Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Audiol Neurootol ; 28(6): 407-419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37331337

RESUMO

BACKGROUND: Mutations in TMPRSS3 are an important cause of autosomal recessive non-syndromic hearing loss. The hearing loss associated with mutations in TMPRSS3 is characterized by phenotypic heterogeneity, ranging from mild to profound hearing loss, and is generally progressive. Clinical presentation and natural history of TMPRSS3 mutations vary significantly based on the location and type of mutation in the gene. Understanding these genotype-phenotype relationships and associated natural disease histories is necessary for the successful development and application of gene-based therapies and precision medicine approaches to DFNB8/10. The heterogeneous presentation of TMPRSS3-associated disease makes it difficult to identify patients clinically. As the body of literature on TMPRSS3-associated deafness grows, there is need for better categorization of the hearing phenotypes associated with specific mutations in the gene. SUMMARY: In this review, we summarize TMPRSS3 genotype-phenotype relationships including a thorough description of the natural history of patients with TMPRSS3-associated hearing loss to lay the groundwork for the future of TMPRSS3 treatment using molecular therapy. KEY MESSAGES: TMPRSS3 mutation is a significant cause of genetic hearing loss. All patients with TMPRSS3 mutation display severe-to-profound prelingual (DFNB10) or a postlingual (DFNB8) progressive sensorineural hearing loss. Importantly, TMPRSS3 mutations have not been associated with middle ear or vestibular deficits. The c.916G>A (p.Ala306Thr) missense mutation is the most frequently reported mutation across populations and should be further explored as a target for molecular therapy.


Assuntos
Perda Auditiva Neurossensorial , Perda Auditiva , Humanos , Serina Endopeptidases/genética , Proteínas de Membrana/genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva/genética , Mutação , Estudos de Associação Genética , Fenótipo , Proteínas de Neoplasias/genética
3.
Sci Transl Med ; 15(702): eabq3916, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37379370

RESUMO

Inner ear gene therapy has recently effectively restored hearing in neonatal mice, but it is complicated in adulthood by the structural inaccessibility of the cochlea, which is embedded within the temporal bone. Alternative delivery routes may advance auditory research and also prove useful when translated to humans with progressive genetic-mediated hearing loss. Cerebrospinal fluid flow via the glymphatic system is emerging as a new approach for brain-wide drug delivery in rodents as well as humans. The cerebrospinal fluid and the fluid of the inner ear are connected via a bony channel called the cochlear aqueduct, but previous studies have not explored the possibility of delivering gene therapy via the cerebrospinal fluid to restore hearing in adult deaf mice. Here, we showed that the cochlear aqueduct in mice exhibits lymphatic-like characteristics. In vivo time-lapse magnetic resonance imaging, computed tomography, and optical fluorescence microscopy showed that large-particle tracers injected into the cerebrospinal fluid reached the inner ear by dispersive transport via the cochlear aqueduct in adult mice. A single intracisternal injection of adeno-associated virus carrying solute carrier family 17, member 8 (Slc17A8), which encodes vesicular glutamate transporter-3 (VGLUT3), rescued hearing in adult deaf Slc17A8-/- mice by restoring VGLUT3 protein expression in inner hair cells, with minimal ectopic expression in the brain and none in the liver. Our findings demonstrate that cerebrospinal fluid transport comprises an accessible route for gene delivery to the adult inner ear and may represent an important step toward using gene therapy to restore hearing in humans.


Assuntos
Orelha Interna , Adulto , Animais , Humanos , Camundongos , Orelha Interna/patologia , Cóclea , Audição , Terapia Genética/métodos , Técnicas de Transferência de Genes
4.
Otol Neurotol ; 44(1): 21-25, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509434

RESUMO

OBJECTIVE: Investigate hearing preservation and spatial hearing outcomes in children with TMPRSS3 mutations who received bilateral cochlear implantation. STUDY DESIGN AND METHODS: Longitudinal case series report. Two siblings (ages, 7 and 4 yr) with TMPRSS3 mutations with down-sloping audiograms received sequential bilateral cochlear implantation with hearing preservation with low-frequency acoustic amplification and high-frequency electrical stimulation. Spatial hearing, including speech perception and localization, was assessed at three time points: preoperative, postoperative of first and second cochlear implant (CI). RESULTS: Both children showed low-frequency hearing preservation in unaided, acoustic-only audiograms. Both children demonstrated improvements in speech perception in both quiet and noise after CI activations. The emergence of spatial hearing was observed. Each child's overall speech perception and spatial hearing when listening with bilateral CIs were within the range or better than published group data from children with bilateral CIs of other etiology. CONCLUSION: Bilateral cochlear implantation with hearing preservation is a viable option for managing hearing loss for pediatric patients with TMPRSS3 mutations.


Assuntos
Implante Coclear , Implantes Cocleares , Surdez , Percepção da Fala , Humanos , Criança , Percepção da Fala/fisiologia , Audição/genética , Surdez/reabilitação , Proteínas de Membrana , Proteínas de Neoplasias , Serina Endopeptidases/genética
5.
EMBO Mol Med ; 13(2): e13259, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33350593

RESUMO

Genetic variants account for approximately half the cases of congenital and early-onset deafness. Methods and technologies for viral delivery of genes into the inner ear have evolved over the past decade to render gene therapy a viable and attractive approach for treatment. Variants in SYNE4, encoding the protein nesprin-4, a member of the linker of nucleoskeleton and cytoskeleton (LINC), lead to DFNB76 human deafness. Syne4-/- mice have severe-to-profound progressive hearing loss and exhibit mislocalization of hair cell nuclei and hair cell degeneration. We used AAV9-PHP.B, a recently developed synthetic adeno-associated virus, to deliver the coding sequence of Syne4 into the inner ears of neonatal Syne4-/- mice. Here we report rescue of hair cell morphology and survival, nearly complete recovery of auditory function, and restoration of auditory-associated behaviors, without observed adverse effects. Uncertainties remain regarding the durability of the treatment and the time window for intervention in humans, but our results suggest that gene therapy has the potential to prevent hearing loss in humans with SYNE4 mutations.


Assuntos
Surdez , Perda Auditiva , Animais , Surdez/genética , Surdez/terapia , Dependovirus/genética , Terapia Genética , Audição/genética , Perda Auditiva/genética , Perda Auditiva/terapia , Camundongos
6.
Annu Rev Biophys ; 50: 31-51, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33285080

RESUMO

Sound-induced mechanical stimuli are detected by elaborate mechanosensory transduction (MT) machinery in highly specialized hair cells of the inner ear. Genetic studies of inherited deafness in the past decades have uncovered several molecular constituents of the MT complex, and intense debate has surrounded the molecular identity of the pore-forming subunits. How the MT components function in concert in response to physical stimulation is not fully understood. In this review, we summarize and discuss multiple lines of evidence supporting the hypothesis that transmembrane channel-like 1 is a long-sought MT channel subunit. We also review specific roles of other components of the MT complex, including protocadherin 15, cadherin 23, lipoma HMGIC fusion partner-like 5, transmembrane inner ear, calcium and integrin-binding family member 2, and ankyrins. Based on these recent advances, we propose a unifying theory of hair cell MT that may reconcile most of the functional discoveries obtained to date. Finally, we discuss key questions that need to be addressed for a comprehensive understanding of hair cell MT at molecular and atomic levels.


Assuntos
Células Ciliadas Auditivas Internas/citologia , Mecanotransdução Celular , Animais , Cálcio/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Humanos , Proteínas de Membrana/metabolismo
7.
Mol Ther ; 29(3): 973-988, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33212302

RESUMO

AAV-mediated gene therapy is a promising approach for treating genetic hearing loss. Replacement or editing of the Tmc1 gene, encoding hair cell mechanosensory ion channels, is effective for hearing restoration in mice with some limitations. Efficient rescue of outer hair cell function and lack of hearing recovery with later-stage treatment remain issues to be solved. Exogenous genes delivered with the adeno-associated virus (AAV)9-PHP.B capsid via the utricle transduce both inner and outer hair cells of the mouse cochlea with high efficacy. Here, we demonstrate that AAV9-PHP.B gene therapy can promote hair cell survival and successfully rescues hearing in three distinct mouse models of hearing loss. Tmc1 replacement with AAV9-PHP.B in a Tmc1 knockout mouse rescues hearing and promotes hair cell survival with equal efficacy in inner and outer hair cells. The same treatment in a recessive Tmc1 hearing-loss model, Baringo, partially recovers hearing even with later-stage treatment. Finally, dual delivery of Streptococcus pyogenes Cas9 (SpCas9) and guide RNA (gRNA) in separate AAV9-PHP.B vectors selectively disrupts a dominant Tmc1 allele and preserves hearing in Beethoven mice, a model of dominant, progressive hearing loss. Tmc1-targeted gene therapies using single or dual AAV9-PHP.B vectors offer potent and versatile approaches for treating dominant and recessive deafness.


Assuntos
Dependovirus/genética , Modelos Animais de Doenças , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Perda Auditiva/terapia , Proteínas de Membrana/fisiologia , RNA Guia de Cinetoplastídeos/genética , Animais , Feminino , Vetores Genéticos/genética , Perda Auditiva/genética , Perda Auditiva/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
Sci Transl Med ; 12(546)2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493795

RESUMO

Most genetic diseases arise from recessive point mutations that require correction, rather than disruption, of the pathogenic allele to benefit patients. Base editing has the potential to directly repair point mutations and provide therapeutic restoration of gene function. Mutations of transmembrane channel-like 1 gene (TMC1) can cause dominant or recessive deafness. We developed a base editing strategy to treat Baringo mice, which carry a recessive, loss-of-function point mutation (c.A545G; resulting in the substitution p.Y182C) in Tmc1 that causes deafness. Tmc1 encodes a protein that forms mechanosensitive ion channels in sensory hair cells of the inner ear and is required for normal auditory function. We found that sensory hair cells of Baringo mice have a complete loss of auditory sensory transduction. To repair the mutation, we tested several optimized cytosine base editors (CBEmax variants) and guide RNAs in Baringo mouse embryonic fibroblasts. We packaged the most promising CBE, derived from an activation-induced cytidine deaminase (AID), into dual adeno-associated viruses (AAVs) using a split-intein delivery system. The dual AID-CBEmax AAVs were injected into the inner ears of Baringo mice at postnatal day 1. Injected mice showed up to 51% reversion of the Tmc1 c.A545G point mutation to wild-type sequence (c.A545A) in Tmc1 transcripts. Repair of Tmc1 in vivo restored inner hair cell sensory transduction and hair cell morphology and transiently rescued low-frequency hearing 4 weeks after injection. These findings provide a foundation for a potential one-time treatment for recessive hearing loss and support further development of base editing to correct pathogenic point mutations.


Assuntos
Surdez , Proteínas de Membrana , Animais , Surdez/genética , Surdez/terapia , Fibroblastos , Células Ciliadas Auditivas , Audição/genética , Humanos , Camundongos
9.
Hear Res ; 394: 107882, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31980281

RESUMO

Viral delivery of exogenous coding sequences into the inner ear has the potential for therapeutic benefit for patients suffering genetic or acquired hearing loss. To devise improved strategies for viral delivery, we investigated two injection techniques, round window membrane injection or a novel utricle injection method, for their ability to safely and efficiently transduce sensory hair cells and neurons of the mouse inner ear. In addition, we evaluated three synthetic AAV vectors (Anc80L65, AAV9-PHP.B, AAV2.7m8) encoding enhanced green fluorescent protein (eGFP) and three promoters (Cmv, Synapsin, Gfap) for their ability to transduce and drive expression in desired cell types. We found the utricle injection method with AAV9-PHP.B and a Cmv promoter was the most efficient combination for driving robust eGFP expression in both inner and outer hair cells. We found eGFP expression levels rose over 3-5 days post-injection, a viral dose of 1.5 × 109 gc yielded half maximal eGFP expression and that the utricle injection method yielded transduced hair cells even when delivered as late as postnatal day 16. Sensory transduction and auditory thresholds were unaltered in injected mice relative to uninjected wild-type controls. Vestibular end organs were also transduced without affecting balance behavior. The Synapsin promoter and the Gfap promoter drove strong eGFP expression in inner ear neurons and supporting cells, respectively. We conclude the AAV9-PHP.B vector and the utricle injection method are well-suited for delivery of exogenous gene constructs into inner ears of mouse models of auditory and vestibular dysfunction.


Assuntos
Orelha Interna , Animais , Infecções por Citomegalovirus , Dependovirus/genética , Terapia Genética , Vetores Genéticos , Células Ciliadas Auditivas Externas , Camundongos , Sáculo e Utrículo , Sinapsinas/genética
10.
Nat Biotechnol ; 37(9): 1070-1079, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31332326

RESUMO

Base editors use DNA-modifying enzymes targeted with a catalytically impaired CRISPR protein to precisely install point mutations. Here, we develop phage-assisted continuous evolution of base editors (BE-PACE) to improve their editing efficiency and target sequence compatibility. We used BE-PACE to evolve cytosine base editors (CBEs) that overcome target sequence context constraints of canonical CBEs. One evolved CBE, evoAPOBEC1-BE4max, is up to 26-fold more efficient at editing cytosine in the GC context, a disfavored context for wild-type APOBEC1 deaminase, while maintaining efficient editing in all other sequence contexts tested. Another evolved deaminase, evoFERNY, is 29% smaller than APOBEC1 and edits efficiently in all tested sequence contexts. We also evolved a CBE based on CDA1 deaminase with much higher editing efficiency at difficult target sites. Finally, we used data from evolved CBEs to illuminate the relationship between deaminase activity, base editing efficiency, editing window width and byproduct formation. These findings establish a system for rapid evolution of base editors and inform their use and improvement.


Assuntos
Adenosina Desaminase/metabolismo , Evolução Molecular Direcionada , Edição de Genes , Adenosina Desaminase/genética , Animais , Sequência de Bases , Sistemas CRISPR-Cas , Linhagem Celular , Regulação Enzimológica da Expressão Gênica , Marcação de Genes , Humanos , Mutação INDEL , Camundongos
11.
Nat Med ; 25(7): 1123-1130, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31270503

RESUMO

Since most dominant human mutations are single nucleotide substitutions1,2, we explored gene editing strategies to disrupt dominant mutations efficiently and selectively without affecting wild-type alleles. However, single nucleotide discrimination can be difficult to achieve3 because commonly used endonucleases, such as Streptococcus pyogenes Cas9 (SpCas9), can tolerate up to seven mismatches between guide RNA (gRNA) and target DNA. Furthermore, the protospacer-adjacent motif (PAM) in some Cas9 enzymes can tolerate mismatches with the target DNA3,4. To circumvent these limitations, we screened 14 Cas9/gRNA combinations for specific and efficient disruption of a nucleotide substitution that causes the dominant progressive hearing loss, DFNA36. As a model for DFNA36, we used Beethoven mice5, which harbor a point mutation in Tmc1, a gene required for hearing that encodes a pore-forming subunit of mechanosensory transduction channels in inner-ear hair cells6. We identified a PAM variant of Staphylococcus aureus Cas9 (SaCas9-KKH) that selectively and efficiently disrupted the mutant allele, but not the wild-type Tmc1/TMC1 allele, in Beethoven mice and in a DFNA36 human cell line. Adeno-associated virus (AAV)-mediated SaCas9-KKH delivery prevented deafness in Beethoven mice up to one year post injection. Analysis of current ClinVar entries revealed that ~21% of dominant human mutations could be targeted using a similar approach.


Assuntos
Alelos , Edição de Genes , Perda Auditiva Neurossensorial/prevenção & controle , Proteínas de Membrana/genética , Animais , Proteína 9 Associada à CRISPR/fisiologia , Linhagem Celular , Células Cultivadas , Dependovirus/genética , Modelos Animais de Doenças , Perda Auditiva Neurossensorial/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL
12.
Nat Commun ; 10(1): 236, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670701

RESUMO

Fifty percent of inner ear disorders are caused by genetic mutations. To develop treatments for genetic inner ear disorders, we designed gene replacement therapies using synthetic adeno-associated viral vectors to deliver the coding sequence for Transmembrane Channel-Like (Tmc) 1 or 2 into sensory hair cells of mice with hearing and balance deficits due to mutations in Tmc1 and closely related Tmc2. Here we report restoration of function in inner and outer hair cells, enhanced hair cell survival, restoration of cochlear and vestibular function, restoration of neural responses in auditory cortex and recovery of behavioral responses to auditory and vestibular stimulation. Secondarily, we find that inner ear Tmc gene therapy restores breeding efficiency, litter survival and normal growth rates in mouse models of genetic inner ear dysfunction. Although challenges remain, the data suggest that Tmc gene therapy may be well suited for further development and perhaps translation to clinical application.


Assuntos
Surdez/genética , Predisposição Genética para Doença , Terapia Genética/métodos , Perda Auditiva/genética , Doenças do Labirinto/genética , Proteínas de Membrana/genética , Animais , Surdez/terapia , Células Ciliadas Auditivas/fisiologia , Células Ciliadas Vestibulares/fisiologia , Perda Auditiva/terapia , Doenças do Labirinto/terapia , Camundongos , Camundongos Mutantes
13.
Artigo em Inglês | MEDLINE | ID: mdl-30291150

RESUMO

The TMC1 channel was identified as a protein essential for hearing in mouse and human, and recognized as one of a family of eight such proteins in mammals. The TMC family is part of a superfamily of seven branches, which includes the TMEM16s. Vertebrate hair cells express both TMC1 and TMC2. They are located at the tips of stereocilia and are required for hair cell mechanotransduction. TMC1 assembles as a dimer and its similarity to the TMEM16s has enabled a predicted tertiary structure with an ion conduction pore in each subunit of the dimer. Cysteine mutagenesis of the pore supports the role of TMC1 and TMC2 as the core channel proteins of a larger mechanotransduction complex that includes PCDH15 and LHFPL5, and perhaps TMIE, CIB2 and others.


Assuntos
Células Ciliadas Auditivas Internas/citologia , Células Ciliadas Auditivas Internas/metabolismo , Mecanotransdução Celular , Proteínas de Membrana/química , Animais , Humanos , Proteínas de Membrana/genética , Mutação
14.
Neuron ; 99(4): 736-753.e6, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30138589

RESUMO

The proteins that form the permeation pathway of mechanosensory transduction channels in inner-ear hair cells have not been definitively identified. Genetic, anatomical, and physiological evidence support a role for transmembrane channel-like protein (TMC) 1 in hair cell sensory transduction, yet the molecular function of TMC proteins remains unclear. Here, we provide biochemical evidence suggesting TMC1 assembles as a dimer, along with structural and sequence analyses suggesting similarity to dimeric TMEM16 channels. To identify the pore region of TMC1, we used cysteine mutagenesis and expressed mutant TMC1 in hair cells of Tmc1/2-null mice. Cysteine-modification reagents rapidly and irreversibly altered permeation properties of mechanosensory transduction. We propose that TMC1 is structurally similar to TMEM16 channels and includes ten transmembrane domains with four domains, S4-S7, that line the channel pore. The data provide compelling evidence that TMC1 is a pore-forming component of sensory transduction channels in auditory and vestibular hair cells.


Assuntos
Células Ciliadas Auditivas Internas/fisiologia , Mecanotransdução Celular/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/fisiologia , Porinas/química , Porinas/fisiologia , Animais , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Estrutura Secundária de Proteína
15.
Elife ; 72018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30019672

RESUMO

Human vestibular sensory epithelia in explant culture were incubated in gentamicin to ablate hair cells. Subsequent transduction of supporting cells with ATOH1 using an Ad-2 viral vector resulted in generation of highly significant numbers of cells expressing the hair cell marker protein myosin VIIa. Cells expressing myosin VIIa were also generated after blocking the Notch signalling pathway with TAPI-1 but less efficiently. Transcriptomic analysis following ATOH1 transduction confirmed up-regulation of 335 putative hair cell marker genes, including several downstream targets of ATOH1. Morphological analysis revealed numerous cells bearing dense clusters of microvilli at the apical surfaces which showed some hair cell-like characteristics confirming a degree of conversion of supporting cells. However, no cells bore organised hair bundles and several expected hair cell markers genes were not expressed suggesting incomplete differentiation. Nevertheless, the results show a potential to induce conversion of supporting cells in the vestibular sensory tissues of humans.


Assuntos
Epitélio/fisiologia , Células Ciliadas Vestibulares/fisiologia , Regeneração/fisiologia , Adenoviridae/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Epitélio/ultraestrutura , Regulação da Expressão Gênica , Gentamicinas/efeitos adversos , Proteínas de Fluorescência Verde/metabolismo , Células Ciliadas Vestibulares/patologia , Células Ciliadas Vestibulares/ultraestrutura , Humanos , Miosina VIIa , Miosinas/metabolismo , Receptores Notch/metabolismo , Sáculo e Utrículo/fisiologia , Sáculo e Utrículo/ultraestrutura , Transdução de Sinais , Transdução Genética
16.
Nat Biotechnol ; 35(3): 280-284, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28165475

RESUMO

Efforts to develop gene therapies for hearing loss have been hampered by the lack of safe, efficient, and clinically relevant delivery modalities. Here we demonstrate the safety and efficiency of Anc80L65, a rationally designed synthetic vector, for transgene delivery to the mouse cochlea. Ex vivo transduction of mouse organotypic explants identified Anc80L65 from a set of other adeno-associated virus (AAV) vectors as a potent vector for the cochlear cell targets. Round window membrane injection resulted in highly efficient transduction of inner and outer hair cells in mice, a substantial improvement over conventional AAV vectors. Anc80L65 round window injection was well tolerated, as indicated by sensory cell function, hearing and vestibular function, and immunologic parameters. The ability of Anc80L65 to target outer hair cells at high rates, a requirement for restoration of complex auditory function, may enable future gene therapies for hearing and balance disorders.


Assuntos
Cóclea/fisiologia , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Plasmídeos/genética , Transdução Genética/métodos , Animais , Cóclea/virologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos/administração & dosagem
17.
Nat Biotechnol ; 35(3): 264-272, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28165476

RESUMO

Because there are currently no biological treatments for hearing loss, we sought to advance gene therapy approaches to treat genetic deafness. We focused on Usher syndrome, a devastating genetic disorder that causes blindness, balance disorders and profound deafness, and studied a knock-in mouse model, Ush1c c.216G>A, for Usher syndrome type IC (USH1C). As restoration of complex auditory and balance function is likely to require gene delivery systems that target auditory and vestibular sensory cells with high efficiency, we delivered wild-type Ush1c into the inner ear of Ush1c c.216G>A mice using a synthetic adeno-associated viral vector, Anc80L65, shown to transduce 80-90% of sensory hair cells. We demonstrate recovery of gene and protein expression, restoration of sensory cell function, rescue of complex auditory function and recovery of hearing and balance behavior to near wild-type levels. The data represent unprecedented recovery of inner ear function and suggest that biological therapies to treat deafness may be suitable for translation to humans with genetic inner ear disorders.


Assuntos
Proteínas de Transporte/genética , Terapia Genética/métodos , Perda Auditiva Neurossensorial/terapia , Síndromes de Usher/genética , Síndromes de Usher/terapia , Doenças Vestibulares/terapia , Animais , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Feminino , Técnicas de Introdução de Genes , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos/administração & dosagem , Plasmídeos/genética , Recuperação de Função Fisiológica/genética , Resultado do Tratamento , Doenças Vestibulares/diagnóstico , Doenças Vestibulares/genética
18.
Am J Hum Genet ; 98(6): 1101-1113, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27236922

RESUMO

Hearing impairment is the most common sensory deficit. It is frequently caused by the expression of an allele carrying a single dominant missense mutation. Herein, we show that a single intracochlear injection of an artificial microRNA carried in a viral vector can slow progression of hearing loss for up to 35 weeks in the Beethoven mouse, a murine model of non-syndromic human deafness caused by a dominant gain-of-function mutation in Tmc1 (transmembrane channel-like 1). This outcome is noteworthy because it demonstrates the feasibility of RNA-interference-mediated suppression of an endogenous deafness-causing allele to slow progression of hearing loss. Given that most autosomal-dominant non-syndromic hearing loss in humans is caused by this mechanism of action, microRNA-based therapeutics might be broadly applicable as a therapy for this type of deafness.


Assuntos
Vias Auditivas , Perda Auditiva/prevenção & controle , Proteínas de Membrana/fisiologia , MicroRNAs/genética , Mutação de Sentido Incorreto/genética , Animais , Dependovirus/genética , Perda Auditiva/etiologia , Perda Auditiva/patologia , Humanos , Mecanotransdução Celular , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , MicroRNAs/administração & dosagem , Interferência de RNA
19.
Sci Transl Med ; 7(295): 295ra108, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26157030

RESUMO

Genetic hearing loss accounts for up to 50% of prelingual deafness worldwide, yet there are no biologic treatments currently available. To investigate gene therapy as a potential biologic strategy for restoration of auditory function in patients with genetic hearing loss, we tested a gene augmentation approach in mouse models of genetic deafness. We focused on DFNB7/11 and DFNA36, which are autosomal recessive and dominant deafnesses, respectively, caused by mutations in transmembrane channel-like 1 (TMC1). Mice that carry targeted deletion of Tmc1 or a dominant Tmc1 point mutation, known as Beethoven, are good models for human DFNB7/11 and DFNA36. We screened several adeno-associated viral (AAV) serotypes and promoters and identified AAV2/1 and the chicken ß-actin (Cba) promoter as an efficient combination for driving the expression of exogenous Tmc1 in inner hair cells in vivo. Exogenous Tmc1 or its closely related ortholog, Tmc2, were capable of restoring sensory transduction, auditory brainstem responses, and acoustic startle reflexes in otherwise deaf mice, suggesting that gene augmentation with Tmc1 or Tmc2 is well suited for further development as a strategy for restoration of auditory function in deaf patients who carry TMC1 mutations.


Assuntos
Surdez/terapia , Terapia Genética , Audição , Proteínas de Membrana/genética , Animais , Surdez/genética , Dependovirus/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes
20.
Science ; 344(6184): 1241062, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24812404

RESUMO

Hearing loss is the most common sensory deficit in humans, with some estimates suggesting up to 300 million affected individuals worldwide. Both environmental and genetic factors contribute to hearing loss and can cause death of sensory cells and neurons. Because these cells do not regenerate, the damage tends to accumulate, leading to profound deafness. Several biological strategies to restore auditory function are currently under investigation. Owing to the success of cochlear implants, which offer partial recovery of auditory function for some profoundly deaf patients, potential biological therapies must extend hearing restoration to include greater auditory acuity and larger patient populations. Here, we review the latest gene, stem-cell, and molecular strategies for restoring auditory function in animal models and the prospects for translating these approaches into viable clinical therapies.


Assuntos
Engenharia Celular/métodos , Terapia Genética/métodos , Células Ciliadas Auditivas/fisiologia , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/terapia , Mecanotransdução Celular , Regeneração , Transplante de Células-Tronco/métodos , Animais , Cóclea/citologia , Cóclea/fisiologia , Humanos , Camundongos , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA