Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Immunol Cell Biol ; 100(6): 394-408, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35718354

RESUMO

Portal tracts are key intrahepatic structures where leukocytes accumulate during immune responses. They contain the blood inflow, which includes portal blood from the gut, and lymphatic and biliary outflow of the liver, and as such represent a key interface for potential pathogen entry to the liver. Myeloid cells residing in the interstitium of the portal tract might play an important role in the surveillance or prevention of pathogen dissemination; however, the exact composition and localization of this population has not been explored fully. Our in-depth characterization of portal tract myeloid cells revealed that in addition to T lymphocytes, portal tracts contain a heterogeneous population of MHCIIhigh myeloid cells with potential antigen presenting cell (APC) function. These include a previously unreported subset of CSF1R-dependent CX3CR1+ macrophages that phenotypically and morphologically resemble liver capsular macrophages, as well as the two main dendritic cell subsets (cDC1 and cDC2). These cells are not randomly distributed, but each subset forms interconnected networks intertwined with specific components of the portal tract. The CX3CR1+ cells were preferentially detected along the outer border of the portal tracts, and also in the portal interstitium adjacent to the portal vein, bile duct, lymphatic vessels and hepatic artery. cDC1s abounded along the lymphatic vessels, while cDC2s mostly surrounded the biliary tree. The specific distributions of these discrete subsets predict that they may serve distinct functions in this compartment. Overall, our findings suggest that portal tracts and their embedded cellular networks of myeloid cells form a distinctive lymphoid compartment in the liver that has the potential to orchestrate immune responses in this organ.


Assuntos
Fígado , Macrófagos , Células Dendríticas
2.
Immunity ; 54(6): 1219-1230.e7, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33915109

RESUMO

The sympathetic nervous system (SNS) controls various physiological functions via the neurotransmitter noradrenaline. Activation of the SNS in response to psychological or physical stress is frequently associated with weakened immunity. Here, we investigated how adrenoceptor signaling influences leukocyte behavior. Intravital two-photon imaging after injection of noradrenaline revealed transient inhibition of CD8+ and CD4+ T cell locomotion in tissues. Expression of ß-adrenergic receptor in hematopoietic cells was not required for NA-mediated inhibition of motility. Rather, chemogenetic activation of the SNS or treatment with adrenergic receptor agonists induced vasoconstriction and decreased local blood flow, resulting in abrupt hypoxia that triggered rapid calcium signaling in leukocytes and halted cell motility. Oxygen supplementation reversed these effects. Treatment with adrenergic receptor agonists impaired T cell responses induced in response to viral and parasitic infections, as well as anti-tumor responses. Thus, stimulation of the SNS impairs leukocyte mobility, providing a mechanistic understanding of the link between adrenergic receptors and compromised immunity.


Assuntos
Adrenérgicos/imunologia , Movimento Celular/imunologia , Imunidade/imunologia , Leucócitos/imunologia , Sistema Nervoso Simpático/imunologia , Animais , Sinalização do Cálcio/imunologia , Linhagem Celular Tumoral , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Receptores Adrenérgicos/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia
3.
Sci Immunol ; 5(48)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591409

RESUMO

Liver resident-memory CD8+ T cells (TRM cells) can kill liver-stage Plasmodium-infected cells and prevent malaria, but simple vaccines for generating this important immune population are lacking. Here, we report the development of a fully synthetic self-adjuvanting glycolipid-peptide conjugate vaccine designed to efficiently induce liver TRM cells. Upon cleavage in vivo, the glycolipid-peptide conjugate vaccine releases an MHC I-restricted peptide epitope (to stimulate Plasmodium-specific CD8+ T cells) and an adjuvant component, the NKT cell agonist α-galactosylceramide (α-GalCer). A single dose of this vaccine in mice induced substantial numbers of intrahepatic malaria-specific CD8+ T cells expressing canonical markers of liver TRM cells (CD69, CXCR6, and CD101), and these cells could be further increased in number upon vaccine boosting. We show that modifications to the peptide, such as addition of proteasomal-cleavage sequences or epitope-flanking sequences, or the use of alternative conjugation methods to link the peptide to the glycolipid improved liver TRM cell generation and led to the development of a vaccine able to induce sterile protection in C57BL/6 mice against Plasmodium berghei sporozoite challenge after a single dose. Furthermore, this vaccine induced endogenous liver TRM cells that were long-lived (half-life of ~425 days) and were able to maintain >90% sterile protection to day 200. Our findings describe an ideal synthetic vaccine platform for generating large numbers of liver TRM cells for effective control of liver-stage malaria and, potentially, a variety of other hepatotropic infections.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Glicolipídeos/imunologia , Fígado/imunologia , Vacinas Antimaláricas/imunologia , Malária/imunologia , Peptídeos/imunologia , Animais , Linfócitos T CD8-Positivos/patologia , Fígado/patologia , Malária/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vacinação
4.
Cell Host Microbe ; 27(6): 950-962.e7, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32396839

RESUMO

Liver-resident memory CD8+ T (TRM) cells remain in and constantly patrol the liver to elicit rapid immunity upon antigen encounter and can mediate efficient protection against liver-stage Plasmodium infection. This finding has prompted the development of immunization strategies where T cells are activated in the spleen and then trapped in the liver to form TRM cells. Here, we identify PbRPL6120-127, a H2-Kb-restricted epitope from the putative 60S ribosomal protein L6 (RPL6) of Plasmodium berghei ANKA, as an optimal antigen for endogenous liver TRM cell generation and protection against malaria. A single dose vaccination targeting RPL6 provided effective and prolonged sterilizing immunity against high dose sporozoite challenges. Expressed throughout the parasite life cycle, across Plasmodium species, and highly conserved, RPL6 exhibits strong translation potential as a vaccine candidate. This is further advocated by the identification of a broadly conserved, immunogenic HLA-A∗02:01-restricted epitope in P. falciparum RPL6.


Assuntos
Antígenos de Protozoários/imunologia , Imunidade Celular/imunologia , Fígado/imunologia , Peptídeos/imunologia , Plasmodium berghei/imunologia , Proteínas Ribossômicas/imunologia , Animais , Anopheles , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Células Dendríticas/imunologia , Feminino , Imunização , Memória Imunológica/imunologia , Fígado/parasitologia , Malária/parasitologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esporozoítos/imunologia
5.
J Virol ; 92(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29976673

RESUMO

Human noroviruses are highly infectious single-stranded RNA (ssRNA) viruses and the major cause of nonbacterial gastroenteritis worldwide. With the discovery of murine norovirus (MNV) and the introduction of an effective model for norovirus infection and replication, knowledge about infection mechanisms and their impact on the host immune response has progressed. A major player in the immune response against viral infections is the group of major histocompatibility complex (MHC) class I proteins, which present viral antigen to immune cells. We have observed that MNV interferes with the antigen presentation pathway in infected cells by reducing the surface expression of MHC class I proteins. We have shown that MNV-infected dendritic cells or macrophages have lower levels of surface expression of MHC class I proteins than uninfected and bystander cells. Transcriptional analysis revealed that this defect is not due to a decreased amount of mRNA but is reflected at the protein level. We have determined that this defect is mediated via the MNV NS3 protein. Significantly, treatment of MNV-infected cells with the endocytic recycling inhibitor dynasore completely restored the surface expression of MHC class I proteins, whereas treatment with the proteasome inhibitor MG132 partly restored such expression. These observations indicate a role for endocytic recycling and proteasome-mediated degradation of these proteins. Importantly, we show that due to the reduced surface expression of MHC class I proteins, antigen presentation is inhibited, resulting in the inability of CD8+ T cells to become activated in the presence of MNV-infected cells.IMPORTANCE Human noroviruses (HuNoVs) are the major cause of nonbacterial gastroenteritis worldwide and impose a great burden on patients and health systems every year. So far, no antiviral treatment or vaccine is available. We show that MNV evades the host immune response by reducing the amount of MHC class I proteins displayed on the cell surface. This reduction leads to a decrease in viral antigen presentation and interferes with the CD8+ T cell response. CD8+ T cells respond to foreign antigen by activating cytotoxic pathways and inducing immune memory to the infection. By evading this immune response, MNV is able to replicate efficiently in the host, and the ability of cells to respond to consecutive infections is impaired. These findings have a major impact on our understanding of the ways in which noroviruses interact with the host immune response and manipulate immune memory.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por Caliciviridae/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Norovirus/patogenicidade , Animais , Apresentação de Antígeno , Infecções por Caliciviridae/virologia , Células Dendríticas/imunologia , Ativação Linfocitária , Macrófagos/imunologia , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas não Estruturais Virais/metabolismo
6.
J Immunol ; 199(12): 4165-4179, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29084838

RESUMO

We describe an MHC class II (I-Ab)-restricted TCR transgenic mouse line that produces CD4+ T cells specific for Plasmodium species. This line, termed PbT-II, was derived from a CD4+ T cell hybridoma generated to blood-stage Plasmodium berghei ANKA (PbA). PbT-II cells responded to all Plasmodium species and stages tested so far, including rodent (PbA, P. berghei NK65, Plasmodium chabaudi AS, and Plasmodium yoelii 17XNL) and human (Plasmodium falciparum) blood-stage parasites as well as irradiated PbA sporozoites. PbT-II cells can provide help for generation of Ab to P. chabaudi infection and can control this otherwise lethal infection in CD40L-deficient mice. PbT-II cells can also provide help for development of CD8+ T cell-mediated experimental cerebral malaria (ECM) during PbA infection. Using PbT-II CD4+ T cells and the previously described PbT-I CD8+ T cells, we determined the dendritic cell (DC) subsets responsible for immunity to PbA blood-stage infection. CD8+ DC (a subset of XCR1+ DC) were the major APC responsible for activation of both T cell subsets, although other DC also contributed to CD4+ T cell responses. Depletion of CD8+ DC at the beginning of infection prevented ECM development and impaired both Th1 and follicular Th cell responses; in contrast, late depletion did not affect ECM. This study describes a novel and versatile tool for examining CD4+ T cell immunity during malaria and provides evidence that CD4+ T cell help, acting via CD40L signaling, can promote immunity or pathology to blood-stage malaria largely through Ag presentation by CD8+ DC.


Assuntos
Apresentação de Antígeno , Linfócitos T CD4-Positivos/imunologia , Antígenos CD40/imunologia , Células Dendríticas/imunologia , Malária/imunologia , Camundongos Transgênicos/imunologia , Parasitemia/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Antígenos de Protozoários/imunologia , Antígenos CD40/deficiência , Ligante de CD40/imunologia , Células Cultivadas , Cruzamentos Genéticos , Hibridomas , Ativação Linfocitária , Malária Cerebral/imunologia , Malária Cerebral/prevenção & controle , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos/genética , Plasmodium berghei/imunologia , Quimera por Radiação
7.
ACS Chem Biol ; 12(11): 2898-2905, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29043774

RESUMO

The development of a universal vaccine for influenza A virus (IAV) that does not require seasonal modification is a long-standing health goal, particularly in the context of the increasing threat of new global pandemics. Vaccines that specifically induce T cell responses are of considerable interest because they can target viral proteins that are more likely to be shared between different virus strains and subtypes and hence provide effective cross-reactive IAV immunity. From a practical perspective, such vaccines should induce T cell responses with long-lasting memory, while also being simple to manufacture and cost-effective. Here we describe the synthesis and evaluation of a vaccine platform based on solid phase peptide synthesis and bio-orthogonal conjugation methodologies. The chemical approach involves covalently attaching synthetic long peptides from a virus-associated protein to a powerful adjuvant molecule, α-galactosylceramide (α-GalCer). Strain-promoted azide-alkyne cycloaddition is used as a simple and efficient method for conjugation, and pseudoproline methodology is used to increase the efficiency of the peptide synthesis. α-GalCer is a glycolipid that stimulates NKT cells, a population of lymphoid-resident immune cells that can provide potent stimulatory signals to antigen-presenting cells engaged in driving proliferation and differentiation of peptide-specific T cells. When used in mice, the vaccine induced T cell responses that provided effective prophylactic protection against IAV infection, with the speed of viral clearance greater than that seen from previous viral exposure. These findings are significant because the vaccines are highly defined, quick to synthesize, and easily characterized and are therefore appropriate for large scale affordable manufacture.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Galactosilceramidas/uso terapêutico , Vírus da Influenza A/imunologia , Vacinas contra Influenza/uso terapêutico , Infecções por Orthomyxoviridae/prevenção & controle , Peptídeos/uso terapêutico , Adjuvantes Imunológicos/síntese química , Adjuvantes Imunológicos/farmacologia , Animais , Linfócitos T CD8-Positivos/imunologia , Reação de Cicloadição , Feminino , Galactosilceramidas/síntese química , Galactosilceramidas/imunologia , Humanos , Vírus da Influenza A/química , Vacinas contra Influenza/síntese química , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/imunologia , Infecções por Orthomyxoviridae/imunologia , Peptídeos/síntese química , Peptídeos/imunologia , Técnicas de Síntese em Fase Sólida
8.
Immunity ; 47(2): 374-388.e6, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28813662

RESUMO

The liver is positioned at the interface between two routes traversed by pathogens in disseminating infection. Whereas blood-borne pathogens are efficiently cleared in hepatic sinusoids by Kupffer cells (KCs), it is unknown how the liver prevents dissemination of peritoneal pathogens accessing its outer membrane. We report here that the hepatic capsule harbors a contiguous cellular network of liver-resident macrophages phenotypically distinct from KCs. These liver capsular macrophages (LCMs) were replenished in the steady state from blood monocytes, unlike KCs that are embryonically derived and self-renewing. LCM numbers increased after weaning in a microbiota-dependent process. LCMs sensed peritoneal bacteria and promoted neutrophil recruitment to the capsule, and their specific ablation resulted in decreased neutrophil recruitment and increased intrahepatic bacterial burden. Thus, the liver contains two separate and non-overlapping niches occupied by distinct resident macrophage populations mediating immunosurveillance at these two pathogen entry points to the liver.


Assuntos
Células de Kupffer/fisiologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Fígado/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Peritônio/microbiologia , Animais , Comunicação Celular , Autorrenovação Celular , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Células de Kupffer/microbiologia , Fígado/microbiologia , Fígado/patologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Infiltração de Neutrófilos , Peritônio/patologia
9.
Immunol Cell Biol ; 95(5): 443-453, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27899813

RESUMO

Liver fibrosis is a progressive pathological process involving inflammation and extracellular matrix deposition. Dipeptidyl peptidase 4 (DPP4), also known as CD26, is a cell surface glycoprotein and serine protease. DPP4 binds to fibronectin, can inactivate specific chemokines, incretin hormone and neuropeptides, and influences cell adhesion and migration. Such properties suggest a pro-fibrotic role for this peptidase but this hypothesis needs in vivo examination. Experimental liver injury was induced with carbon tetrachloride (CCl4) in DPP4 gene knockout (gko) mice. DPP4 gko had less liver fibrosis and inflammation and fewer B cell clusters than wild type mice in the fibrosis model. DPP4 inhibitor-treated mice also developed less liver fibrosis. DNA microarray and PCR showed that many immunoglobulin (Ig) genes and some metabolism-associated transcripts were differentially expressed in the gko strain compared with wild type. CCl4-treated DPP4 gko livers had more IgM+ and IgG+ intrahepatic lymphocytes, and fewer CD4+, IgD+ and CD21+ intrahepatic lymphocytes. These data suggest that DPP4 is pro-fibrotic in CCl4-induced liver fibrosis and that the mechanisms of DPP4 pro-fibrotic action include energy metabolism, B cells, NK cells and CD4+ cells.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Cirrose Hepática/enzimologia , Cirrose Hepática/patologia , Fígado/enzimologia , Fígado/lesões , Animais , Tetracloreto de Carbono , Linhagem Celular , Inibidores da Dipeptidil Peptidase IV/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Leucócitos/patologia , Fígado/patologia , Cirrose Hepática/genética , Camundongos , Camundongos Knockout , Fenótipo , Baço/patologia , Regulação para Cima
11.
J Immunol ; 194(5): 2280-8, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25632007

RESUMO

WC1 proteins are uniquely expressed on γδ T cells and belong to the scavenger receptor cysteine-rich (SRCR) superfamily. While present in variable, and sometimes high, numbers in the genomes of mammals and birds, in cattle there are 13 distinct genes (WC1-1 to WC1-13). All bovine WC1 proteins can serve as coreceptors for the TCR in a tyrosine phosphorylation dependent manner, and some are required for the γδ T cell response to Leptospira. We hypothesized that individual WC1 receptors encode Ag specificity via coligation of bacteria with the γδ TCR. SRCR domain binding was directly correlated with γδ T cell response, as WC1-3 SRCR domains from Leptospira-responsive cells, but not WC1-4 SRCR domains from Leptospira-nonresponsive cells, bound to multiple serovars of two Leptospira species, L. borgpetersenii, and L. interrogans. Three to five of eleven WC1-3 SRCR domains, but none of the eleven WC1-4 SRCR domains, interacted with Leptospira spp. and Borrelia burgdorferi, but not with Escherichia coli or Staphylococcus aureus. Mutational analysis indicated that the active site for bacterial binding in one of the SRCR domains is composed of amino acids in three discontinuous regions. Recombinant WC1 SRCR domains with the ability to bind leptospires inhibited Leptospira growth. Our data suggest that WC1 gene arrays play a multifaceted role in the γδ T cell response to bacteria, including acting as hybrid pattern recognition receptors and TCR coreceptors, and they may function as antimicrobials.


Assuntos
Glicoproteínas de Membrana/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Subpopulações de Linfócitos T/imunologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Borrelia burgdorferi/imunologia , Borrelia burgdorferi/metabolismo , Borrelia burgdorferi/patogenicidade , Bovinos , Escherichia coli/genética , Escherichia coli/imunologia , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Expressão Gênica , Células HEK293 , Humanos , Leptospira/imunologia , Leptospira/metabolismo , Leptospira/patogenicidade , Leptospira interrogans/imunologia , Leptospira interrogans/metabolismo , Leptospira interrogans/patogenicidade , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Antígenos de Linfócitos T gama-delta/química , Receptores de Antígenos de Linfócitos T gama-delta/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Alinhamento de Sequência , Staphylococcus aureus/imunologia , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/microbiologia
13.
J Hepatol ; 57(4): 830-6, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22659099

RESUMO

BACKGROUND & AIMS: The occurrence of primary CD8 T cell activation within the liver, unique among the non-lymphoid organs, is now well accepted. However, the outcome of intrahepatic T cell activation remains controversial. We have previously reported that activation initiated by hepatocytes results in a tolerogenic phenotype characterized by low expression of CD25 and IL-2, poor cytotoxic T lymphocyte (CTL) function, and excessive expression of the pro-apoptotic protein Bim. METHODS: To investigate whether this phenotype was due to activation in the absence of co-stimulation, we generated bone marrow (bm) radiation chimeras in which adoptively transferred naïve transgenic CD8 T cells were activated in the presence of co-stimulation by liver bm-derived cells. RESULTS: Despite expressing pro-inflammatory cytokines, high levels of CD25 and CD54, donor T cells activated by liver bm-derived cells did not produce detectable IL-2 and displayed poor CTL function, suggesting incomplete acquisition of effector function. Simultaneously, these cells expressed high levels of Bim and died by neglect. Transfer of Bim-deficient T cells resulted in increased T cell numbers. CONCLUSIONS: These results imply that expression of CD25 and CD54 is co-stimulation dependent and distinguishes T cell activated by hepatocytes and liver bm-derived cells. In contrast, low expression of IL-2, poor CTL function and excess Bim production represent a more universal phenotype defining T cells undergoing primary activation by both types of hepatic antigen presenting cells (APC). These results have important implications for transplantation, in which all liver antigen presenting cells contribute to activation of T cells specific for the allograft.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Linfócitos T CD8-Positivos/imunologia , Interleucina-2/metabolismo , Fígado/citologia , Ativação Linfocitária/imunologia , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transferência Adotiva , Animais , Apoptose , Proteína 11 Semelhante a Bcl-2 , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Testes Imunológicos de Citotoxicidade , Antígenos H-2/imunologia , Antígenos H-2/metabolismo , Hepatócitos/imunologia , Fígado/imunologia , Linfonodos/citologia , Camundongos , Camundongos Transgênicos , Fenótipo , Quimera por Radiação
14.
Hepatology ; 56(5): 1602-10, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22556016

RESUMO

UNLABELLED: Mixed cryoglobulinemia (MC) is the most common extrahepatic manifestation of chronic hepatitis C virus (HCV) infection. Although the formation of inflammation-triggering immune complexes is driven by clonal expansions of autoreactive B cells, we found total B cell numbers paradoxically reduced in HCV-infected patients with MC. HCV patients with MC (n = 17) also displayed a reduced number and a reduced frequency of naïve B cells compared with HCV-infected patients without MC (n = 19), hepatitis B virus-infected patients (n = 10), and uninfected controls (n = 50). This was due to an increased sensitivity of naïve B cells to apoptosis resulting in a reduction in the size of the naïve B cell subset. In addition, 4-fold expansion and skewing (lower T1/T2-ratio) of the immature B cell subset was noted in MC patients, suggesting that apoptosis of naïve B cells triggered the release of B cell precursors from bone marrow in an attempt to maintain normal B cell numbers. Following treatment of MC with the B cell-depleting antibody rituximab, the size of all B cell subsets, the T1/T2-ratio, and the cyroglobulin levels all normalized. Cryoglobulin levels correlated with in vivo proliferation of T2 B cells, suggesting a link between the skewing of the T1/T2 ratio and the formation of immune complexes. CONCLUSION: This study provides insight into the mechanisms maintaining B cell homeostasis in HCV-induced MC and the ability of rituximab therapy to restore normal B cell compartments. (HEPATOLOGY 2012;56:1602-1610).


Assuntos
Subpopulações de Linfócitos B/patologia , Crioglobulinemia/imunologia , Hepatite C Crônica/imunologia , Homeostase/efeitos dos fármacos , Células Precursoras de Linfócitos B/patologia , Adulto , Anticorpos Monoclonais Murinos/farmacologia , Anticorpos Monoclonais Murinos/uso terapêutico , Antígenos CD19/metabolismo , Apoptose , Subpopulações de Linfócitos B/efeitos dos fármacos , Subpopulações de Linfócitos B/metabolismo , Caspase 3/metabolismo , Caspase 8/metabolismo , Crioglobulinemia/tratamento farmacológico , Crioglobulinemia/virologia , Crioglobulinas/metabolismo , Feminino , Hepatite C Crônica/complicações , Humanos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Neprilisina/metabolismo , Células Precursoras de Linfócitos B/efeitos dos fármacos , Células Precursoras de Linfócitos B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Rituximab , Estatísticas não Paramétricas
15.
Proc Natl Acad Sci U S A ; 108(40): 16735-40, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21933957

RESUMO

Although most self-reactive T cells are eliminated in the thymus, mechanisms to inactivate or control T cells specific for extrathymic antigens are required and exist in the periphery. By investigating the site in which autoreactive T cells are tolerized, we identify a unique mechanism of peripheral deletion in which naïve autoreactive CD8 T cells are rapidly eliminated in the liver after intrahepatic activation. T cells actively invade hepatocytes, enter endosomal/lysosomal compartments, and are degraded. Blockade of this process leads to accumulation of autoreactive CD8 T cells in the liver and breach of tolerance, with the development of autoimmune hepatitis. Cell into cell invasion, or emperipolesis, is a long-observed phenomenon for which a physiological role has not been previously demonstrated. We propose that this "suicidal emperipolesis" is a unique mechanism of autoreactive T-cell deletion, a process critical for the maintenance of tolerance.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Morte Celular/imunologia , Emperipolese/imunologia , Hepatócitos/imunologia , Tolerância Periférica/imunologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteína 11 Semelhante a Bcl-2 , Proteínas de Homeodomínio/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica , Proteínas Proto-Oncogênicas/genética
16.
Gastroenterology ; 141(4): 1231-9, 1239.e1-2, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21741920

RESUMO

BACKGROUND & AIMS: Mathematical modeling of hepatitis C virus (HCV) kinetics indicated that cellular immune responses contribute to interferon (IFN)-induced clearance of HCV. We investigated a potential role of natural killer (NK) cells in this process. METHODS: Phenotype and function of blood and liver NK cells were studied during the first 12 weeks of treatment with pegylated IFN-alfa and ribavirin, the time period used to define the early virological response. RESULTS: Within hours of treatment initiation, NK cells of patients that had an early virological response increased expression of activating receptors NKG2D, NKp30, and CD16 and decreased expression of NKG2C and 2B4, along with inhibitory receptors SIGLEC7 and NKG2A, resulting in NK cell activation. NK cell cytotoxicity, measured by degranulation and tumor necrosis factor-related apoptosis-inducing ligand production, peaked after 24 hours (P<.01), concomitant with an increase in alanine aminotransferase levels (P<.05), whereas IFN-γ production decreased within 6 hours and did not recover for more than 4 weeks (P<.05). NK cells from liver biopsies taken 6 hours after treatment initiation had increased numbers of cytotoxic CD16+NK cells (P<.05) and a trend toward increased production of tumor necrosis factor-related apoptosis-inducing ligand. Degranulation of peripheral blood NK cells correlated with treatment-induced, first-phase decreases in viral load (P<.05) and remained higher in early virological responders than in nonresponders for weeks. CONCLUSIONS: IFN activates NK cells early after treatment is initiated. Their cytotoxic function, in particular, is strongly induced, which correlates to virologic response. Therefore, NK cell activation indicates responsiveness to IFN-α-based treatment and suggests the involvement of the innate immune cells in viral clearance.


Assuntos
Antivirais/uso terapêutico , Hepatite C/tratamento farmacológico , Imunidade Inata/efeitos dos fármacos , Interferon-alfa/uso terapêutico , Células Matadoras Naturais/efeitos dos fármacos , Fígado/efeitos dos fármacos , Polietilenoglicóis/uso terapêutico , Ribavirina/uso terapêutico , Adulto , Alanina Transaminase/sangue , Antígenos de Diferenciação Mielomonocítica/metabolismo , Biópsia , Degranulação Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Quimioterapia Combinada , Feminino , Hepacivirus/genética , Hepatite C/diagnóstico , Hepatite C/imunologia , Humanos , Interferon gama/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/virologia , Lectinas/metabolismo , Fígado/imunologia , Fígado/virologia , Masculino , Maryland , Pessoa de Meia-Idade , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , RNA Viral/sangue , Proteínas Recombinantes/uso terapêutico , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fatores de Tempo , Resultado do Tratamento , Carga Viral
17.
J Hepatol ; 53(3): 500-7, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20561705

RESUMO

BACKGROUND & AIMS: Although a strong association between liver progenitor cells (LPCs) and inflammation exists in many chronic liver diseases, the exact role of the immune system in LPC-mediated hepatic regeneration remains unclear. A number of pro-inflammatory factors were identified in cytokine knockout mice in which the LPC response was attenuated but neither the mechanism nor the producing cells are known. METHODS: To identify the critical immune cells and cytokines required in the LPC response, we compared two diet-induced models of liver injury with two recently established transgenic models of immune-mediated hepatitis. RESULTS: Despite severe inflammation being observed in all models, the generation of LPCs was highly dependent on the cause and kinetics of liver damage. The LPC response was associated with an increase of macrophages and CD8(+) T cells but not natural killer cells. T cell-deficient mice were able to mount a LPC response, albeit delayed, suggesting that T cells are not essential. Mice mounting an LPC response showed elevated numbers of Kupffer cells and invading CX(3)CR1(high)CCR2(high) macrophages secreting persistent high levels of tumour necrosis factor alpha (TNFalpha), a major cytokine involved in the LPC response. CONCLUSIONS: Liver macrophages are an important determinant of LPC expansion during liver regeneration in models of diet- and immune-mediated liver injury. Invading macrophages in particular provide pro-mitogenic cytokines such as TNFalpha that underpin the process. LPC themselves are a source of chemokines (CCL2, CX(3)CL1) that attract infiltrating macrophages.


Assuntos
Hepatócitos/patologia , Hepatopatias/imunologia , Hepatopatias/patologia , Macrófagos/imunologia , Macrófagos/patologia , Células-Tronco/patologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Receptor 1 de Quimiocina CX3C , Doença Crônica , Dieta/efeitos adversos , Modelos Animais de Doenças , Hepatopatias/etiologia , Hepatopatias/genética , Regeneração Hepática/genética , Regeneração Hepática/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos Transgênicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CCR2/metabolismo , Receptores de Quimiocinas/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
18.
Dig Dis ; 28(1): 14-24, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20460886

RESUMO

Despite being a non-lymphoid organ, the liver displays immunological properties distinct from other solid organs and is associated with the induction of T cell tolerance. This property has been demonstrated in several clinical settings including transplantation and hepatotropic viral infections, such as those induced by hepatitis B and C viruses. Many models have been proposed to explain the 'liver tolerance effect', but the molecular and cellular mechanism(s) mediating this phenomenon remain unknown. Using transgenic mouse models, we have previously shown that the liver is the only non-lymphoid organ able to retain and activate naïve CD8+ T cells independently of lymphoid tissues in an antigen-specific manner. These findings, confirmed by other groups, have opened new possibilities to explain the remarkable capacity of the liver to induce antigen-specific tolerance in transplantation and following infection by hepatotropic viruses, such as the hepatitis C and B viruses. In our models, T cells activated by hepatocytes that proliferate die by neglect in a Bim-dependent manner. This paper will thus review the evidence showing Bim playing a critical role following intrahepatic primary T cell activation.


Assuntos
Proteínas Reguladoras de Apoptose/imunologia , Apoptose/imunologia , Tolerância Imunológica , Fígado/imunologia , Proteínas de Membrana/imunologia , Proteínas Proto-Oncogênicas/imunologia , Linfócitos T/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Proteína 11 Semelhante a Bcl-2 , Linfócitos T CD8-Positivos/imunologia , Morte Celular/imunologia , Hepatite/imunologia , Hepatócitos/imunologia , Ativação Linfocitária , Camundongos
19.
Gastroenterology ; 135(3): 989-97, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18619445

RESUMO

BACKGROUND & AIMS: Chronic infections by hepatotropic viruses such as hepatitis B and C are generally associated with an impaired CD8 T-cell immune response that is unable to clear the virus. The liver is increasingly recognized as an alternative site in which primary activation of CD8 T cells takes place, a property that might explain its role in inducing tolerance. However, the molecular mechanism by which intrahepatically activated T cells become tolerant is unknown. Here, we investigated the phenotype and fate of naïve CD8 T cells activated by hepatocytes in vivo. METHODS: Transgenic mouse models in which the antigen is expressed in lymph nodes and/or in the liver were adoptively transferred with naïve CD8 T cells specific for the hepatic antigen. RESULTS: Liver-activated CD8 T cells displayed poor effector functions and a unique CD25(low) CD54(low) phenotype. This phenotype was associated with increased expression of the proapoptotic protein Bim and caspase-3, demonstrating that these cells are programmed to die following intrahepatic activation. Importantly, we show that T cells deficient for Bim survived following intrahepatic activation. CONCLUSIONS: This study identifies Bim for the first time as a critical initiator of T-cell death in the liver. Thus, strategies inhibiting the up-regulation of this molecule could potentially be used to rescue CD8 T cells, clear the virus, and reverse the outcome of viral chronic infections affecting the liver.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Linfócitos T CD8-Positivos/imunologia , Morte Celular , Fígado/imunologia , Ativação Linfocitária , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transferência Adotiva , Animais , Apoptose , Proteína 11 Semelhante a Bcl-2 , Caspase 3/metabolismo , Testes Imunológicos de Citotoxicidade , Hepatócitos/imunologia , Molécula 1 de Adesão Intercelular/imunologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Fígado/citologia , Linfonodos/citologia , Camundongos , Camundongos Transgênicos , Quimera por Radiação
20.
J Hepatol ; 44(2): 334-41, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16225955

RESUMO

BACKGROUND/AIMS: The role of adult bone marrow-derived cells (BMC) in hepatic regeneration is controversial. Both transdifferentiation of BMC as well as fusion with hepatocytes have been suggested in toxin-based and genetic selection models. METHODS: We have developed a transgenic mouse model of immune-mediated hepatitis to clarify the role of BMC in liver regeneration following injury mediated by T cells. RESULTS: Repeated adoptive transfer of transgenic T cells into bone marrow chimeras resulted in multiple waves of hepatitis. Hepatocytes derived from donor bone marrow were identified using a self-protein that does not interfere with hepatocyte function and proliferation in recipient animals. Some cells contained one recipient nucleus and another independent donor bone marrow-derived nucleus, suggesting that cellular fusion plays some role in liver repair after immune hepatitis. However, despite pronounced infiltration by myeloid cells, the frequency of fusion was extremely low. CONCLUSIONS: This study provides a unique, clinically relevant model in which fusion hepatocytes can be purified and characterized by the expression of donor MHC antigen. It demonstrates that although fusion between BMC and hepatocytes occurs under conditions of inflammation that correspond to human disease, its frequency needs to be increased to be of any therapeutic value.


Assuntos
Células da Medula Óssea/imunologia , Hepatite/imunologia , Hepatócitos/imunologia , Animais , Células da Medula Óssea/citologia , Comunicação Celular/imunologia , Fusão Celular , Modelos Animais de Doenças , Progressão da Doença , Feminino , Citometria de Fluxo , Hepatite/patologia , Hepatócitos/citologia , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Camundongos , Camundongos Transgênicos , Linfócitos T/imunologia , Linfócitos T/transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA