Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22355, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102304

RESUMO

The African naked mole-rat (Heterocephalus glaber) is an attractive model for cancer and aging research due to its peculiar biological traits, such as unusual long life span and resistance to cancer. The establishment of induced pluripotent stem cells (iPSCs) would be a useful tool for in vitro studies but, in this species, the reprogramming of somatic cells is problematic because of their stable epigenome. Therefore, an alternative approach is the derivation of embryonic stem cells from in vitro-produced embryos. In this study, immature oocytes, opportunistically retrieved from sexually inactive females, underwent first in vitro maturation (IVM) and then in vitro fertilization via piezo-intracytoplasmic sperm injection (ICSI). Injected oocytes were then cultivated with two different approaches: (i) in an in vitro culture and (ii) in an isolated mouse oviduct organ culture system. The second approach led to the development of blastocysts, which were fixed and stained for further analysis.


Assuntos
Neoplasias , Injeções de Esperma Intracitoplásmicas , Animais , Feminino , Masculino , Camundongos , Blastocisto , Fertilização in vitro , Oócitos , Sêmen , Ratos-Toupeira
2.
Front Immunol ; 14: 1172467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153552

RESUMO

The naked mole-rat (NMR) is a unique long-lived rodent which is highly resistant to age-associated disorders and cancer. The immune system of NMR possesses a distinct cellular composition with the prevalence of myeloid cells. Thus, the detailed phenotypical and functional assessment of NMR myeloid cell compartment may uncover novel mechanisms of immunoregulation and healthy aging. In this study gene expression signatures, reactive nitrogen species and cytokine production, as well as metabolic activity of classically (M1) and alternatively (M2) activated NMR bone marrow-derived macrophages (BMDM) were examined. Polarization of NMR macrophages under pro-inflammatory conditions led to expected M1 phenotype characterized by increased pro-inflammatory gene expression, cytokine production and aerobic glycolysis, but paralleled by reduced production of nitric oxide (NO). Under systemic LPS-induced inflammatory conditions NO production also was not detected in NMR blood monocytes. Altogether, our results indicate that NMR macrophages are capable of transcriptional and metabolic reprogramming under polarizing stimuli, however, NMR M1 possesses species-specific signatures as compared to murine M1, implicating distinct adaptations in NMR immune system.


Assuntos
Citocinas , Macrófagos , Camundongos , Animais , Fenótipo , Citocinas/metabolismo , Ratos-Toupeira
3.
Front Mol Biosci ; 8: 660959, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079817

RESUMO

Most research on mechanisms of aging is being conducted in a very limited number of classical model species, i.e., laboratory mouse (Mus musculus), rat (Rattus norvegicus domestica), the common fruit fly (Drosophila melanogaster) and roundworm (Caenorhabditis elegans). The obvious advantages of using these models are access to resources such as strains with known genetic properties, high-quality genomic and transcriptomic sequencing data, versatile experimental manipulation capabilities including well-established genome editing tools, as well as extensive experience in husbandry. However, this approach may introduce interpretation biases due to the specific characteristics of the investigated species, which may lead to inappropriate, or even false, generalization. For example, it is still unclear to what extent knowledge of aging mechanisms gained in short-lived model organisms is transferable to long-lived species such as humans. In addition, other specific adaptations favoring a long and healthy life from the immense evolutionary toolbox may be entirely missed. In this review, we summarize the specific characteristics of emerging animal models that have attracted the attention of gerontologists, we provide an overview of the available data and resources related to these models, and we summarize important insights gained from them in recent years. The models presented include short-lived ones such as killifish (Nothobranchius furzeri), long-lived ones such as primates (Callithrix jacchus, Cebus imitator, Macaca mulatta), bathyergid mole-rats (Heterocephalus glaber, Fukomys spp.), bats (Myotis spp.), birds, olms (Proteus anguinus), turtles, greenland sharks, bivalves (Arctica islandica), and potentially non-aging ones such as Hydra and Planaria.

4.
Sci Rep ; 11(1): 7951, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846452

RESUMO

Large amounts of ultra-high molecular weight hyaluronan (HA) have been described as the main cause of cancer resistance in naked mole-rats (Heterocephalus glaber, NMR). Our work examined HA metabolism in these rodents more closely. HA was localized and quantified using HA binding proteins. Its molecular weight was determined using size exclusion chromatography and gel electrophoresis, HA family gene expression using RNAseq analysis, and hyaluronidase activity using zymography. Guinea pigs (Cavia porcellus) and mice (Mus musculus) were used as controls for some experiments. We found that HA localization was similar in NMR, guinea pig, and mouse tissues but NMR had larger amounts and higher molecular weight (maximum, around 2.5 MDa) of HA in serum and almost all tissues tested. We could not find ultra-high molecular weight HA (≥ 4 MDa) in NMR samples, in contrast to previous descriptions. Hyaluronidase-1 had lower expression and activity in NMR than mouse lymph nodes. RNAseq results showed that, among HA family genes, Tnfaip6 and hyaluronidase-3 (Hyal3) were systematically overexpressed in NMR tissues. In conclusion, NMR samples, contrary to expectations, do not harbor ultra-high molecular weight HA, although its amount and average molecular weight are higher in NMR than in guinea pig tissues and serum. Although hyaluronidase expression and activity are lower in NMR than mouse lymph nodes, this not sufficient to explain the presence of high molecular weight HA. A different activity of the NMR HA synthases remains possible. These characteristics, together with extremely high Hyal3 and Tnfaip6 expression, may provide the NMR with a bespoke, and perhaps protective, HA metabolism.


Assuntos
Ácido Hialurônico/sangue , Ratos-Toupeira/sangue , Especificidade de Órgãos , Animais , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Receptores de Hialuronatos/metabolismo , Hialuronoglucosaminidase/metabolismo , Linfonodos/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Peso Molecular
5.
Cells ; 10(3)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668197

RESUMO

The bioactivity of the IGF system is not a function of isolated hormone concentrations in a given biological matrix. Instead, the biological activities of IGFs are regulated by IGFBPs, IGFBP proteases, and inhibitors of IGFBP proteases. Therefore, assays based on IGF-related bioactivity may describe functions of the complete IGF system in a given biological matrix. Of particular interest are the IGF system effects on the AKT/mTOR pathway, as a dominant system for controlling growth, metabolism, and aging. In order to improve the sensitivity of IGF-dependent bioactivity, we made use of the known short-term and enhancing effects of IGFBP2 on the intracellular PI3K pathway. As a specific readout of this pathway, and further as a marker of the mTOR pathway, we assessed the phosphorylation of AKT-Ser473. Preincubation using IGFBP2 enhanced IGF1-dependent AKT-Ser473 phosphorylation in our experimental system. The assay's specificity was demonstrated by inhibition of IGF1 receptors outside or inside the cell, using antiserum or small molecule inhibitors, which reduced AKT phosphorylation in response to exogenous IGF1 (p < 0.05). The maximal response of AKT phosphorylation was recorded 15 to 60 min after the addition of IGF1 to cell monolayers (p < 0.001). In our cellular system, insulin induced AKT phosphorylation only at supra-physiological concentrations (µM). Using this novel assay, we identified the differential biological activity of the IGF system in AKT-Ser473 phosphorylation in serum (mouse, naked mole rat, and human), in cerebrospinal fluid (human), and in colostrum or mature milk samples (dairy cow). We have developed a sensitive and robust bioassay to assess the IGF-related activation of the AKT/mTOR pathway. The assay works efficiently and does not require expensive cell culture systems. By using capillary immuno-electrophoresis, the readout of IGF-related bioactivity is substantially accelerated, requiring a minimum of hands-on time. Importantly, the assay system is useful for studying IGF-related activity in the AKT/mTOR pathway in a broad range of biological matrices.


Assuntos
Bioensaio/métodos , Fator de Crescimento Insulin-Like I/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Técnicas de Cultura de Células , Humanos , Transdução de Sinais
6.
Biol Rev Camb Philos Soc ; 96(2): 376-393, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33128331

RESUMO

Naked mole-rats express many unusual traits for such a small rodent. Their morphology, social behaviour, physiology, and ageing have been well studied over the past half-century. Many early findings and speculations about this subterranean species persist in the literature, although some have been repeatedly questioned or refuted. While the popularity of this species as a natural-history curiosity, and oversimplified story-telling in science journalism, might have fuelled the perpetuation of such misconceptions, an accurate understanding of their biology is especially important for this new biomedical model organism. We review 28 of these persistent myths about naked mole-rat sensory abilities, ecophysiology, social behaviour, development and ageing, and where possible we explain how these misunderstandings came about.


Assuntos
Ratos-Toupeira , Comportamento Social , Envelhecimento , Animais , Biologia
7.
Proc Natl Acad Sci U S A ; 117(12): 6491-6501, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152094

RESUMO

The mitochondria of various tissues from mice, naked mole rats (NMRs), and bats possess two mechanistically similar systems to prevent the generation of mitochondrial reactive oxygen species (mROS): hexokinases I and II and creatine kinase bound to mitochondrial membranes. Both systems operate in a manner such that one of the kinase substrates (mitochondrial ATP) is electrophoretically transported by the ATP/ADP antiporter to the catalytic site of bound hexokinase or bound creatine kinase without ATP dilution in the cytosol. One of the kinase reaction products, ADP, is transported back to the mitochondrial matrix via the antiporter, again through an electrophoretic process without cytosol dilution. The system in question continuously supports H+-ATP synthase with ADP until glucose or creatine is available. Under these conditions, the membrane potential, ∆ψ, is maintained at a lower than maximal level (i.e., mild depolarization of mitochondria). This ∆ψ decrease is sufficient to completely inhibit mROS generation. In 2.5-y-old mice, mild depolarization disappears in the skeletal muscles, diaphragm, heart, spleen, and brain and partially in the lung and kidney. This age-dependent decrease in the levels of bound kinases is not observed in NMRs and bats for many years. As a result, ROS-mediated protein damage, which is substantial during the aging of short-lived mice, is stabilized at low levels during the aging of long-lived NMRs and bats. It is suggested that this mitochondrial mild depolarization is a crucial component of the mitochondrial anti-aging system.


Assuntos
Envelhecimento , Mitocôndrias/fisiologia , Membranas Mitocondriais/fisiologia , Difosfato de Adenosina/metabolismo , Animais , Quirópteros , Creatina/metabolismo , Transporte de Elétrons , Embrião de Mamíferos , Glucose/metabolismo , Hexoquinase/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/metabolismo , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Ratos-Toupeira , Especificidade de Órgãos , Espécies Reativas de Oxigênio/metabolismo , Especificidade da Espécie
8.
Eur J Immunol ; 49(11): 2103-2110, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31349374

RESUMO

The naked mole rat (Heterocephalus glaber, NMR) is a rodent with exceptional longevity, low rates of age-related diseases and spontaneous carcinogenesis. The NMR represents an attractive animal model in longevity and cancer research, but there are no NMR-specific antibodies available to study its immune system with respect to age- and cancer-related questions. Substantial homology of major NMR immune cell markers with those of Guinea pig, human and, to a lesser extent, mouse and rat origin are implicated for the existence of immunological cross-reactivity. We identified 10 antibodies recognising eight immunophenotypic markers expressed on the NMR's T and B lymphocytes, macrophages/monocytes and putative haematopoietic precursors and used them for an immunophenotyping of leukocyte subsets of peripheral blood, spleen and bone marrow samples. Overall, we found that the leukocyte composition of NMR peripheral blood is comparable to that of mice. Notably, the frequency of cytotoxic T cells was found to be lower in the NMR compared to corresponding mouse tissues and human blood. Antibodies used in the present paper are available either commercially or from the scientific community and will provide new opportunities for the NMR as a model system in ageing- and cancer-related research areas.


Assuntos
Anticorpos/isolamento & purificação , Subpopulações de Linfócitos B/imunologia , Células-Tronco Hematopoéticas/imunologia , Ratos-Toupeira/imunologia , Células Mieloides/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Anticorpos/química , Subpopulações de Linfócitos B/classificação , Subpopulações de Linfócitos B/citologia , Biomarcadores/análise , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Reações Cruzadas , Resistência à Doença/genética , Resistência à Doença/imunologia , Cobaias , Células-Tronco Hematopoéticas/citologia , Humanos , Imunofenotipagem , Longevidade/genética , Longevidade/imunologia , Camundongos , Células Mieloides/classificação , Células Mieloides/citologia , Baço/citologia , Baço/imunologia , Subpopulações de Linfócitos T/classificação , Subpopulações de Linfócitos T/citologia
9.
Sci Rep ; 7(1): 9590, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28852094

RESUMO

The naked mole-rat (Heterocephalus glaber) is a subterranean mouse-sized African mammal that shows astonishingly few age-related degenerative changes and seems to not be affected by cancer. These features make this wild rodent an excellent model to study the biology of healthy aging and longevity. Here we characterize for the first time the intestinal microbial ecosystem of the naked mole-rat in comparison to humans and other mammals, highlighting peculiarities related to the specific living environment, such as the enrichment in bacteria able to utilize soil sulfate as a terminal electron acceptor to sustain an anaerobic oxidative metabolism. Interestingly, some compositional gut microbiota peculiarities were also shared with human gut microbial ecosystems of centenarians and Hadza hunter-gatherers, considered as models of a healthy gut microbiome and of a homeostatic and highly adaptive gut microbiota-host relationship, respectively. In addition, we found an enrichment of short-chain fatty acids and carbohydrate degradation products in naked mole-rat compared to human samples. These data confirm the importance of the gut microbial ecosystem as an adaptive partner for the mammalian biology and health, independently of the host phylogeny.


Assuntos
Microbioma Gastrointestinal , Longevidade , Ratos-Toupeira , Animais , Biologia Computacional/métodos , Metagenoma , Metagenômica/métodos , RNA Ribossômico 16S
10.
Physiol Rev ; 97(2): 699-720, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28202600

RESUMO

It has been suggested that highly social mammals, such as naked mole rats and humans, are long-lived due to neoteny (the prolongation of youth). In both species, aging cannot operate as a mechanism facilitating natural selection because the pressure of this selection is strongly reduced due to 1) a specific social structure where only the "queen" and her "husband(s)" are involved in reproduction (naked mole rats) or 2) substituting fast technological progress for slow biological evolution (humans). Lists of numerous traits of youth that do not disappear with age in naked mole rats and humans are presented and discussed. A high resistance of naked mole rats to cancer, diabetes, cardiovascular and brain diseases, and many infections explains why their mortality rate is very low and almost age-independent and why their lifespan is more than 30 years, versus 3 years in mice. In young humans, curves of mortality versus age start at extremely low values. However, in the elderly, human mortality strongly increases. High mortality rates in other primates are observed at much younger ages than in humans. The inhibition of the aging process in humans by specific drugs seems to be a promising approach to prolong our healthspan. This might be a way to retard aging, which is already partially accomplished via the natural physiological phenomenon neoteny.


Assuntos
Envelhecimento/fisiologia , Hominidae/metabolismo , Longevidade/fisiologia , Neoplasias/metabolismo , Estresse Oxidativo/fisiologia , Animais , Evolução Biológica , Humanos
11.
Gut Pathog ; 8: 25, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27239229

RESUMO

BACKGROUND: A variety of microbial communities exist throughout the human and animal body. Genetics, environmental factors and long-term dietary habit contribute to shaping the composition of the gut microbiota. For this reason the study of the gut microbiota of a mammal exhibiting an extraordinary life span is of great importance. The naked mole-rat (Heterocephalus glaber) is a eusocial mammal known for its longevity and cancer resistance. METHODS: Here we analyzed its gut microbiota by cultivating the bacteria under aerobic and anaerobic conditions and identifying their species by mass spectrometry. RESULTS: Altogether, 29 species of microbes were identified, predominantly belonging to Firmicutes, and Bacteroidetes. The most frequent species were Bacillus megaterium (45.2 %), followed by Bacteroides thetaiotaomicron (19.4 %), Bacteroides ovatus, Staphylococcus sciuri and Paenibacillus spp., each with a frequency of 16.1 %. CONCLUSION: Overall, the gut of the naked mole-rat is colonized by diverse, but low numbers of cultivable microbes compared with humans and mice. The primary food plants of the rodents are rich in polyphenols and related compounds, possessing anti-microbial, anti-inflammatory, anti-oxidative as well as anti-cancer activity which may contribute to their exceptionally healthy life.

12.
Redox Biol ; 8: 192-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26803480

RESUMO

Hydrogen sulfide (H2S) is a gaseous signalling molecule involved in many physiological and pathological processes. There is increasing evidence that H2S is implicated in aging and lifespan control in the diet-induced longevity models. However, blood sulfide concentration of naturally long-lived species is not known. Here we measured blood sulfide in the long-lived naked mole-rat and five other mammalian species considerably differing in lifespan and found a negative correlation between blood sulfide and maximum longevity residual. In addition, we show that the naked mole-rat cystathionine ß-synthase (CBS), an enzyme whose activity in the liver significantly contributes to systemic sulfide levels, has lower activity in the liver and is activated to a higher degree by S-adenosylmethionine compared to other species. These results add complexity to the understanding of the role of H2S in aging and call for detailed research on naked mole-rat transsulfuration.


Assuntos
Envelhecimento/sangue , Cistationina beta-Sintase/metabolismo , Sulfeto de Hidrogênio/sangue , S-Adenosilmetionina/metabolismo , Envelhecimento/patologia , Animais , Cistationina beta-Sintase/genética , Dieta , Fígado/enzimologia , Longevidade/genética , Metionina/metabolismo , Ratos-Toupeira , Ratos
13.
PLoS One ; 10(6): e0130470, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26103567

RESUMO

BACKGROUND: The naked mole-rat (NMR) is a long-lived and cancer resistant species. Identification of potential anti-cancer and age related mechanisms is of great interest and makes this species eminent to investigate anti-cancer strategies and understand aging mechanisms. Since it is known that the NMR expresses higher liver mRNA-levels of alpha 2-macroglobulin than mice, nothing is known about its structure, functionality or expression level in the NMR compared to the human A2M. RESULTS: Here we show a comprehensive analysis of NMR- and human plasma-A2M, showing a different prediction in glycosylation of NMR-A2M, which results in a higher molecular weight compared to human A2M. Additionally, we found a higher concentration of A2M (8.3±0.44 mg/mL vs. and 4.4±0.20 mg/mL) and a lower total plasma protein content (38.7±1.79 mg/mL vs. 61.7±3.20 mg/mL) in NMR compared to human. NMR-A2M can be transformed by methylamine and trypsin resulting in a conformational change similar to human A2M. NMR-A2M is detectable by a polyclonal antibody against human A2M. Determination of tryptic and anti-tryptic activity of NMR and human plasma revealed a higher anti-tryptic activity of the NMR plasma. On the other hand, less proteolytic activity was found in NMR plasma compared to human plasma. CONCLUSION: We found transformed NMR-A2M binding to its specific receptor LRP1. We could demonstrate lower protein expression of LRP1 in the NMR liver tissue compared to human but higher expression of A2M. This was accompanied by a higher EpCAM protein expression as central adhesion molecule in cancer progression. NMR-plasma was capable to increase the adhesion in human fibroblast in vitro most probably by increasing CD29 protein expression. This is the first report, demonstrating similarities as well as distinct differences between A2M in NMR and human plasma. This might be directly linked to the intriguing phenotype of the NMR and suggests that A2M might probably play an important role in anti-cancer and the anti-aging mechanisms in the NMR.


Assuntos
Neoplasias/sangue , alfa-Macroglobulinas/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Humanos , Ratos-Toupeira , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA