RESUMO
Glycoprotein nonmetastatic melanoma protein B (GPNMB) is a type I transmembrane protein initially identified in nonmetastatic melanomas and has been associated with human heart failure; however, its role in cardiac injury and function remains unclear. Here we show that GPNMB expression is elevated in failing human and mouse hearts after myocardial infarction (MI). Lineage tracing and bone-marrow transplantation reveal that bone-marrow-derived macrophages are the main source of GPNMB in injured hearts. Using genetic loss-of-function models, we demonstrate that GPNMB deficiency leads to increased mortality, cardiac rupture and rapid post-MI left ventricular dysfunction. Conversely, increasing circulating GPNMB levels through viral delivery improves heart function after MI. Single-cell transcriptomics show that GPNMB enhances myocyte contraction and reduces fibroblast activation. Additionally, we identified GPR39 as a receptor for circulating GPNMB, with its absence negating the beneficial effects. These findings highlight a pivotal role of macrophage-derived GPNMBs in post-MI cardiac repair through GPR39 signaling.
RESUMO
Inhibitors of neprilysin improve glycemia in patients with heart failure and type 2 diabetes (T2D). The effect of weight loss by diet, surgery, or pharmacotherapy on neprilysin activity (NEPa) is unknown. We investigated circulating NEPa and neprilysin protein concentrations in obesity, T2D, metabolic dysfunction-associated steatotic liver disease (MASLD), and following bariatric surgery, or GLP-1-receptor-agonist therapy. NEPa, but not neprilysin protein, was enhanced in obesity, T2D, and MASLD. Notably, MASLD associated with NEPa independently of BMI and HbA1c. NEPa decreased after bariatric surgery with a concurrent increase in OGTT-stimulated GLP-1. Diet-induced weight loss did not affect NEPa, but individuals randomized to 52-week weight maintenance with liraglutide (1.2 mg/day) decreased NEPa, consistent with another study following 6-week liraglutide (3 mg/day). A 90-min GLP-1 infusion did not alter NEPa. Thus, MASLD may drive exaggerated NEPa, and lowered NEPa following bariatric surgery or liraglutide therapy may contribute to the reported improved cardiometabolic effects.
RESUMO
BACKGROUND: The gut derived anorexigenic hormone neurotensin (NT) is upregulated after bariatric surgery which may contribute to the sustained weight loss. In contrast, diet-induced weight loss is most often followed by weight regain. We therefore investigated whether diet-induced weight loss impacts levels of circulating NT in mice and humans and whether NT levels predicts body weight change after weight loss in humans. METHODS: In vivo mice study: Obese mice were fed ad-libitum or a restricted diet (40-60 % of average food intake) for 9 days to obtain similar weight loss as observed in the human study. At termination, intestinal segments, the hypothalamus and plasma were collected for histological, real time PCR, and radioimmunoassay (RIA) analysis. CLINICAL TRIAL: Plasma samples from 42 participants with obesity, completing an 8-week low-calorie diet in a randomized controlled trial, were analyzed. Plasma NT was measured by RIA at fasting and during a meal test before and after diet-induced weight loss and after one year of intended weight maintenance. RESULTS: In obese mice, food restriction-induced body weight loss of 14 % was associated with a 64 % reduction in fasting plasma NT (p < 0.0001). In the mouse duodenum (p = 0.07) and jejunum (p < 0.05), NT tissue concentration was decreased without tissue atrophy indicative of a physiological downregulation. In the mouse hypothalamus a downregulation of Pomc (p < 0.01) along with upregulation of Npy (p < 0.001) and Agrp (p < 0.0001) expression was found after restricted feeding in support of increased hunger after diet-induced weight loss. Therefore, we investigated the NT response in humans undergoing weight loss maintenance. In humans, similar to the mice, the low-calorie diet induced weight loss of 13 % body weight was associated with 40 % reduction in fasting plasma NT levels (p < 0.001). Meal-induced NT peak responses were greater in humans who lost additional weight during the 1 year maintenance phase compared to participants who regained weight (p < 0.05). CONCLUSION: Diet-induced weight loss decreased fasting plasma NT levels in both humans and mice with obesity, and regulated hunger-associated hypothalamic gene expression in mice. Meal-induced NT responses were greater in humans who lost additional weight during the 1 year maintenance phase compared to participants who regained weight. This indicates that increased peak secretion of NT after weight loss may contribute to successful maintenance of weight loss. CLINICAL TRIAL REGISTRATION NUMBER: NCT02094183.
Assuntos
Neurotensina , Redução de Peso , Humanos , Animais , Camundongos , Camundongos Obesos , Redução de Peso/fisiologia , Obesidade/metabolismo , Dieta RedutoraRESUMO
Neurotensin (NT) is an anorexic gut hormone and neuropeptide that increases in circulation following bariatric surgery in humans and rodents. We sought to determine the contribution of NT to the metabolic efficacy of vertical sleeve gastrectomy (VSG). To explore a potential mechanistic role of NT in VSG, we performed sham or VSG surgeries in diet-induced obese NT receptor 1 (NTSR1) wild-type and knockout (ko) mice and compared their weight and fat mass loss, glucose tolerance, food intake, and food preference after surgery. NTSR1 ko mice had reduced initial anorexia and body fat loss. Additionally, NTSR1 ko mice had an attenuated reduction in fat preference following VSG. Results from this study suggest that NTSR1 signaling contributes to the potent effect of VSG to initially reduce food intake following VSG surgeries and potentially also on the effects on macronutrient selection induced by VSG. However, maintenance of long-term weight loss after VSG requires signals in addition to NT.
Assuntos
Anorexia/etiologia , Transtorno Alimentar Restritivo Evitativo , Gastrectomia/efeitos adversos , Complicações Pós-Operatórias/genética , Receptores de Neurotensina/genética , Animais , Anorexia/genética , Gorduras na Dieta , Gastrectomia/métodos , Masculino , Camundongos , Camundongos Knockout , Transtornos Fóbicos/etiologia , Transtornos Fóbicos/genética , Complicações Pós-Operatórias/psicologiaRESUMO
The G-protein coupled receptor GPR39 is abundantly expressed in various tissues and can be activated by changes in extracellular Zn2+ in physiological concentrations. Previously, genetically modified rodent models have been able to shed some light on the physiological functions of GPR39, and more recently the utilization of novel synthetic agonists has led to the unraveling of several new functions in the variety of tissues GPR39 is expressed. Indeed, GPR39 seems to be involved in many important metabolic and endocrine functions, but also to play a part in inflammation, cardiovascular diseases, saliva secretion, bone formation, male fertility, addictive and depression disorders and cancer. These new discoveries offer opportunities for the development of novel therapeutic approaches against many diseases where efficient therapeutics are still lacking. This review focuses on Zn2+ as an endogenous ligand as well as on the novel synthetic agonists of GPR39, placing special emphasis on the recently discovered physiological functions and discusses their pharmacological potential.
Assuntos
Biomarcadores , Descoberta de Drogas , Receptores Acoplados a Proteínas G/fisiologia , Animais , Suscetibilidade a Doenças , Descoberta de Drogas/métodos , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ligantes , Especificidade de Órgãos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Zinco/metabolismoRESUMO
OBJECTIVES: Obesity is a complex disease associated with a high risk of comorbidities. Gastric bypass surgery, an invasive procedure with low patient eligibility, is currently the most effective intervention that achieves sustained weight loss. This beneficial effect is attributed to alterations in gut hormone signaling. An attractive alternative is to pharmacologically mimic the effects of bariatric surgery by targeting several gut hormonal axes. The G protein-coupled receptor 39 (GPR39) expressed in the gastrointestinal tract has been shown to mediate ghrelin signaling and control appetite, food intake, and energy homeostasis, but the broader effect on gut hormones is largely unknown. A potent and efficacious GPR39 agonist (Cpd1324) was recently discovered, but the in vivo function was not addressed. Herein we studied the efficacy of the GPR39 agonist, Cpd1324, on metabolism and gut hormone secretion. METHODS: Body weight, food intake, and energy expenditure in GPR39 agonist-treated mice and GPR39 KO mice were studied in calorimetric cages. Plasma ghrelin, glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), and peptide YY (PYY) levels were measured. Organoids generated from murine and human small intestine and mouse colon were used to study GLP-1 and PYY release. Upon GPR39 agonist administration, dynamic changes in intracellular GLP-1 content were studied via immunostaining and changes in ion transport across colonic mucosa were monitored in Ussing chambers. The G protein activation underlying GPR39-mediated selective release of gut hormones was studied using bioluminescence resonance energy transfer biosensors. RESULTS: The GPR39 KO mice displayed a significantly increased food intake without corresponding increases in respiratory exchange ratios or energy expenditure. Oral administration of a GPR39 agonist induced an acute decrease in food intake and subsequent weight loss in high-fat diet (HFD)-fed mice without affecting their energy expenditure. The tool compound, Cpd1324, increased GLP-1 secretion in the mice as well as in mouse and human intestinal organoids, but not in GPR39 KO mouse organoids. In contrast, the GPR39 agonist had no effect on PYY or GIP secretion. Transepithelial ion transport was acutely affected by GPR39 agonism in a GLP-1- and calcitonin gene-related peptide (CGRP)-dependent manner. Analysis of Cpd1324 signaling properties showed activation of Gαq and Gαi/o signaling pathways in L cells, but not Gαs signaling. CONCLUSIONS: The GPR39 agonist described in this study can potentially be used by oral administration as a weight-lowering agent due to its stimulatory effect on GLP-1 secretion, which is most likely mediated through a unique activation of Gα subunits. Thus, GPR39 agonism may represent a novel approach to effectively treat obesity through selective modulation of gastrointestinal hormonal axes.
Assuntos
Hormônios Gastrointestinais/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Animais , Regulação do Apetite , Cirurgia Bariátrica , Peso Corporal , Ingestão de Alimentos , Células Enteroendócrinas , Polipeptídeo Inibidor Gástrico/farmacologia , Grelina/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Peptídeo YY/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores dos Hormônios Gastrointestinais , Redução de PesoRESUMO
OBJECTIVE: The goal of this study was to investigate the importance of central hormone-sensitive lipase (HSL) expression in the regulation of food intake and body weight in mice to clarify whether intracellular lipolysis in the mammalian hypothalamus plays a role in regulating appetite. METHODS: Using pharmacological and genetic approaches, we investigated the role of HSL in the rodent brain in the regulation of feeding and energy homeostasis under basal conditions during acute stress and high-fat diet feeding. RESULTS: We found that HSL, a key enzyme in the catabolism of cellular lipid stores, is expressed in the appetite-regulating centers in the hypothalamus and is activated by acute stress through a mechanism similar to that observed in adipose tissue and skeletal muscle. Inhibition of HSL in rodent models by a synthetic ligand, global knockout, or brain-specific deletion of HSL prevents a decrease in food intake normally seen in response to acute stress and is associated with the increased expression of orexigenic peptides neuropeptide Y (NPY) and agouti-related peptide (AgRP). Increased food intake can be reversed by adeno-associated virus-mediated reintroduction of HSL in neurons of the mediobasal hypothalamus. Importantly, metabolic stress induced by a high-fat diet also enhances the hyperphagic phenotype of HSL-deficient mice. Specific deletion of HSL in the ventromedial hypothalamic nucleus (VMH) or AgRP neurons reveals that HSL in the VMH plays a role in both acute stress-induced food intake and high-fat diet-induced obesity. CONCLUSIONS: Our results indicate that HSL activity in the mediobasal hypothalamus is involved in the acute reduction in food intake during the acute stress response and sensing of a high-fat diet.
Assuntos
Apetite/fisiologia , Homeostase , Hipotálamo/metabolismo , Esterol Esterase/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Ingestão de Alimentos , Metabolismo Energético , Feminino , Hiperfagia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Obesidade/metabolismo , Fatores de Processamento de RNA , Esterol Esterase/genética , Estresse Fisiológico/genética , TranscriptomaRESUMO
INTRODUCTION: Food intake varies during the ovarian hormone/estrous cycle in humans and rodents, an effect mediated mainly by estradiol. A potential mediator of the central anorectic effects of estradiol is the neuropeptide relaxin-3 (RLN3) synthetized in the nucleus incertus (NI) and acting via the relaxin family peptide-3 receptor (RXFP3). METHODS: We investigated the relationship between RLN3/RXFP3 signaling and feeding behavior across the female rat estrous cycle. We used in situ hybridization to investigate expression patterns of Rln3 mRNA in NI and Rxfp3 mRNA in the hypothalamic paraventricular nucleus (PVN), lateral hypothalamic area (LHA), medial preoptic area (MPA), and bed nucleus of the stria terminalis (BNST), across the estrous cycle. We identified expression of estrogen receptors (ERs) in the NI using droplet digital PCR and assessed the electrophysiological responsiveness of NI neurons to estradiol in brain slices. RESULTS: Rln3 mRNA reached the lowest levels in the NI pars compacta during proestrus. Rxfp3 mRNA levels varied across the estrous cycle in a region-specific manner, with changes observed in the perifornical LHA, magnocellular PVN, dorsal BNST, and MPA, but not in the parvocellular PVN or lateral LHA. G protein-coupled estrogen receptor 1 (Gper1) mRNA was the most abundant ER transcript in the NI. Estradiol inhibited 33% of type 1 NI neurons, including RLN3-positive cells. CONCLUSION: These findings demonstrate that the RLN3/RXFP3 system is modulated by the estrous cycle, and although further studies are required to better elucidate the cellular and molecular mechanisms of estradiol signaling, current results implicate the involvement of the RLN3/RXFP3 system in food intake fluctuations observed across the estrous cycle in female rats.
Assuntos
Estradiol/metabolismo , Ciclo Estral/metabolismo , Região Hipotalâmica Lateral/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Área Pré-Óptica/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Relaxina/metabolismo , Núcleos Septais/metabolismo , Animais , Feminino , RNA Mensageiro/metabolismo , RatosRESUMO
CONTEXT: The mechanisms underlying Roux-en-Y gastric bypass (RYGB) surgery-induced weight loss and the immediate postoperative beneficial metabolic effects associated with the operation remain uncertain. Enteroendocrine cell (EEC) secretory function has been proposed as a key factor in the marked metabolic benefits from RYGB surgery. OBJECTIVE: To identify novel gut-derived peptides with therapeutic potential in obesity and/or diabetes by profiling EEC-specific molecular changes in obese patients following RYGB-induced weight loss. SUBJECTS AND METHODS: Genome-wide expression analysis was performed in isolated human small intestinal EECs obtained from 20 gut-biopsied obese subjects before and after RYGB. Targets of interest were profiled for preclinical and clinical metabolic effects. RESULTS: Roux-en-Y gastric bypass consistently increased expression levels of the inverse ghrelin receptor agonist, liver-expressed antimicrobial peptide 2 (LEAP2). A secreted endogenous LEAP2 fragment (LEAP238-47) demonstrated robust insulinotropic properties, stimulating insulin release in human pancreatic islets comparable to the gut hormone glucagon-like peptide-1. LEAP238-47 showed reciprocal effects on growth hormone secretagogue receptor (GHSR) activity, suggesting that the insulinotropic action of the peptide may be directly linked to attenuation of tonic GHSR activity. The fragment was infused in healthy human individuals (n = 10), but no glucoregulatory effect was observed in the chosen dose as compared to placebo. CONCLUSIONS: Small intestinal LEAP2 expression was upregulated after RYGB. The corresponding circulating LEAP238-47 fragment demonstrated strong insulinotropic action in vitro but failed to elicit glucoregulatory effects in healthy human subjects.
Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas Sanguíneas/metabolismo , Derivação Gástrica/métodos , Trato Gastrointestinal/metabolismo , Ilhotas Pancreáticas/metabolismo , Obesidade/cirurgia , Fragmentos de Peptídeos/metabolismo , Transcriptoma , Adolescente , Adulto , Peptídeos Catiônicos Antimicrobianos/genética , Biomarcadores/análise , Proteínas Sanguíneas/genética , Estudos de Casos e Controles , Estudos Cross-Over , Método Duplo-Cego , Células Enteroendócrinas/metabolismo , Células Enteroendócrinas/patologia , Feminino , Seguimentos , Humanos , Ilhotas Pancreáticas/patologia , Masculino , Obesidade/patologia , Fragmentos de Peptídeos/genética , Prognóstico , Estudos Prospectivos , Adulto JovemRESUMO
Adipokines secreted from white adipose tissue play a role in metabolic crosstalk and homeostasis, whereas the brown adipose secretome is less explored. We performed high-sensitivity mass-spectrometry-based proteomics on the cell media of human adipocytes derived from the supraclavicular brown adipose and from the subcutaneous white adipose depots of adult humans. We identified 471 potentially secreted proteins covering interesting categories such as hormones, growth factors, extracellular matrix proteins, and proteins of the complement system, which were differentially regulated between brown and white adipocytes. A total of 101 proteins were exclusively quantified in brown adipocytes, and among these was ependymin-related protein 1 (EPDR1). EPDR1 was detected in human plasma, and functional studies suggested a role for EPDR1 in thermogenic determination during adipogenesis. In conclusion, we report substantial differences between the secretomes of brown and white human adipocytes and identify novel candidate batokines that can be important regulators of human metabolism.
Assuntos
Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Tecido Adiposo Marrom/metabolismo , Proteínas de Neoplasias/sangue , Proteômica/métodos , Adulto , Idoso , Animais , Estudos de Coortes , Feminino , Técnicas de Silenciamento de Genes , Bócio/sangue , Bócio/patologia , Bócio/cirurgia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Proteínas do Tecido Nervoso , Via Secretória/genética , Transdução de Sinais/genética , Transfecção , Adulto JovemRESUMO
Neurotensin (NT), a gut hormone and neuropeptide, increases in circulation after bariatric surgery in rodents and humans and inhibits food intake in mice. However, its potential to treat obesity and the subsequent metabolic dysfunctions have been difficult to assess owing to its short half-life in vivo. Here, we demonstrate that a long-acting, pegylated analog of the NT peptide (P-NT) reduces food intake, body weight, and adiposity in diet-induced obese mice when administered once daily for 6 days. Strikingly, when P-NT was combined with the glucagon-like peptide 1 mimetic liraglutide, the two peptides synergized to reduce food intake and body weight relative to each monotherapy, without inducing a taste aversion. Further, P-NT and liraglutide coadministration improved glycemia and reduced steatohepatitis. Finally, we show that the melanocortin pathway is central for P-NT-induced anorexia and necessary for the full synergistic effect of P-NT and liraglutide combination therapy. Overall, our data suggest that P-NT and liraglutide combination therapy could be an enhanced treatment for obesity with improved tolerability compared with liraglutide monotherapy.
Assuntos
Adiposidade/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Liraglutida/farmacologia , Neurotensina/farmacologia , Obesidade/metabolismo , Animais , Glicemia/metabolismo , Preparações de Ação Retardada , Sinergismo Farmacológico , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Melanocortinas/metabolismo , Camundongos , Camundongos Knockout , PolietilenoglicóisRESUMO
Ghrelin receptor (Ghr-R) signaling in neurons of the ventral tegmental area (VTA) can modulate dopaminergic function and the reward-related effects of both palatable foods and drugs of abuse. In this study, we re-introduced the Ghr-R in VTA neurons in Ghr-R knockout mice (Ghr-RVTA mice) to specifically study the importance of the constitutively active Ghr-R for VTA neuronal signaling. Our results showed that re-introduction of the Ghr-R in the VTA had no impact on body weight or food intake under basal conditions. However, during novel environment stress Ghr-RVTA mice showed increased food intake and energy expenditure compared to Ghr-R knockout mice, demonstrating the significance of Ghr-R signaling in the response to stress. Ghr-RVTA mice also showed increased cocaine-induced locomotor activity compared to Ghr-R knockout mice, highlighting the importance of ghrelin signaling for the reward-related effects of activation of VTA neurons. Overall, our data suggest that re-introduction of the Ghr-R in the mesolimbic reward system of Ghr-R knockout mice increases the level of activation induced by both cocaine and novelty stress.
Assuntos
Comportamento Animal/fisiologia , Receptores de Grelina/metabolismo , Área Tegmentar Ventral/metabolismo , Animais , Peso Corporal , Dependovirus/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Ingestão de Alimentos , Metabolismo Energético , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Consumo de Oxigênio , Receptores de Dopamina D2/metabolismo , Receptores de Grelina/deficiência , Receptores de Grelina/genética , Tirosina 3-Mono-Oxigenase/metabolismoRESUMO
Neurotensin (NT) is a peptide expressed in the brain and in the gastrointestinal tract. Brain NT inhibits food intake, but the effects of peripheral NT are less investigated. In this study, peripheral NT decreased food intake in both mice and rats, which was abolished by a NT antagonist. Using c-Fos immunohistochemistry, we found that peripheral NT activated brainstem and hypothalamic regions. The anorexigenic effect of NT was preserved in vagotomized mice but lasted shorter than in sham-operated mice. This in combination with a strong increase in c-Fos activation in area postrema after ip administration indicates that NT acts both through the blood circulation and the vagus. To improve the pharmacokinetics of NT, we developed a pegylated NT peptide, which presumably prolonged the half-life, and thus, the effect on feeding was extended compared with native NT. On a molecular level, the pegylated NT peptide increased proopiomelanocortin mRNA in the arcuate nucleus. We also investigated the importance of NT for the decreased food intake after gastric bypass surgery in a rat model of Roux-en-Y gastric bypass (RYGB). NT was increased in plasma and in the gastrointestinal tract in RYGB rats, and pharmacological antagonism of NT increased food intake transiently in RYGB rats. Taken together, our data suggest that NT is a metabolically active hormone, which contributes to the regulation of food intake.
Assuntos
Regulação do Apetite/efeitos dos fármacos , Derivação Gástrica , Neurotensina/administração & dosagem , Animais , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Masculino , Camundongos Endogâmicos C57BL , Neurotensina/antagonistas & inibidores , Neurotensina/sangue , Ratos Sprague-Dawley , Sacarose , VagotomiaRESUMO
The neurotensin receptor 1 (NTSR1) belongs to the family of 7TM, G protein-coupled receptors, and is activated by the 13-amino-acid peptide neurotensin (NTS) that has been shown to play important roles in neurological disorders and the promotion of cancer cells. Recently, a high-resolution x-ray crystal structure of NTSR1 in complex with NTS8-13 has been determined, providing novel insights into peptide ligand recognition by 7TM receptors. SR48692, a potent and selective small molecule antagonist has previously been used extensively as a tool compound to study NTSR1 receptor signaling properties. To investigate the binding mode of SR48692 and other small molecule compounds to NTSR1, we applied an Automated Ligand-guided Backbone Ensemble Receptor Optimization protocol (ALiBERO), taking receptor flexibility and ligand knowledge into account. Structurally overlapping binding poses for SR48692 and NTS8-13 were observed, despite their distinct chemical nature and inverse pharmacological profiles. The optimized models showed significantly improved ligand recognition in a large-scale virtual screening assessment compared to the crystal structure. Our models provide new insights into small molecule ligand binding to NTSR1 and could facilitate the structure-based design of non-peptide ligands for the evaluation of the pharmacological potential of NTSR1 in neurological disorders and cancer.
Assuntos
Biologia Computacional/métodos , Simulação por Computador , Receptores de Neurotensina/agonistas , Receptores de Neurotensina/antagonistas & inibidores , Sítios de Ligação , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Neurotensina/química , Neurotensina/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Ligação Proteica , Domínios Proteicos , Pirazóis/química , Pirazóis/farmacologia , Quinolinas/química , Quinolinas/farmacologia , Receptores de Neurotensina/química , Transdução de Sinais/efeitos dos fármacosRESUMO
C4.4A is a modular glycolipid-anchored Ly6/uPAR/α-neurotoxin multidomain protein that exhibits a prominent membrane-associated expression in stratified squamous epithelia. C4.4A is also expressed in various solid cancer lesions, where high expression levels often are correlated to poor prognosis. Circumstantial evidence suggests a role for C4.4A in cell adhesion, migration, and invasion, but a well-defined biological function is currently unknown. In the present study, we have generated and characterized the first C4.4A-deficient mouse line to gain insight into the functional significance of C4.4A in normal physiology and cancer progression. The unchallenged C4.4A-deficient mice were viable, fertile, born in a normal Mendelian distribution and, surprisingly, displayed normal development of squamous epithelia. The C4.4A-deficient mice were, nonetheless, significantly lighter than littermate controls predominantly due to differences in fat mass. Congenital C4.4A deficiency delayed migration of keratinocytes enclosing incisional skin wounds in male mice. In chemically induced bladder carcinomas, C4.4A deficiency attenuated the incidence of invasive lesions despite having no effect on total tumour burden. This new C4.4A-deficient mouse line provides a useful platform for future studies on functional aspects of C4.4A in tumour cell invasion in vivo.
Assuntos
Moléculas de Adesão Celular/genética , Epiderme/embriologia , Epiderme/metabolismo , Proteínas Ligadas por GPI/genética , Deleção de Genes , Animais , Peso Corporal , Carcinoma Pulmonar de Lewis , Moléculas de Adesão Celular/deficiência , Moléculas de Adesão Celular/metabolismo , Metabolismo Energético/genética , Epiderme/ultraestrutura , Epitélio/ultraestrutura , Feminino , Proteínas Ligadas por GPI/deficiência , Proteínas Ligadas por GPI/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Marcação de Genes , Imageamento por Ressonância Magnética , Masculino , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Fenótipo , Frações Subcelulares/metabolismo , Magreza/metabolismo , Tomografia Computadorizada por Raios X , Bexiga Urinária/patologia , Perda Insensível de Água , CicatrizaçãoRESUMO
Dietary advanced glycation end products (AGE) formed during heating of food have gained interest as potential nutritional toxins with adverse effects on inflammation and glucose metabolism. In the present study, we investigated the short-term effects of high and low molecular weight (HMW and LMW) dietary AGE on insulin sensitivity, expression of the receptor for AGE (RAGE), the AGE receptor 1 (AGER1) and TNF-α, F2-isoprostaglandins, body composition and food intake. For 2 weeks, thirty-six Sprague-Dawley rats were fed a diet containing 20% milk powder with different proportions of this being given as heated milk powder (0, 40 or 100%), either native (HMW) or hydrolysed (LMW). Gene expression of RAGE and AGER1 in whole blood increased in the group receiving a high AGE LMW diet, which also had the highest urinary excretion of the AGE, methylglyoxal-derived hydroimidazolone 1 (MG-H1). Urinary excretion of N ε-carboxymethyl-lysine increased with increasing proportion of heat-treated milk powder in the HMW and LMW diets but was unrelated to gene expression. There was no difference in insulin sensitivity, F2-isoprostaglandins, food intake, water intake, body weight or body composition between the groups. In conclusion, RAGE and AGER1 expression can be influenced by a high AGE diet after only 2 weeks in proportion to MG-H1 excretion. No other short-term effects were observed.
Assuntos
Dieta/efeitos adversos , Produtos Finais de Glicação Avançada/efeitos adversos , Hexosiltransferases/metabolismo , Receptor para Produtos Finais de Glicação Avançada/agonistas , Regulação para Cima , Animais , Biomarcadores/sangue , Biomarcadores/urina , Ingestão de Energia , Produtos Finais de Glicação Avançada/administração & dosagem , Produtos Finais de Glicação Avançada/química , Produtos Finais de Glicação Avançada/urina , Hexosiltransferases/sangue , Hexosiltransferases/química , Hexosiltransferases/genética , Temperatura Alta/efeitos adversos , Imidazóis/urina , Imidazolinas/urina , Lisina/análogos & derivados , Lisina/urina , Masculino , Proteínas do Leite/administração & dosagem , Proteínas do Leite/efeitos adversos , Proteínas do Leite/química , Peso Molecular , Proteólise , Distribuição Aleatória , Ratos Sprague-Dawley , Receptor para Produtos Finais de Glicação Avançada/sangue , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Eliminação Renal , Testes de Toxicidade Subaguda , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Reactive oxygen species (ROS) contribute to target-cell damage in inflammatory and iron-overload diseases. Little is known about iron transport regulation during inflammatory attack. Through a combination of in vitro and in vivo studies, we show that the proinflammatory cytokine IL-1ß induces divalent metal transporter 1 (DMT1) expression correlating with increased ß cell iron content and ROS production. Iron chelation and siRNA and genetic knockdown of DMT1 expression reduce cytokine-induced ROS formation and cell death. Glucose-stimulated insulin secretion in the absence of cytokines in Dmt1 knockout islets is defective, highlighting a physiological role of iron and ROS in the regulation of insulin secretion. Dmt1 knockout mice are protected against multiple low-dose streptozotocin and high-fat diet-induced glucose intolerance, models of type 1 and type 2 diabetes, respectively. Thus, ß cells become prone to ROS-mediated inflammatory damage via aberrant cellular iron metabolism, a finding with potential general cellular implications.
Assuntos
Apoptose/efeitos dos fármacos , Proteínas de Transporte de Cátions/metabolismo , Células Secretoras de Insulina/metabolismo , Interleucina-1beta/farmacologia , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Proteínas de Transporte de Cátions/antagonistas & inibidores , Proteínas de Transporte de Cátions/genética , Diabetes Mellitus Experimental , Dieta Hiperlipídica , Intolerância à Glucose , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Células Secretoras de Insulina/citologia , Camundongos , Camundongos Knockout , Modelos Biológicos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transativadores/genética , Transativadores/metabolismoRESUMO
Ghrelin is a gastrointestinal polypeptide that acts through the ghrelin receptor (GHSR) to promote food intake and increase adiposity. Activation of GHSR requires the presence of a fatty-acid (FA) side chain on amino acid residue serine 3 of the ghrelin molecule. However, little is known about the role that the type of FA used for acylation plays in the biological action of ghrelin. We therefore evaluated a series of differentially acylated peptides to determine whether alterations in length or stability of the FA side chain have an impact on the ability of ghrelin to activate GHSR in vitro or to differentially alter food intake, body weight, and body composition in vivo. Fatty acids principally available in the diet (such as palmitate C16) and therefore representing potential substrates for the ghrelin-activating enzyme ghrelin O-acyltransferase (GOAT) were used for dose-, time-, and administration/route-dependent effects of ghrelin on food intake, body weight, and body composition in rats and mice. Our data demonstrate that altering the length of the FA side chain of ghrelin results in the differential activation of GHSR. Additionally, we found that acylation of ghrelin with a long-chain FA (C16) delays the acute central stimulation of food intake. Lastly, we found that, depending on acylation length, systemic and central chronic actions of ghrelin on adiposity can be enhanced or reduced. Together our data suggest that modification of the FA side-chain length can be a novel approach to modulate the efficacy of pharmacologically administered ghrelin.
Assuntos
Metabolismo Energético/efeitos dos fármacos , Grelina/metabolismo , Homeostase/efeitos dos fármacos , Receptores de Grelina/genética , Acilação , Animais , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Grelina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacologia , Ratos , Ratos Long-Evans , Receptores de Grelina/metabolismoRESUMO
It has been hypothesized that amphipathic peptides might bind to membranes prior to activating their cognate receptors, but this has proven difficult to test. The peptide hormone PYY3-36 is believed to perform its appetite-suppressing actions through binding to hypothalamic Y2 receptors. It has been proposed that PYY3-36 via its amphipathic α-helix binds to the plasma membrane prior to receptor docking. Here, our aim was to study the implication of this hypothesis using new analogs of PYY3-36. We first studied membrane binding of PYY3-36. Next, we designed a series of PYY3-36 analogs to increase membrane-binding affinity by substituting the N-terminal segment with a de novo designed α-helical, amphipathic sequence. These 2-helix variants of PYY3-36 were assembled by solid-phase peptide synthesis. Pharmacological studies demonstrated that even though the native peptide sequence was radically changed, highly active Y2 receptor agonists were generated. A potent analog, with a Kd of 4 nM for membranes, was structurally characterized by NMR in the membrane-bound state, which clearly showed that it formed the expected 2-helix. The topology of the peptide-micelle association was studied by paramagnetic relaxation enhancement using a spin label, which confirmed that the hydrophobic residues bound to the membrane. Our studies further support the hypothesis that PYY3-36 associates with the membrane and indicate that this can be used in the design of novel molecules with high receptor binding potency. These observations are likely to be generally important for peptide hormones and biopharmaceutical drugs derived from them. This new 2-helix variant of PYY3-36 will be useful as a tool compound for studying peptide-membrane interactions.
Assuntos
Membrana Celular/metabolismo , Hormônios Peptídicos/síntese química , Hormônios Peptídicos/metabolismo , Peptídeo YY/química , Sequência de Aminoácidos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Hormônios Peptídicos/química , Ligação Proteica , Estrutura Secundária de Proteína , Relação Estrutura-AtividadeRESUMO
L-Arginine (L-Arg) is a conditionally essential amino acid and a natural constituent of dietary proteins. Studies in obese rats and type 2 diabetic humans have indicated that dietary supplementation with L-Arg can diminish gain in white adipose tissue (WAT) and improve insulin sensitivity. However, the effects of L-Arg on glucose homeostasis, body composition and energy metabolism remain unclear. In addition, no studies have, to our knowledge, examined whether L-Arg has beneficial effects as a dietary supplement in the mouse model. In the present study, we investigated the effects of L-Arg supplementation to male C57BL/6 mice on an array of physiological parameters. L-Arg supplemented mice were maintained on a low-protein diet and body composition, appetite regulation, glucose tolerance, insulin sensitivity and energy expenditure were evaluated. A significant reduction in epididymal WAT was observed in L-Arg supplemented mice compared with mice fed an isocaloric control diet. Surprisingly, the L-Arg supplemented animals were hyperphagic corresponding to a highly significant decrease in feed efficiency, as body weight developed in a similar pattern in both experimental groups. Glucose homeostasis experiments revealed a major effect of L-Arg supplementation on glucose tolerance and insulin sensitivity, interestingly, independent of a parallel regulation in whole-body adiposity. Increased L-Arg ingestion also raised energy expenditure; however, no concurrent effect on locomotor activity, substrate metabolism or expression of uncoupling proteins (UCP1 and UCP2) in adipose tissues was displayed. In conclusion, dietary L-Arg supplementation substantially affects an array of metabolic-associated parameters including a reduction in WAT, hyperphagia, improved insulin sensitivity and increased energy expenditure in mice fed a low-protein diet.