Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1155679, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215122

RESUMO

Few neoepitopes detected in tumor biopsies are immunogenic. Tumor-specific T cell responses require both the presentation of an epitope that differs from wildtype and the presence of T cells with neoepitope-cognate receptors. We show that mutations detected in tumor biopsies result in an increased frequency of rare amino acid combinations compared to the human proteome and gastrointestinal microorganisms. Mutations in a large data set of oncogene and tumor suppressor gene products were compared to wildtype, and to the count of corresponding amino acid motifs in the human proteome and gastrointestinal microbiome. Mutant amino acids in T cell exposed positions of potential neoepitopes consistently generated amino acid motifs that are less common in both proteome reference datasets. Approximately 10% of the mutant amino acid motifs are absent from the human proteome. Motif frequency does not change when mutants were positioned in the MHC anchor positions hidden from T cell receptors. Analysis of neoepitopes in GBM and LUSC cases showed less common T cell exposed motifs, and HLA binding preferentially placing mutant amino acids in an anchor position for both MHC I and MHC II. Cross-presentation of mutant exposed neoepitopes by MHC I and MHC II was particularly uncommon. Review of a tumor mutation dataset known to generate T cell responses showed immunogenic epitopes were those with mutant amino acids exposed to the T cell receptor and with exposed pentamer motifs present in the human and microbiome reference databases. The study illustrates a previously unrecognized mechanism of tumor immune evasion, as rare T cell exposed motifs produced by mutation are less likely to have cognate T cells in the T cell repertoire. The complex interactions of HLA genotype, binding positions, and mutation specific changes in T cell exposed motif underscore the necessity of evaluating potential neoepitopes in each individual patient.


Assuntos
Neoplasias , Linfócitos T , Humanos , Aminoácidos , Evasão Tumoral/genética , Proteoma , Epitopos
2.
mBio ; 13(1): e0336721, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35089095

RESUMO

The high global burden of cryptococcosis has made development of a protective vaccine a public health priority. We previously demonstrated that a vaccine composed of recombinant Cryptococcus neoformans chitin deacetylase 2 (Cda2) delivered in glucan particles (GPs) protects BALB/c and C57BL/6 mice from an otherwise lethal challenge with a highly virulent C. neoformans strain. An immunoinformatic analysis of Cda2 revealed a peptide sequence predicted to have strong binding to the major histocompatibility complex class II (MHC II) H2-IAd allele found in BALB/c mice. BALB/c mice vaccinated with GPs containing a 32-amino-acid peptide (Cda2-Pep1) that included this strong binding region were protected from cryptococcosis. Protection was lost with GP-based vaccines containing versions of recombinant Cda2 protein and Cda2-Pep1 with mutations predicted to greatly diminish MHC II binding. Cda2 has homology to the three other C. neoformans chitin deacetylases, Cda1, Cda3, and Fpd1, in the high-MHC II-binding region. GPs loaded with homologous peptides of Cda1, Cda3, and Fpd1 protected BALB/c mice from experimental cryptococcosis, albeit not as robustly as the Cda2-Pep1 vaccine. Finally, seven other peptides were synthesized based on regions in Cda2 predicted to contain promising CD4+ T cell epitopes in BALB/c or C57BL/6 mice. While five peptide vaccines significantly protected BALB/c mice, only one protected C57BL/6 mice. Thus, GP-based vaccines containing a single peptide can protect mice against cryptococcosis. However, given the diversity of human MHC II alleles, a peptide-based Cryptococcus vaccine for use in humans would be challenging and likely need to contain multiple peptide sequences. IMPORTANCE Cryptococcosis, due to infection by fungi of the Cryptococcus neoformans species complex, is responsible for substantial morbidity and mortality in immunocompromised persons, particularly those with AIDS. Cryptococcal vaccines are a public health priority yet are not available for human use. We previously demonstrated mice could be protected from experimental cryptococcosis with vaccines composed of recombinant cryptococcal proteins encased in hollow highly purified yeast cell walls (glucan particles). In this study, we examined one such protective protein, Cda2, and using bioinformatics, we identified a region predicted to stimulate strong T cell responses. A peptide containing this region formulated in glucan particle-based vaccines protected mice as well as the recombinant protein. Other peptide vaccines also protected, including peptides containing sequences from proteins homologous to Cda2. These preclinical mouse studies provide a proof of principle that peptides can be effective as vaccines to protect against cryptococcosis and that bioinformatic approaches can guide peptide selection.


Assuntos
Criptococose , Cryptococcus neoformans , Camundongos , Animais , Humanos , Glucanos , Camundongos Endogâmicos C57BL , Criptococose/microbiologia , Cryptococcus neoformans/genética , Proteínas Recombinantes , Saccharomyces cerevisiae , Vacinas de Subunidades Antigênicas , Peptídeos
3.
Int J Mol Sci ; 20(19)2019 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-31569504

RESUMO

Cysteine cathepsins are critical components of the adaptive immune system involved in the generation of epitopes for presentation on human leukocyte antigen (HLA) molecules and have been implicated in degradation of autoantigens. Immunoglobulin variable regions with somatic mutations and random complementarity region 3 amino acid composition are inherently immunogenic. T cell reactivity towards immunoglobulin variable regions has been investigated in relation to specific diseases, as well as reactivity to therapeutic monoclonal antibodies. Yet, how the immunoglobulins, or the B cell receptors, are processed in endolysosomal compartments of professional antigen presenting cells has not been described in detail. Here we present in silico and in vitro experimental evidence suggesting that cysteine cathepsins S, L and B may have important roles in generating peptides fitting HLA class II molecules, capable of being presented to T cells, from monoclonal antibodies as well as from central nervous system proteins including a well described autoantigen. By combining neural net models with in vitro proteomics experiments, we further suggest how such degradation can be predicted, how it fits with available cellular models, and that it is immunoglobulin heavy chain variable family dependent. These findings are relevant for biotherapeutic drug design as well as to understand disease development. We also suggest how these tools can be improved, including improved machine learning methodology.


Assuntos
Catepsinas/química , Catepsinas/metabolismo , Cisteína/metabolismo , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Imunoglobulina G/genética , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/metabolismo , Conformação Molecular , Ligação Proteica , Proteólise , Reprodutibilidade dos Testes , Relação Estrutura-Atividade
4.
PLoS One ; 8(7): e70115, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922927

RESUMO

By applying analysis of the principal components of amino acid physical properties we predicted cathepsin cleavage sites, MHC binding affinity, and probability of B-cell epitope binding of peptides in tetanus toxin and in ten diverse additional proteins. Cross-correlation of these metrics, for peptides of all possible amino acid index positions, each evaluated in the context of a ±25 amino acid flanking region, indicated that there is a strongly repetitive pattern of short peptides of approximately thirty amino acids each bounded by cathepsin cleavage sites and each comprising B-cell linear epitopes, MHC-I and MHC-II binding peptides. Such "immunologic kernel" peptides comprise all signals necessary for adaptive immunologic cognition, response and recall. The patterns described indicate a higher order spatial integration that forms a symbolic logic coordinating the adaptive immune system.


Assuntos
Proteínas/química , Proteínas/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Catepsinas/química , Catepsinas/metabolismo , Análise por Conglomerados , Epitopos/química , Epitopos/imunologia , Epitopos/metabolismo , Epitopos de Linfócito B , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Modelos Imunológicos , Peptídeos/química , Peptídeos/imunologia , Peptídeos/metabolismo , Ligação Proteica/imunologia , Proteínas/metabolismo , Proteólise , Toxina Tetânica/química , Toxina Tetânica/imunologia , Toxina Tetânica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA