously shown that angiomotin (Amot) is essential for endothelial cell migration during mouse embryogenesis. However, approximately 5% of Amot knockout mice survived without any detectable vascular defects. Angiomotin-like protein 1 (AmotL1) potentially compensates for the absence of Amot as it is 62% homologous to Amot and exhibits similar expression pattern in endothelial cells. OBJECTIVE: Here, we report the identification of a novel isoform of AmotL1 that controls endothelial cell polarization and directional migration. METHODS AND RESULTS: Small interfering RNA-mediated silencing of AmotL1 in mouse aortic endothelial cells caused a significant reduction in migration. In confluent mouse pancreatic islet endothelial cells (MS-1), AmotL1 colocalized with Amot to tight junctions. Small interfering RNA knockdown of both Amot and AmotL1 in MS-1 cells exhibited an additive effect on increasing paracellular permeability compared to that of knocking down either Amot or AmotL1, indicating both proteins were required for proper tight junction activity. Moreover, as visualized using high-resolution 2-photon microscopy, the morpholino-mediated knockdown of amotl1 during zebrafish embryogenesis resulted in vascular migratory defect of intersegmental vessels with strikingly decreased junction stability between the stalk cells and the aorta. However, the phenotype was quite distinct from that of amot knockdown which affected polarization of the tip cells of intersegmental vessels. Double knockdown resulted in an additive phenotype of depolarized tip cells with no or decreased connection of the stalk cells to the dorsal aorta. CONCLUSIONS: These results cumulatively validate that Amot and AmotL1 have similar effects on endothelial migration and tight junction formation in vitro. However, in vivo Amot appears to control the polarity of vascular tip cells whereas AmotL1 mainly affects the stability of cell-cell junctions of the stalk cells.


Assuntos
Polaridade Celular/fisiologia , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Junções Intercelulares/metabolismo , Proteínas de Membrana/metabolismo , Neovascularização Fisiológica/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Angiomotinas , Proteína 1 Semelhante a Angiopoietina , Animais , Animais Geneticamente Modificados , Bovinos , Adesão Celular/fisiologia , Linhagem Celular , Movimento Celular/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/genética , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Dados de Sequência Molecular , Domínios PDZ/genética , Isoformas de Proteínas/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
20.
Eur J Nucl Med Mol Imaging ; 36(8): 1283-95, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19288096

RESUMO

PURPOSE: (R,S)-N-(4-Bromo-2-fluorophenyl)-6-methoxy-7-((1-methyl-3-piperidinyl)methoxy)-4-quinazolinamine (PAQ) is a tyrosine kinase inhibitor with high affinity for the vascular endothelial growth factor receptor 2 (VEGFR-2), which plays an important role in tumour angiogenesis. The aim of this work was to develop and evaluate in mice the (11)C-labelled analogue as an in vivo tracer for VEGFR-2 expression in solid tumours. METHODS: [(11)C]PAQ was synthesized by an N-methylation of desmethyl-PAQ using [(11)C]methyl iodide. The tracer's pharmacokinetic properties and its distribution in both subcutaneous and intraperitoneal tumour models were evaluated with positron emission tomography (PET). [(18)F]FDG was used as a reference tracer for tumour growth. PET results were corroborated by ex vivo and in vitro phosphor imaging and immunohistochemical analyses. RESULTS: In vitro assays and PET in healthy animals revealed low tracer metabolism, limited excretion over 60 min and a saturable and irreversible binding. Radiotracer uptake in subcutaneous tumour masses was low, while focal areas of high uptake (up to 8% ID/g) were observed in regions connecting the tumour to the host. Uptake was similarly high but more distributed in tumours growing within the peritoneum. The pattern of radiotracer uptake was generally different from that of the metabolic tracer [(18)F]FDG and correlated well with variations in VEGFR-2 expression determined ex vivo by immunohistochemical analysis. CONCLUSION: These results suggest that [(11)C]PAQ has potential as a noninvasive PET tracer for in vivo imaging of VEGFR-2 expression in angiogenic "hot spots".


Assuntos
Piperidinas/síntese química , Quinazolinas/síntese química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/análise , Animais , Transporte Biológico , Radioisótopos de Carbono/química , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Imuno-Histoquímica , Masculino , Camundongos , Microssomos/metabolismo , Neoplasias/diagnóstico por imagem , Neoplasias/genética , Neoplasias/metabolismo , Piperidinas/metabolismo , Piperidinas/farmacocinética , Tomografia por Emissão de Pósitrons , Quinazolinas/metabolismo , Quinazolinas/farmacocinética , Traçadores Radioativos , Radioquímica , Ratos , Distribuição Tecidual , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA