Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell Rep ; 38(3): 110243, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35045291

RESUMO

Understanding how cytotoxic T lymphocytes (CTLs) efficiently leave the circulation to target cancer cells or contribute to inflammation is of high medical interest. Here, we demonstrate that human central memory CTLs cross the endothelium in a predominantly paracellular fashion, whereas effector and effector memory CTLs cross the endothelium preferably in a transcellular fashion. We find that effector CTLs show a round morphology upon adhesion and induce a synapse-like interaction with the endothelium where ICAM-1 is distributed at the periphery. Moreover, the interaction of ICAM-1:ß2integrin and endothelial-derived CX3CL1:CX3CR1 enables transcellular migration. Mechanistically, we find that ICAM-1 clustering recruits the SNARE-family protein SNAP23, as well as syntaxin-3 and -4, for the local release of endothelial-derived chemokines like CXCL1/8/10. In line, silencing of endothelial SNAP23 drives CTLs across the endothelium in a paracellular fashion. In conclusion, our data suggest that CTLs trigger local chemokine release from the endothelium through ICAM-1-driven signals driving transcellular migration.


Assuntos
Quimiocina CX3CL1/metabolismo , Endotélio Vascular/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Linfócitos T Citotóxicos/metabolismo , Migração Transendotelial e Transepitelial/fisiologia , Humanos
2.
Artigo em Inglês | MEDLINE | ID: mdl-33782028

RESUMO

In recent years, our understanding about the functional complexity of CD8+ T-cell populations has increased tremendously. The immunology field is now facing challenges to translate these insights into phenotypic definitions that correlate reliably with distinct functional traits. This is key to adequately monitor and understand compound immune responses including vaccination and immunotherapy regimens. Here we will summarize our understanding of the current state in the human CD8+ T-cell subset characterization field. We will address how reliably the currently used cell surface markers are connected to differentiation status and function of particular subsets. By restricting ourselves to CD8+ αß T cells, we will focus mostly on major histocompatibility complex (MHC) class I-restricted virus- and tumor-specific T cells. This comes with a major advantage as fluorescently labeled peptide-loaded MHC class I multimers have been widely used to identify and characterize these cells.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Imunofenotipagem , Células T de Memória/metabolismo , Animais , Biomarcadores/metabolismo , Humanos , Memória Imunológica , Infecções/imunologia
3.
Eur J Immunol ; 49(6): 853-872, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30891737

RESUMO

BM has been put forward as a major reservoir for memory CD8+  T cells. In order to fulfill that function, BM should "store" memory CD8+ T cells, which in biological terms would require these "stored" memory cells to be in disequilibrium with the circulatory pool. This issue is a matter of ongoing debate. Here, we unequivocally demonstrate that murine and human BM harbors a population of tissue-resident memory CD8+ T (TRM ) cells. These cells develop against various pathogens, independently of BM infection or local antigen recognition. BM CD8+ TRM cells share a transcriptional program with resident lymphoid cells in other tissues; they are polyfunctional cytokine producers and dependent on IL-15, Blimp-1, and Hobit. CD8+ TRM cells reside in the BM parenchyma, but are in close contact with the circulation. Moreover, this pool of resident T cells is not size-restricted and expands upon peripheral antigenic re-challenge. This works extends the role of the BM in the maintenance of CD8+ T cell memory to include the preservation of an expandable reservoir of functional, non-recirculating memory CD8+ T cells, which develop in response to a large variety of peripheral antigens.


Assuntos
Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL
4.
Front Immunol ; 9: 2654, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30505306

RESUMO

Resident memory T cells (TRM) inhabit peripheral tissues and are critical for protection against localized infections. Recently, it has become evident that CD103+ TRM are not only important in combating secondary infections, but also for the elimination of tumor cells. In several solid cancers, intratumoral CD103+CD8+ tumor infiltrating lymphocytes (TILs), with TRM properties, are a positive prognostic marker. To better understand the role of TRM in tumors, we performed a detailed characterization of CD8+ and CD4+ TIL phenotype and functional properties in non-small cell lung cancer (NSCLC). Frequencies of CD8+ and CD4+ T cell infiltrates in tumors were comparable, but we observed a sharp contrast in TRM ratios compared to surrounding lung tissue. The majority of both CD4+ and CD8+ TILs expressed CD69 and a subset also expressed CD103, both hallmarks of TRM. While CD103+CD8+ T cells were enriched in tumors, CD103+CD4+ T cell frequencies were decreased compared to surrounding lung tissue. Furthermore, CD103+CD4+ and CD103+CD8+ TILs showed multiple characteristics of TRM, such as elevated expression of CXCR6 and CD49a, and decreased expression of T-bet and Eomes. In line with the immunomodulatory role of the tumor microenvironment, CD8+ and CD4+ TILs expressed high levels of inhibitory receptors 2B4, CTLA-4, and PD-1, with the highest levels found on CD103+ TILs. Strikingly, CD103+CD4+ TILs were the most potent producers of TNF-α and IFN-γ, while other TIL subsets lacked such cytokine production. Whereas, CD103+CD4+PD-1low TILs produced the most effector cytokines, CD103+CD4+PD-1++ and CD69+CD4+PD-1++ TILs produced CXCL13. Furthermore, a large proportion of TILs expressed co-stimulatory receptors CD27 and CD28, unlike lung TRM, suggesting a less differentiated phenotype. Agonistic triggering of these receptors improved cytokine production of CD103+CD4+ and CD69+CD8+ TILs. Our findings thus provide a rationale to target CD103+CD4+ TILs and add co-stimulation to current therapies to improve the efficacy of immunotherapies and cancer vaccines.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Memória Imunológica/genética , Neoplasias Pulmonares/imunologia , Linfócitos do Interstício Tumoral/imunologia , Fenótipo , Microambiente Tumoral/imunologia , Idoso , Antígenos CD/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Citocinas/metabolismo , Feminino , Granzimas/metabolismo , Humanos , Cadeias alfa de Integrinas/metabolismo , Integrina alfa1/metabolismo , Pulmão/imunologia , Neoplasias Pulmonares/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Receptor de Morte Celular Programada 1/metabolismo , Receptores CXCR6/metabolismo
5.
Nat Immunol ; 19(6): 538-546, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29777219

RESUMO

Immune responses in tissues are constrained by the physiological properties of the tissue involved. Tissue-resident memory T cells (TRM cells) are a recently discovered lineage of T cells specialized for life and function within tissues. Emerging evidence has shown that TRM cells have a special role in the control of solid tumors. A high frequency of TRM cells in tumors correlates with favorable disease progression in patients with cancer, and studies of mice have shown that TRM cells are necessary for optimal immunological control of solid tumors. Here we describe what defines TRM cells as a separate lineage and how these cells are generated. Furthermore, we discuss the properties that allow TRM cells to operate in normal and transformed tissues, as well as implications for the treatment of patients with cancer.


Assuntos
Memória Imunológica/imunologia , Neoplasias/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia , Animais , Humanos , Camundongos
6.
Proteomics ; 18(12): e1700250, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29251415

RESUMO

Allogeneic stem cell transplantation has emerged as immunotherapy in the treatment of a variety of hematological malignancies. Its efficacy depends on induction of graft versus leukemia by donor lymphocytes. Both graft versus leukemia and graft versus host disease are induced by T cells reactive against polymorphic peptides, called minor histocompatibility antigens (MiHA), which differ between patient and donor and are presented in the context of self-HLA (where HLA is human leukocyte antigen). The allelic counterpart (AC) of the MiHA is generally considered to be absent at the cell surface, based on the absence of immune responses directed against the AC. To study this in detail, we evaluate the recognition, HLA-binding affinity, and cell surface expression of three selected MiHA. By quantitative MS, we demonstrate the similarly abundant expression of both MiHA and AC at the cell surface. We conclude that the absent recognition of the AC cannot generally be explained by insufficient processing and presentation at the cell surface of the AC.


Assuntos
Membrana Celular/imunologia , Leucemia Mieloide Aguda/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Fragmentos de Peptídeos/imunologia , Linfócitos T/imunologia , Alelos , Membrana Celular/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Isoformas de Proteínas , Linfócitos T/metabolismo
8.
Blood ; 129(10): 1284-1295, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28053195

RESUMO

Immunotherapy for hematological malignancies or solid tumors by administration of monoclonal antibodies or T cells engineered to express chimeric antigen receptors or T-cell receptors (TCRs) has demonstrated clinical efficacy. However, antigen-loss tumor escape variants and the absence of currently targeted antigens on several malignancies hamper the widespread application of immunotherapy. We have isolated a TCR targeting a peptide of the intracellular B cell-specific transcription factor BOB1 presented in the context of HLA-B*07:02. TCR gene transfer installed BOB1 specificity and reactivity onto recipient T cells. TCR-transduced T cells efficiently lysed primary B-cell leukemia, mantle cell lymphoma, and multiple myeloma in vitro. We also observed recognition and lysis of healthy BOB1-expressing B cells. In addition, strong BOB1-specific proliferation could be demonstrated for TCR-modified T cells upon antigen encounter. Furthermore, clear in vivo antitumor reactivity was observed of BOB1-specific TCR-engineered T cells in a xenograft mouse model of established multiple myeloma. Absence of reactivity toward a broad panel of BOB1- but HLA-B*07:02+ nonhematopoietic and hematopoietic cells indicated no off-target toxicity. Therefore, administration of BOB1-specific TCR-engineered T cells may provide novel cellular treatment options to patients with B-cell malignancies, including multiple myeloma.


Assuntos
Imunoterapia Adotiva/métodos , Linfoma não Hodgkin/imunologia , Mieloma Múltiplo/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transativadores/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Citometria de Fluxo , Engenharia Genética/métodos , Humanos , Camundongos , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Oncotarget ; 7(44): 71536-71547, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27689397

RESUMO

CD22 is currently evaluated as a target-antigen for the treatment of B-cell malignancies using chimeric antigen receptor (CAR)-engineered T-cells or monoclonal antibodies (mAbs). CAR- and mAbs-based immunotherapies have been successfully applied targeting other antigens, however, occurrence of refractory disease to these interventions urges the identification of additional strategies. Here, we identified a TCR recognizing the CD22-derived peptide RPFPPHIQL (CD22RPF) presented in human leukocyte antigen (HLA)-B*07:02. To overcome tolerance to self-antigens such as CD22, we exploited the immunogenicity of allogeneic HLA. CD22RPF-specific T-cell clone 9D4 was isolated from a healthy HLA-B*07:02neg individual, efficiently produced cytokines upon stimulation with primary acute lymphoblastic leukemia and healthy B-cells, but did not react towards healthy hematopoietic and nonhematopoietic cell subsets, including dendritic cells (DCs) and macrophages expressing low levels of CD22. Gene transfer of TCR-9D4 installed potent CD22-specificity onto recipient CD8+ T-cells that recognized and lysed primary B-cell leukemia. TCR-transduced T-cells spared healthy CD22neg hematopoietic cell subsets but weakly lysed CD22low-expressing DCs and macrophages. CD22-specific TCR-engineered T-cells could form an additional immunotherapeutic strategy with a complementary role to CAR- and antibody-based interventions in the treatment of B-cell malignancies. However, CD22 expression on non-B-cells may limit the attractiveness of CD22 as target-antigen in cellular immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfócitos T/genética , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Epitopos , Técnicas de Transferência de Genes , Antígenos HLA-B/imunologia , Humanos , Imunoterapia Adotiva
10.
Oncotarget ; 7(47): 77021-77037, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27776339

RESUMO

Immunotherapy of B-cell leukemia and lymphoma with CD20-targeting monoclonal antibodies (mAbs) has demonstrated clinical efficacy. However, the emergence of unresponsive disease due to low or absent cell surface CD20 urges the need to develop additional strategies. In contrast to mAbs, T-cells via their T-cell receptor (TCR) can recognize not only extracellular but also intracellular antigens in the context of HLA molecules. We hypothesized that T-cells equipped with high affinity CD20-targeting TCRs would be able to recognize B-cell malignancies even in the absence of extracellular CD20. We isolated CD8+ T-cell clones binding to peptide-MHC-tetramers composed of HLA-A*02:01 and CD20-derived peptide SLFLGILSV (CD20SLF) from HLA-A*02:01neg healthy individuals to overcome tolerance towards self-antigens such as CD20. High avidity T-cell clones were identified that readily recognized and lysed primary HLA-A2pos B-cell leukemia and lymphoma in the absence of reactivity against CD20-negative but HLA-A2pos healthy hematopoietic and nonhematopoietic cells. The T-cell clone with highest avidity efficiently lysed malignant cell-lines that had insufficient extracellular CD20 to be targeted by CD20 mAbs. Transfer of this TCR installed potent CD20-specificity onto recipient T-cells and led to lysis of CD20low malignant cell-lines. Moreover, our approach facilitates the generation of an off-the-shelf TCR library with broad applicability by targeting various HLA alleles. Using the same methodology, we isolated a T-cell clone that efficiently lysed primary HLA-B*07:02pos B-cell malignancies by targeting another CD20-derived peptide. TCR gene transfer of high affinity CD20-specific TCRs can be a valuable addition to current treatment options for patients suffering from CD20low B-cell malignancies.


Assuntos
Antígenos CD20/genética , Leucemia de Células B/terapia , Linfoma de Células B/terapia , Receptores de Antígenos de Linfócitos T/genética , Antígenos CD20/imunologia , Antígenos CD20/metabolismo , Linfócitos T CD8-Positivos/imunologia , Terapia Genética , Antígeno HLA-A2/imunologia , Humanos , Células K562 , Leucemia de Células B/genética , Leucemia de Células B/imunologia , Linfoma de Células B/genética , Linfoma de Células B/imunologia , Receptores de Antígenos de Linfócitos T/imunologia
11.
Nat Immunol ; 17(6): 636-45, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27111145

RESUMO

Group 2 innate lymphoid cells (ILC2s) secrete type 2 cytokines, which protect against parasites but can also contribute to a variety of inflammatory airway diseases. We report here that interleukin 1ß (IL-1ß) directly activated human ILC2s and that IL-12 induced the conversion of these activated ILC2s into interferon-γ (IFN-γ)-producing ILC1s, which was reversed by IL-4. The plasticity of ILCs was manifested in diseased tissues of patients with severe chronic obstructive pulmonary disease (COPD) or chronic rhinosinusitis with nasal polyps (CRSwNP), which displayed IL-12 or IL-4 signatures and the accumulation of ILC1s or ILC2s, respectively. Eosinophils were a major cellular source of IL-4, which revealed cross-talk between IL-5-producing ILC2s and IL-4-producing eosinophils. We propose that IL-12 and IL-4 govern ILC2 functional identity and that their imbalance results in the perpetuation of type 1 or type 2 inflammation.


Assuntos
Plasticidade Celular , Eosinófilos/imunologia , Imunidade Inata , Interleucina-12/metabolismo , Interleucina-1beta/metabolismo , Interleucina-4/metabolismo , Linfócitos/imunologia , Pólipos Nasais/imunologia , Pneumonia/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Rinite/imunologia , Sinusite/imunologia , Animais , Diferenciação Celular , Células Cultivadas , Feminino , Humanos , Interferon gama/metabolismo , Ativação Linfocitária , Camundongos , Camundongos SCID , Células Th1/imunologia , Equilíbrio Th1-Th2 , Células Th2/imunologia
12.
Clin Cancer Res ; 21(9): 2177-86, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25589627

RESUMO

PURPOSE: T-cell recognition of minor histocompatibility antigens (MiHA) not only plays an important role in the beneficial graft-versus-leukemia (GVL) effect of allogeneic stem cell transplantation (allo-SCT) but also mediates serious GVH complications associated with allo-SCT. Using a reverse immunology approach, we aim to develop a method enabling the identification of T-cell responses directed against predefined antigens, with the goal to select those MiHAs that can be used clinically in combination with allo-SCT. EXPERIMENTAL DESIGN: In this study, we used a recently developed MiHA selection algorithm to select candidate MiHAs within the HLA-presented ligandome of transformed B cells. From the HLA-presented ligandome that predominantly consisted of monomorphic peptides, 25 polymorphic peptides with a clinically relevant allele frequency were selected. By high-throughput screening, the availability of high-avidity T cells specific for these MiHA candidates in different healthy donors was analyzed. RESULTS: With the use of MHC multimer enrichment, analyses of expanded T cells by combinatorial coding MHC multimer flow cytometry, and subsequent single-cell cloning, positive T-cell clones directed to two new MiHA: LB-CLYBL-1Y and LB-TEP1-1S could be demonstrated, indicating the immunogenicity of these two MiHAs. CONCLUSIONS: The biologic relevance of MiHA LB-CLYBL-1Y was demonstrated by the detection of LB-CLYBL-1Y-specific T cells in a patient suffering from acute myeloid leukemia (AML) that experienced an anti-leukemic response after treatment with allo-SCT.


Assuntos
Algoritmos , Epitopos de Linfócito T/imunologia , Efeito Enxerto vs Leucemia/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Linfócitos T/imunologia , Aloenxertos , Linfócitos B/imunologia , Transplante de Células-Tronco Hematopoéticas , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Espectrometria de Massas em Tandem
13.
Blood ; 125(6): 949-58, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25414443

RESUMO

Immunotherapy of B-cell malignancies using CD19-targeted chimeric antigen receptor-transduced T cells or CD20-targeted therapeutic monoclonal antibodies has shown clinical efficacy. However, refractory disease and the emergence of antigen-loss tumor escape variants after treatment demonstrate the need to target additional antigens. Here we aimed to target the B-cell receptor-associated protein CD79b by a T-cell receptor (TCR)-based approach. Because thymic selection depletes high-avidity T cells recognizing CD79b-derived peptides presented in self-HLA molecules, we aimed to isolate T cells recognizing these peptides presented in allogeneic HLA. Peptide-HLA tetramers composed of CD79b peptides bound to either HLA-A2 or HLA-B7 were used to isolate T-cell clones from HLA-A*0201 and B*0702-negative individuals. For 3 distinct T-cell clones, CD79b specificity was confirmed through CD79b gene transduction and CD79b-specific shRNA knockdown. The CD79b-specific T-cell clones were highly reactive against CD79b-expressing primary B-cell malignancies, whereas no recognition of nonhematopoietic cells was observed. Although lacking CD79b-cell surface expression, intermediate reactivity toward monocytes, hematopoietic progenitor cells, and T-cells was observed. Quantitative reverse transcriptase polymerase chain reaction revealed low CD79b gene expression in these cell types. Therefore, aberrant gene expression must be taken into consideration when selecting common, apparently lineage-specific self-antigens as targets for TCR-based immunotherapies.


Assuntos
Antígenos CD79/genética , Antígenos CD79/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Sequência de Aminoácidos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Antígenos CD79/química , Antígeno HLA-A2/imunologia , Antígeno HLA-B7/imunologia , Humanos , Imunoterapia , Leucemia Linfocítica Crônica de Células B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Tumorais Cultivadas
14.
Nat Med ; 19(11): 1534-41, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24121928

RESUMO

The transfer of T cell receptor (TCR) genes into patient T cells is a promising approach for the treatment of both viral infections and cancer. Although efficient methods exist to identify antibodies for the treatment of these diseases, comparable strategies to identify TCRs have been lacking. We have developed a high-throughput DNA-based strategy to identify TCR sequences by the capture and sequencing of genomic DNA fragments encoding the TCR genes. We establish the value of this approach by assembling a large library of cancer germline tumor antigen-reactive TCRs. Furthermore, by exploiting the quantitative nature of TCR gene capture, we show the feasibility of identifying antigen-specific TCRs in oligoclonal T cell populations from either human material or TCR-humanized mice. Finally, we demonstrate the ability to identify tumor-reactive TCRs within intratumoral T cell subsets without knowledge of antigen specificities, which may be the first step toward the development of autologous TCR gene therapy to target patient-specific neoantigens in human cancer.


Assuntos
Genes Codificadores dos Receptores de Linfócitos T , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Antígenos de Neoplasias/metabolismo , Biblioteca Gênica , Terapia Genética , Humanos , Camundongos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T/imunologia
15.
J Immunol ; 190(8): 3869-77, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23475216

RESUMO

T cell recognition of minor histocompatibility Ags (MiHA) plays an important role in the graft-versus-tumor effect of allogeneic stem cell transplantation. Selective infusion of T cells reactive for hematopoiesis-restricted MiHA presented in the context of HLA class I or II molecules may help to separate the graft-versus-tumor effects from graft-versus-host disease effects after allogeneic stem cell transplantation. Over the years, increasing numbers of MiHA have been identified by forward immunology approaches, and the relevance of these MiHA has been illustrated by correlation with clinical outcome. As the tissue distribution of MiHA affects the clinical outcome of T cell responses against these Ags, it would be beneficial to identify additional predefined MiHA that are exclusively expressed on hematopoietic cells. Therefore, several reverse immunology approaches have been explored for the prediction of MiHA. Thus far, these approaches frequently resulted in the identification of T cells directed against epitopes that are not naturally processed and presented. In this study we established a method for the identification of biologically relevant MiHA, implementing mass spectrometry-based HLA-peptidomics into a reverse immunology approach. For this purpose, HLA class I binding peptides were eluted from transformed B cells, analyzed by mass spectrometry, and matched with a database dedicated to identifying polymorphic peptides. This process resulted in a set of 40 MiHA candidates that were evaluated in multiple selection steps. The identification of LB-NISCH-1A demonstrated the technical feasibility of our approach. On the basis of these results, we present an approach that can be of value for the efficient identification of MiHA or other T cell epitopes.


Assuntos
Epitopos de Linfócito T/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Peptídeos/metabolismo , Proteômica , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Linhagem Celular Transformada , Células Cultivadas , Técnicas de Cocultura , Antígeno HLA-A2/isolamento & purificação , Antígeno HLA-A2/metabolismo , Humanos , Antígenos de Histocompatibilidade Menor/isolamento & purificação , Antígenos de Histocompatibilidade Menor/metabolismo , Ligação Proteica/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
16.
Mol Cell Proteomics ; 12(7): 1829-43, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23481700

RESUMO

Peptides presented by human leukocyte antigen (HLA) molecules on the cell surface play a crucial role in adaptive immunology, mediating the communication between T cells and antigen presenting cells. Knowledge of these peptides is of pivotal importance in fundamental studies of T cell action and in cellular immunotherapy and transplantation. In this paper we present the in-depth identification and relative quantification of 14,500 peptide ligands constituting the HLA ligandome of B cells. This large number of identified ligands provides general insight into the presented peptide repertoire and antigen presentation. Our uniquely large set of HLA ligands allowed us to characterize in detail the peptides constituting the ligandome in terms of relative abundance, peptide length distribution, physicochemical properties, binding affinity to the HLA molecule, and presence of post-translational modifications. The presented B-lymphocyte ligandome is shown to be a rich source of information by the presence of minor histocompatibility antigens, virus-derived epitopes, and post-translationally modified HLA ligands, and it can be a good starting point for solving a wealth of specific immunological questions. These HLA ligands can form the basis for reversed immunology approaches to identify T cell epitopes based not on in silico predictions but on the bona fide eluted HLA ligandome.


Assuntos
Linfócitos B/metabolismo , Antígenos HLA/metabolismo , Peptídeos/metabolismo , Apresentação de Antígeno , Linhagem Celular Transformada , Herpesvirus Humano 4/genética , Humanos , Ligantes
17.
J Immunol ; 187(5): 2824-33, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21821799

RESUMO

T cells recognizing tumor-associated Ags such as Wilms tumor protein (WT1) are thought to exert potent antitumor reactivity. However, no consistent high-avidity T cell responses have been demonstrated in vaccination studies with WT1 as target in cancer immunotherapy. The aim of this study was to investigate the possible role of negative thymic selection on the avidity and specificity of T cells directed against self-antigens. T cell clones directed against the HLA-A*0201-binding WT1(126-134) peptide were generated from both HLA-A*02-positive (self-HLA-restricted) and HLA-A*02-negative [nonself (allogeneic) HLA [allo-HLA]-restricted] individuals by direct ex vivo isolation using tetramers or after in vitro priming and selection. The functional avidity and specificity of these T cell clones was analyzed in-depth. Self-HLA-restricted WT1-specific clones only recognized WT1(126-134) with low avidities. In contrast, allo-HLA-restricted WT1 clones exhibited profound functional reactivity against a multitude of HLA-A*02-positive targets, even in the absence of exogenously loaded WT1 peptide, indicative of Ag-binding promiscuity. To characterize this potential promiscuity, reactivity of the T cell clones against 400 randomly selected HLA-A*0201-binding peptides was investigated. The self-HLA-restricted WT1-specific T cell clones only recognized the WT1 peptide. In contrast, the allo-HLA-restricted WT1-reactive clones recognized besides WT1 various other HLA-A*0201-binding peptides. In conclusion, allogeneic HLA-A*02-restricted WT1-specific T cells isolated from mismatched donors may be more tumor-reactive than their autologous counterparts but can show specific off-target promiscuity of potential clinical importance. As a result of this, administration of WT1-specific T cells generated from HLA-mismatched donors should be performed with appropriate precautions against potential off-target effects.


Assuntos
Autoantígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígenos HLA-A/imunologia , Transplante Homólogo/imunologia , Proteínas WT1/imunologia , Vacinas Anticâncer/imunologia , Separação Celular , Citometria de Fluxo , Antígeno HLA-A2 , Humanos , Imunoterapia/métodos
18.
PLoS One ; 6(8): e22523, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21850230

RESUMO

T-cell recognition of minor histocompatibility antigens (MiHA) plays an important role in the graft-versus-tumor (GVT) effect of allogeneic stem cell transplantation (allo-SCT). However, the number of MiHA identified to date remains limited, making clinical application of MiHA reactive T-cell infusion difficult. This study represents the first attempt of genome-wide prediction of MiHA, coupled to the isolation of T-cell populations that react with these antigens. In this unbiased high-throughput MiHA screen, both the possibilities and pitfalls of this approach were investigated. First, 973 polymorphic peptides expressed by hematopoietic stem cells were predicted and screened for HLA-A2 binding. Subsequently a set of 333 high affinity HLA-A2 ligands was identified and post transplantation samples from allo-SCT patients were screened for T-cell reactivity by a combination of pMHC-tetramer-based enrichment and multi-color flow cytometry. Using this approach, 71 peptide-reactive T-cell populations were generated. The isolation of a T-cell line specifically recognizing target cells expressing the MAP4K1(IMA) antigen demonstrates that identification of MiHA through this approach is in principle feasible. However, with the exception of the known MiHA HMHA1, none of the other T-cell populations that were generated demonstrated recognition of endogenously MiHA expressing target cells, even though recognition of peptide-loaded targets was often apparent. Collectively these results demonstrate the technical feasibility of high-throughput analysis of antigen-specific T-cell responses in small patient samples. However, the high-sensitivity of this approach requires the use of potential epitope sets that are not solely based on MHC binding, to prevent the frequent detection of T-cell responses that lack biological relevance.


Assuntos
Complexo Principal de Histocompatibilidade/fisiologia , Antígenos de Histocompatibilidade Menor/metabolismo , Linhagem Celular , Epitopos/genética , Epitopos/imunologia , Citometria de Fluxo , Perfilação da Expressão Gênica , Antígeno HLA-A2/genética , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/metabolismo , Humanos , Complexo Principal de Histocompatibilidade/genética , Complexo Principal de Histocompatibilidade/imunologia , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único/genética , Linfócitos T/metabolismo
19.
Nat Methods ; 6(7): 520-6, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19543285

RESUMO

The use of fluorescently labeled major histocompatibility complex multimers has become an essential technique for analyzing disease- and therapy-induced T-cell immunity. Whereas classical major histocompatibility complex multimer analyses are well-suited for the detection of immune responses to a few epitopes, limitations on human-subject sample size preclude a comprehensive analysis of T-cell immunity. To address this issue, we developed a combinatorial encoding strategy that allows the parallel detection of a multitude of different T-cell populations in a single sample. Detection of T cells from peripheral blood by combinatorial encoding is as efficient as detection with conventionally labeled multimers but results in a substantially increased sensitivity and, most notably, allows comprehensive screens to be performed. We obtained proof of principle for the feasibility of large-scale screening of human material by analysis of human leukocyte antigen A3-restricted T-cell responses to known and potential melanoma-associated antigens in peripheral blood from individuals with melanoma.


Assuntos
Antígenos de Histocompatibilidade/metabolismo , Subpopulações de Linfócitos T/imunologia , Antígenos , Antígenos de Neoplasias , Separação Celular/métodos , Epitopos , Corantes Fluorescentes , Antígenos de Histocompatibilidade/química , Humanos , Técnicas Imunológicas , Antígenos Específicos de Melanoma , Nanotecnologia , Proteínas de Neoplasias , Peptídeos/imunologia , Estrutura Quaternária de Proteína , Pontos Quânticos , Sensibilidade e Especificidade , Subpopulações de Linfócitos T/classificação , Subpopulações de Linfócitos T/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA