Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895225

RESUMO

Selenocysteine (Sec) metabolism is crucial for cellular function and ferroptosis prevention and has traditionally been thought to begin with the uptake of the Sec carrier selenoprotein P (SELENOP). Following uptake, Sec released from SELENOP undergoes metabolisation via selenocysteine lyase (SCLY), producing selenide, a substrate used by selenophosphate synthetase 2 (SEPHS2), which provides the essential selenium donor - selenophosphate - for the biosynthesis of the selenocysteine tRNA. Here, we report the discovery of an alternative pathway mediating Sec metabolisation that is independent of SCLY and mediated by peroxiredoxin 6 (PRDX6). Mechanistically, we demonstrate that PRDX6 can readily react with selenide and interact with SEPHS2, potentially acting as a selenium delivery system. Moreover, we demonstrate the presence and functional significance of this alternative route in cancer cells where we reveal a notable association between elevated expression of PRDX6 with a highly aggressive neuroblastoma subtype. Altogether, our study sheds light on a previously unrecognized aspect of Sec metabolism and its implications in ferroptosis, offering new avenues for therapeutic exploitation.

2.
Nat Commun ; 14(1): 4550, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507364

RESUMO

Protein-S-glutathionylation is a post-translational modification involving the conjugation of glutathione to protein thiols, which can modulate the activity and structure of key cellular proteins. Glutaredoxins (GLRX) are oxidoreductases that regulate this process by performing deglutathionylation. However, GLRX has five cysteines that are potentially vulnerable to oxidative modification, which is associated with GLRX aggregation and loss of activity. To date, GLRX cysteines that are oxidatively modified and their relative susceptibilities remain unknown. We utilized molecular modeling approaches, activity assays using recombinant GLRX, coupled with site-directed mutagenesis of each cysteine both individually and in combination to address the oxidizibility of GLRX cysteines. These approaches reveal that C8 and C83 are targets for S-glutathionylation and oxidation by hydrogen peroxide in vitro. In silico modeling and experimental validation confirm a prominent role of C8 for dimer formation and aggregation. Lastly, combinatorial mutation of C8, C26, and C83 results in increased activity of GLRX and resistance to oxidative inactivation and aggregation. Results from these integrated computational and experimental studies provide insights into the relative oxidizability of GLRX's cysteines and have implications for the use of GLRX as a therapeutic in settings of dysregulated protein glutathionylation.


Assuntos
Cisteína , Glutarredoxinas , Animais , Cisteína/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Mamíferos/metabolismo , Oxirredução , Proteínas/metabolismo
3.
Antioxid Redox Signal ; 38(16-18): 1212-1213, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36515169

RESUMO

Commonly given citations for the redox potential of ergothioneine are incorrect. In addition, the value of -0.06 V should be viewed with skepticism since the method used to determine the redox potential of ergothioneine was also used to incorrectly determine the redox potential of glutathione. Antioxid. Redox Signal. 38, 1212-1213.


Assuntos
Ergotioneína , Ergotioneína/metabolismo , Antioxidantes/metabolismo , Oxirredução , Glutationa/metabolismo
4.
J Pept Sci ; 27(10): e3339, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34008255

RESUMO

Ergothioneine (EGT) is the betaine of 2-thiohistidine (2-thioHis) and may be the last undiscovered vitamin. EGT cannot be incorporated into a peptide because the α-nitrogen is trimethylated, although this would be advantageous as an EGT-like moiety in a peptide would impart unique antioxidant and metal chelation properties. The amino acid 2-thioHis is an analogue of EGT and can be incorporated into a peptide, although there is only one reported occurrence of this in the literature. A likely reason is the harsh conditions reported for protection of the thione, with similarly harsh conditions used in order to achieve deprotection after synthesis. Here, we report a novel strategy for the incorporation of 2-thioHis into peptides in which we decided to leave the thione unprotected. This decision was based upon the reported low reactivity of EGT with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), a very electrophilic disulfide. This strategy was successful, and we report here the synthesis of 2-thioHis analogues of carnosine (ßAH), GHK-tripeptide, and HGPLGPL. Each of these peptides contain a histidine (His) residue and possesses biological activity. Our results show that substitution of His with 2-thioHis imparts strong antioxidant, radical scavenging, and copper binding properties to the peptide. Notably, we found that the 2-thioHis analogue of GHK-tripeptide was able to completely quench the hydroxyl and ABTS radicals in our assays, and its antioxidant capacity was significantly greater than would be expected based on the antioxidant capacity of free 2-thioHis. Our work makes possible greater future use of 2-thioHis in peptides.


Assuntos
Ergotioneína , Antioxidantes , Histidina , Peptídeos
5.
Biochemistry ; 59(36): 3300-3315, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32845139

RESUMO

Selenocysteine (Sec) is the 21st proteogenic amino acid in the genetic code. Incorporation of Sec into proteins is a complex and bioenergetically costly process that evokes the following question: "Why did nature choose selenium?" An answer that has emerged over the past decade is that Sec confers resistance to irreversible oxidative inactivation by reactive oxygen species. Here, we explore the question of whether this concept can be broadened to include resistance to reactive electrophilic species (RES) because oxygen and related compounds are merely a subset of RES. To test this hypothesis, we inactivated mammalian thioredoxin reductase (Sec-TrxR), a mutant containing α-methylselenocysteine [(αMe)Sec-TrxR], and a cysteine ortholog TrxR (Cys-TrxR) with various electrophiles, including acrolein, 4-hydroxynonenal, and curcumin. Our results show that the acrolein-inactivated Sec-TrxR and the (αMe)Sec-TrxR mutant could regain 25% and 30% activity, respectively, when incubated with 2 mM H2O2 and 5 mM imidazole. In contrast, Cys-TrxR did not regain activity under the same conditions. We posit that Sec enzymes can undergo a repair process via ß-syn selenoxide elimination that ejects the electrophile, leaving the enzyme in the oxidized selenosulfide state. (αMe)Sec-TrxR was created by incorporating the non-natural amino acid (αMe)Sec into TrxR by semisynthesis and allowed for rigorous testing of our hypothesis. This Sec derivative enables higher resistance to both oxidative and electrophilic inactivation because it lacks a backbone Cα-H, which prevents loss of selenium through the formation of dehydroalanine. This is the first time this unique amino acid has been incorporated into an enzyme and is an example of state-of-the-art protein engineering.


Assuntos
Mutação , Selenocisteína/análogos & derivados , Selenoproteínas/química , Tiorredoxina Dissulfeto Redutase/metabolismo , Cisteína/química , Humanos , Oxirredução , Óxidos de Selênio/química , Selenocisteína/química , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxinas/química , Tiorredoxinas/metabolismo
6.
J Pept Sci ; 26(3): e3236, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31856422

RESUMO

There are many examples of bioactive, disulfide-rich peptides and proteins whose biological activity relies on proper disulfide connectivity. Regioselective disulfide bond formation is a strategy for the synthesis of these bioactive peptides, but many of these methods suffer from a lack of orthogonality between pairs of protected cysteine (Cys) residues, efficiency, and high yields. Here, we show the utilization of 2,2'-dipyridyl diselenide (PySeSePy) as a chemical tool for the removal of Cys-protecting groups and regioselective formation of disulfide bonds in peptides. We found that peptides containing either Cys(Mob) or Cys(Acm) groups treated with PySeSePy in trifluoroacetic acid (TFA) (with or without triisopropylsilane (TIS) were converted to Cys-S-SePy adducts at 37 °C and various incubation times. This novel Cys-S-SePy adduct is able to be chemoselectively reduced by five-fold excess ascorbate at pH 4.5, a condition that should spare already installed peptide disulfide bonds from reduction. This chemoselective reduction by ascorbate will undoubtedly find utility in numerous biotechnological applications. We applied our new chemistry to the iodine-free synthesis of the human intestinal hormone guanylin, which contains two disulfide bonds. While we originally envisioned using ascorbate to chemoselectively reduce one of the formed Cys-S-SePy adducts to catalyze disulfide bond formation, we found that when pairs of Cys(Acm) residues were treated with PySeSePy in TFA, the second disulfide bond formed spontaneously. Spontaneous formation of the second disulfide is most likely driven by the formation of the thermodynamically favored diselenide (PySeSePy) from the two Cys-S-SePy adducts. Thus, we have developed a one-pot method for concomitant deprotection and disulfide bond formation of Cys(Acm) pairs in the presence of an existing disulfide bond.


Assuntos
2,2'-Dipiridil/análogos & derivados , Cisteína/química , Dissulfetos/análise , Compostos Organosselênicos/química , 2,2'-Dipiridil/química , Ácido Ascórbico/química , Hormônios Gastrointestinais/química , Humanos , Estrutura Molecular , Peptídeos Natriuréticos/química , Peptídeos/química , Ácido Trifluoracético/química
7.
Free Radic Biol Med ; 146: 324-332, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31740228

RESUMO

A hallmark of cystic fibrosis (CF) lung pathology is an increased susceptibility to pulmonary infections. Thiocyanate (-SCN) is an endogenous component of the innate immunity's peroxidase system that converts -SCN to the antimicrobial agent hypothiocyanite (HOSCN). We have previously shown that the host thioredoxin reductase (TrxR), but not the pathogen's TrxR, can selectively detoxify HOSCN thereby decreasing inflammation and oxidative stress. We tested whether the -SCN analog selenocyanate (-SeCN) shares these properties against several clinical CF bacterial isolates. We examined oxidant production from a lactoperoxidase (LPO) system using -SeCN as a potential substrate. The LPO system generated an oxidant similar in nature to HOSCN and consistent with being HOSeCN. The rate of oxidant generation using -SeCN was significantly less than seen for -SCN. An LPO system was used to generate HOSCN or HOSeCN and compared for antimicrobial activity during in situ exposure of clinical CF isolates of P. aeruginosa (PA), B. cepacia complex (BCC), and methicillin-resistant S. aureus (MRSA) obtained from CF sputum samples. Bacterial viability was assessed by colony forming units. Selective detoxification of HOSeCN was determined by comparing its metabolism by mammalian thioredoxin reductase (TrxR) to bacterial TrxR following the consumption of NADPH. We also assessed potential toxicity of equivalent HOSeCN generation, which demonstrated in situ antimicrobial activity, in human bronchial epithelial cells with a cell viability assay. The -SeCN/HOSeCN system was much more potent than -SCN/HOSCN system at killing PA, BCC and MRSA isolates. The -SeCN/HOSeCN system was more effective at killing -SCN/HOSCN resistant isolates. Mammalian TrxR selectively detoxified HOSeCN whereas the bacterial TrxR enzyme showed little activity. Human bronchial epithelial cells exposed to equivalent flux of HOSeCN that killed several CF pathogens showed no decrease in viability. -SeCN may be an effective therapeutic for the treatment of CF lung pathogens that are difficult to treat with current antibiotics.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Pró-Fármacos , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Cianatos , Humanos , Compostos de Selênio , Tiocianatos
8.
J Pept Sci ; 25(10): e3209, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31410953

RESUMO

Historically, methods to remove the 4-methoxybenzyl (Mob)-protecting group from selenocysteine (Sec) in peptides have used harsh and toxic reagents. The use of 2,2'-dithiobis-5-nitropyridine (DTNP) is an improvement over these methods; however, many wash steps are required to remove the by-product contaminant 5-nitro-2-thiopyridine. Even with many washes, excess DTNP adheres to the peptide. The final product needs excess purification to remove these contaminants. It was recently discovered by our group that hindered hydrosilanes could be used to reduce Cys(Mob). We sought to apply a similar methodology to reduce Sec(Mob), which we expected to be even more labile. Here, we present a gentle and facile method for deprotection of Sec(Mob) using triethylsilane (TES), phenol, and a variety of other scavengers often used in deprotection cocktails. The different cocktails were all incubated at 40 °C for 4 hours. The combination of TFA/TES/thioanisole (96:2:2) appeared to be the most efficient of the cocktails tested, providing complete deprotection and yielded peptide that was mainly in the diselenide form. This cocktail also showed no evidence of side reactions or significant contaminants in the high-performance liquid chromatography (HPLC) and mass spectral (MS) analyses. We envision that our new method will allow for a simple and gentle "one-pot" deprotection of Sec(Mob) following solid-phase peptide synthesis and will minimize the need for extensive purification steps.


Assuntos
Peptídeos/química , Peptídeos/síntese química , Selenocisteína/química , Técnicas de Síntese em Fase Sólida , Sequência de Aminoácidos
9.
Cell ; 177(5): 1262-1279.e25, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31056284

RESUMO

Ferroptosis, a non-apoptotic form of programmed cell death, is triggered by oxidative stress in cancer, heat stress in plants, and hemorrhagic stroke. A homeostatic transcriptional response to ferroptotic stimuli is unknown. We show that neurons respond to ferroptotic stimuli by induction of selenoproteins, including antioxidant glutathione peroxidase 4 (GPX4). Pharmacological selenium (Se) augments GPX4 and other genes in this transcriptional program, the selenome, via coordinated activation of the transcription factors TFAP2c and Sp1 to protect neurons. Remarkably, a single dose of Se delivered into the brain drives antioxidant GPX4 expression, protects neurons, and improves behavior in a hemorrhagic stroke model. Altogether, we show that pharmacological Se supplementation effectively inhibits GPX4-dependent ferroptotic death as well as cell death induced by excitotoxicity or ER stress, which are GPX4 independent. Systemic administration of a brain-penetrant selenopeptide activates homeostatic transcription to inhibit cell death and improves function when delivered after hemorrhagic or ischemic stroke.


Assuntos
Isquemia Encefálica , Peptídeos Penetradores de Células/farmacologia , Ferroptose/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hemorragias Intracranianas , Neurônios , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/biossíntese , Selênio/farmacologia , Acidente Vascular Cerebral , Transcrição Gênica/efeitos dos fármacos , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Hemorragias Intracranianas/tratamento farmacológico , Hemorragias Intracranianas/metabolismo , Hemorragias Intracranianas/patologia , Masculino , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Fator de Transcrição Sp1/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Fator de Transcrição AP-2/metabolismo
10.
J Pept Sci ; 25(6): e3173, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31074180

RESUMO

Selenocysteine (Sec) is the 21st amino acid in the genetic code where this amino acid is primarily involved in redox reactions in enzymes because of its high reactivity toward oxygen and related reactive oxygen species. Sec has found wide utility in synthetic peptides, especially as a replacement for cysteine. One limitation of using Sec in synthetic peptides is that it can undergo ß-syn elimination reactions after oxidation, rendering the peptide inactive due to loss of selenium. This limitation can be overcome by substituting Cα-H with a methyl group. The resulting Sec derivative is α-methylselenocysteine ((αMe)Sec). Here, we present a new strategy for the synthesis of (αMe)Sec by alkylation of an achiral methyl malonate through the use of a selenium-containing alkylating agent synthesized in the presence of dichloromethane. The seleno-malonate was then subjected to an enzymatic hydrolysis utilizing pig liver esterase followed by a Curtius rearrangement producing a protected derivative of (αMe)Sec that could be used in solid-phase peptide synthesis. We then synthesized two peptides: one containing Sec and the other containing (αMe)Sec, based on the sequence of glutathione peroxidase. This is the first reported incorporation of (αMe)Sec into a peptide as well as the first reported biochemical application of this unique amino acid. The (αMe)Sec-containing peptide had superior stability as it could not undergo ß-syn elimination and it also avoided cleavage of the peptide backbone, which we surprisingly found to be the case for the Sec-containing peptide when it was incubated for 96 hours in oxygenated buffer at pH 8.0.


Assuntos
Glutationa Peroxidase/química , Peptídeos/síntese química , Selenocisteína/análogos & derivados , Animais , Humanos , Peptídeos/química , Estabilidade Proteica , Selenocisteína/química , Técnicas de Síntese em Fase Sólida
11.
Protein Sci ; 28(1): 41-55, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29451338

RESUMO

Dimedone is a widely used reagent to assess the redox state of cysteine-containing proteins as it will alkylate sulfenic acid residues, but not sulfinic acid residues. While it has been reported that dimedone can label selenenic acid residues in selenoproteins, we investigated the stability, and reversibility of this label in a model peptide system. We also wondered whether dimedone could be used to detect seleninic acid residues. We used benzenesulfinic acid, benzeneseleninic acid, and model selenocysteine-containing peptides to investigate possible reactions with dimedone. These peptides were incubated with H2 O2 in the presence of dimedone and then the reactions were followed by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS). The native peptide, H-PTVTGCUG-OH (corresponding to the native amino acid sequence of the C-terminus of mammalian thioredoxin reductase), could not be alkylated by dimedone, but could be carboxymethylated with iodoacetic acid. However the "mutant peptide," H-PTVTGAUG-OH, could be labeled with dimedone at low concentrations of H2 O2 , but the reaction was reversible by addition of thiol. Due to the reversible nature of this alkylation, we conclude that dimedone is not a good reagent for detecting selenenic acids in selenoproteins. At high concentrations of H2 O2 , selenium was eliminated from the peptide and a dimeric form of dimedone could be detected using LCMS and 1 H NMR. The dimeric dimedone product forms as a result of a seleno-Pummerer reaction with Sec-seleninic acid. Overall our results show that the reaction of dimedone with oxidized cysteine residues is quite different from the same reaction with oxidized selenocysteine residues.


Assuntos
Cicloexanonas/química , Peptídeos/química , Selenocisteína/química , Selenoproteínas/química , Animais , Ácidos Carboxílicos/química , Camundongos , Compostos Organosselênicos/química , Oxirredução
12.
Protein Sci ; 28(1): 79-89, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30052295

RESUMO

Selenocysteine (Sec) is the 21st amino acid in the genetic code and it is present in a small number of proteins where it replaces the much more commonly used amino acid cysteine (Cys). It is both more complicated and bioenergetically costly to insert Sec into a protein in comparison to Cys, and this cost is most likely compensated by a gain of function to the enzyme/protein in which it is incorporated. Here we investigate one such gain of function, the enhancement of one-electron transfer catalysis. We compared the ability of Sec-containing mouse mitochondrial thioredoxin reductase (mTrxR2) to catalyze the reduction of bovine cytochrome c, ascorbyl radical, and dehydroascorbate in comparison to Cys-containing thioredoxin reductases from D. melanogaster (DmTrxR) and P. falciparum (PfTrxR). The Sec-containing mTrxR2 was able to reduce all three substrates, while the Cys-containing enzymes had little or no activity. In addition, we constructed Cys➔Sec mutants of DmTrxR and PfTrxR and found that this substitution resulted in a gain of function, as these mutant enzymes were now able to catalyze the reduction of these substrates. We also found that in the case of PfTrxR, reduction of cytochrome c was enhanced five-fold in a truncated PfTrxR in which the C-terminal redox center was removed. This shows that some of the ability of thioredoxin reductase to reduce this substrate comes from the flavin coenzyme. We also discuss a possible mechanism by which Sec-containing thioredoxin reductase reduces dehydroascorbate to ascorbate by two sequential, one-electron reductions, in part catalyzed by Sec.


Assuntos
Proteínas de Drosophila/química , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/química , Selenocisteína/química , Tiorredoxina Dissulfeto Redutase/química , Substituição de Aminoácidos , Animais , Catálise , Proteínas de Drosophila/genética , Drosophila melanogaster , Transporte de Elétrons , Mutação de Sentido Incorreto , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Selenocisteína/genética , Tiorredoxina Dissulfeto Redutase/genética
13.
J Pept Sci ; 24(11): e3130, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30353614

RESUMO

Triisopropylsilane (TIS), a hindered hydrosilane, has long been utilized as a cation scavenger for the removal of amino acid protecting groups during peptide synthesis. However, its ability to actively remove S-protecting groups by serving as a reductant has largely been mischaracterized by the peptide community. Here, we provide strong evidence that TIS can act as a reducing agent to facilitate the removal of acetamidomethyl (Acm), 4-methoxybenzyl (Mob), and tert-butyl (But ) protecting groups from cysteine (Cys) residues in the presence of trifluoroacetic acid (TFA) at 37 °C. The lability of the Cys protecting groups in TFA/TIS (98/2) in this study are in the order: Cys(Mob) > Cys(Acm) > Cys(But ), with Cys(Mob) being especially labile. Unexpectedly, we found that TIS promoted disulfide formation in addition to aiding in the removal of the protecting group. Our results raise the possibility of using TIS in orthogonal deprotection strategies of Cys-protecting groups following peptide synthesis as TIS can be viewed as a potential deprotection agent instead of merely a scavenger in deprotection cocktails based on our results. We also tested other common scavengers under these reaction conditions and found that thioanisole and triethylsilane were similarly effective as TIS in enhancing deprotection and catalyzing disulfide formation. Our findings reported herein show that careful consideration should be given to the type of scavenger used when it is desirable to preserve the Cys-protecting group. Additional consideration should be given to the concentration of scavenger, temperature of the reaction, and reaction time.


Assuntos
Cisteína/química , Peptídeos/síntese química , Silanos/química , Dissulfetos/química , Oxirredução , Peptídeos/química , Ácido Trifluoracético/química
14.
Free Radic Biol Med ; 127: 228-237, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29588180

RESUMO

This review highlights the contributions of Jean Chaudière to the field of selenium biochemistry. Chaudière was the first to recognize that one of the main reasons that selenium in the form of selenocysteine is used in proteins is due to the fact that it strongly resists permanent oxidation. The foundations for this important concept was laid down by Al Tappel in the 1960's and even before by others. The concept of oxygen tolerance first recognized in the study of glutathione peroxidase was further advanced and refined by those studying [NiFeSe]-hydrogenases, selenosubtilisin, and thioredoxin reductase. After 200 years of selenium research, work by Marcus Conrad and coworkers studying glutathione peroxidase-4 has provided definitive evidence for Chaudière's original hypothesis (Ingold et al., 2018) [36]. While the reaction of selenium with oxygen is readily reversible, there are many other examples of this phenomenon of reversibility. Many reactions of selenium can be described as "easy in - easy out". This is due to the strong nucleophilic character of selenium to attack electrophiles, but then this reaction can be reversed due to the strong electrophilic character of selenium and the weakness of the selenium-carbon bond. Several examples of this are described.


Assuntos
Oxirredução , Selênio/química , Enxofre/química , Animais , Humanos , Ácidos Nucleicos/química , Proteínas/química
15.
Biochemistry ; 57(11): 1767-1778, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29485860

RESUMO

Here, we introduce the concept of the "seleno effect" in the study of oxidoreductases that catalyze thiol/disulfide exchange reactions. In these reactions, selenium can replace sulfur as a nucleophile, electrophile, or leaving group, and the resulting change in rate (the seleno effect) is defined as kS/ kSe. In solution, selenium accelerates the rate of thiol/disulfide exchange regardless of its chemical role (e.g., nucleophile or electrophile). Here we show that this is not the case for enzyme catalyzed reactions and that the magnitude of the seleno effect can differentiate the role of each sulfur atom of a disulfide bond between that of an electrophile or leaving group. We used selenium for sulfur substitution to study the thiol/disulfide exchange step that occurs between the N-terminal redox center and the C-terminal disulfide-containing ß-hairpin motif of Plasmodium falciparum thioredoxin reductase (PfTrxR), which has the sequence Gly-Cys535-Gly-Gly-Gly-Lys-Cys540-Gly. We assayed a truncated PfTrxR enzyme missing this C-terminal tail for disulfide-reductase activity using synthetic peptide substrates in which either Cys535 or Cys540 was replaced with selenocysteine (Sec). The results show that substitution of Cys535 with Sec resulted in a nearly 9-fold decrease in the rate of reduction, while substitution of Cys540 resulted in a 1.5-fold increase in the rate of reduction. We also produced full-length, semisynthetic enzymes in which Sec replaced either of these two Cys residues and observed similar results using E. coli thioredoxin as the substrate. In this assay, the observed seleno effect ( kS/ kSe) for the C535U mutant was 7.4, and that for the C540U mutant was 0.2.


Assuntos
Mutação de Sentido Incorreto , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/química , Selenocisteína/química , Tiorredoxina Dissulfeto Redutase/química , Motivos de Aminoácidos , Substituição de Aminoácidos , Oxirredução , Plasmodium falciparum/genética , Domínios Proteicos , Proteínas de Protozoários/genética , Selenocisteína/genética , Tiorredoxina Dissulfeto Redutase/genética
16.
Antioxidants (Basel) ; 7(1)2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29286308

RESUMO

Selenoprotein K (SELENOK) is a selenocysteine (Sec)-containing protein localized in the endoplasmic reticulum (ER) membrane where it interacts with the DHHC6 (where single letter symbols represent Asp-His-His-Cys amino acids) enzyme to promote protein acyl transferase (PAT) reactions. PAT reactions involve the DHHC enzymatic capture of palmitate via a thioester bond to cysteine (Cys) residues that form an unstable palmitoyl-DHHC intermediate, followed by transfer of palmitate to Cys residues of target proteins. How SELENOK facilitates this reaction has not been determined. Splenocyte microsomal preparations from wild-type mice versus SELENOK knockout mice were used to establish PAT assays and showed decreased PAT activity (~50%) under conditions of SELENOK deficiency. Using recombinant, soluble versions of DHHC6 along with SELENOK containing Sec92, Cys92, or alanine (Ala92), we evaluated the stability of the acyl-DHHC6 intermediate and its capacity to transfer the palmitate residue to Cys residues on target peptides. Versions of SELENOK containing either Ala or Cys residues in place of Sec were equivalently less effective than Sec at stabilizing the acyl-DHHC6 intermediate or promoting PAT activity. These data suggest that Sec92 in SELENOK serves to stabilize the palmitoyl-DHHC6 intermediate by reducing hydrolyzation of the thioester bond until transfer of the palmitoyl group to the Cys residue on the target protein can occur.

17.
Free Radic Biol Med ; 104: 249-261, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28108278

RESUMO

Selenium is present in proteins in the form of selenocysteine, where this amino acid serves catalytic oxidoreductase functions. The use of selenocysteine in nature is strongly associated with redox catalysis. However, selenium is also found in a 2-selenouridine moiety at the wobble position of tRNAGlu, tRNAGln and tRNALys. It is thought that the modifications of the wobble position of the tRNA improves the selectivity of the codon-anticodon pair as a result of the physico-chemical changes that result from substitution of sulfur and selenium for oxygen. Both selenocysteine and 2-selenouridine have widespread analogs, cysteine and thiouridine, where sulfur is used instead. To examine the role of selenium in 2-selenouridine, we comparatively analyzed the oxidation reactions of sulfur-containing 2-thiouracil-5-carboxylic acid (s2c5Ura) and its selenium analog 2-selenouracil-5-carboxylic acid (se2c5Ura) using 1H-NMR spectroscopy, 77Se-NMR spectroscopy, and liquid chromatography-mass spectrometry. Treatment of s2c5Ura with hydrogen peroxide led to oxidized intermediates, followed by irreversible desulfurization to form uracil-5-carboxylic acid (c5Ura). In contrast, se2c5Ura oxidation resulted in a diselenide intermediate, followed by conversion to the seleninic acid, both of which could be readily reduced by ascorbate and glutathione. Glutathione and ascorbate only minimally prevented desulfurization of s2c5Ura, whereas very little deselenization of se2c5Ura occurred in the presence of the same antioxidants. In addition, se2c5Ura but not s2c5Ura showed glutathione peroxidase activity, further suggesting that oxidation of se2c5Ura is readily reversible, while oxidation of s2c5Ura is not. The results of the study of these model nucleobases suggest that the use of 2-selenouridine is related to resistance to oxidative inactivation that otherwise characterizes 2-thiouridine. As the use of selenocysteine in proteins also confers resistance to oxidation, our findings suggest a common mechanism for the use of selenium in biology.


Assuntos
Selênio/metabolismo , Selenocisteína/metabolismo , Enxofre/metabolismo , Uracila/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/farmacologia , Espectroscopia de Ressonância Magnética , Compostos Organosselênicos/química , Compostos Organosselênicos/metabolismo , Oxirredução , Estresse Oxidativo , RNA de Transferência/química , RNA de Transferência/metabolismo , Selênio/química , Selenocisteína/química , Enxofre/química , Uracila/análogos & derivados , Uracila/química , Uridina/análogos & derivados , Uridina/química , Uridina/metabolismo
18.
J Pept Sci ; 22(9): 571-6, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27480992

RESUMO

We previously reported on a method for the facile removal of 4-methoxybenzyl and acetamidomethyl protecting groups from cysteine (Cys) and selenocysteine (Sec) using 2,2'-dithiobis-5-nitropyridine dissolved in trifluoroacetic acid, with or without thioanisole. The use of this reaction mixture removes the protecting group and replaces it with a 2-thio(5-nitropyridyl) (5-Npys) group. This results in either a mixed selenosulfide bond or disulfide bond (depending on the use of Sec or Cys), which can subsequently be reduced by thiolysis. A major disadvantage of thiolysis is that excess thiol must be used to drive the reaction to completion and then removed before using the Cys-containing or Sec-containing peptide in further applications. Here, we report a further advancement of this method as we have found that ascorbate at pH 4.5 and 25 °C will reduce the selenosulfide to the selenol. Ascorbolysis of the mixed disulfide between Cys and 5-Npys is much less efficient but can be accomplished at higher concentrations of ascorbate at pH 7 and 37 °C with extended reaction times. We envision that our improved method will allow for in situ reactions with alkylating agents and electrophiles without the need for further purification, as well as a number of other applications. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.


Assuntos
Ácido Ascórbico/química , Cisteína/química , Dissulfetos/química , Piridinas/química , Selenocisteína/química , Concentração de Íons de Hidrogênio , Hidrólise , Fatores de Tempo , Ácido Trifluoracético/química
19.
ACS Chem Biol ; 11(4): 821-41, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26949981

RESUMO

The authors were asked by the Editors of ACS Chemical Biology to write an article titled "Why Nature Chose Selenium" for the occasion of the upcoming bicentennial of the discovery of selenium by the Swedish chemist Jöns Jacob Berzelius in 1817 and styled after the famous work of Frank Westheimer on the biological chemistry of phosphate [Westheimer, F. H. (1987) Why Nature Chose Phosphates, Science 235, 1173-1178]. This work gives a history of the important discoveries of the biological processes that selenium participates in, and a point-by-point comparison of the chemistry of selenium with the atom it replaces in biology, sulfur. This analysis shows that redox chemistry is the largest chemical difference between the two chalcogens. This difference is very large for both one-electron and two-electron redox reactions. Much of this difference is due to the inability of selenium to form π bonds of all types. The outer valence electrons of selenium are also more loosely held than those of sulfur. As a result, selenium is a better nucleophile and will react with reactive oxygen species faster than sulfur, but the resulting lack of π-bond character in the Se-O bond means that the Se-oxide can be much more readily reduced in comparison to S-oxides. The combination of these properties means that replacement of sulfur with selenium in nature results in a selenium-containing biomolecule that resists permanent oxidation. Multiple examples of this gain of function behavior from the literature are discussed.


Assuntos
Natureza , Selênio , Deficiências Nutricionais/complicações , Humanos , Neoplasias/complicações , Selênio/deficiência
20.
Redox Biol ; 2: 475-84, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24624337

RESUMO

Thioredoxin reductase (TR) catalyzes the reduction of thioredoxin (TRX), which in turn reduces mammalian typical 2-Cys peroxiredoxins (PRXs 1-4), thiol peroxidases implicated in redox homeostasis and cell signaling. Typical 2-Cys PRXs are inactivated by hyperoxidation of the peroxidatic cysteine to cysteine-sulfinic acid, and regenerated in a two-step process involving retro-reduction by sulfiredoxin (SRX) and reduction by TRX. Here transient exposure to menadione and glucose oxidase was used to examine the dynamics of oxidative inactivation and reactivation of PRXs in mouse C10 cells expressing various isoforms of TR, including wild type cytoplasmic TR1 (Sec-TR1) and mitochondrial TR2 (Sec-TR2) that encode selenocysteine, as well as mutants of TR1 and TR2 in which the selenocysteine codon was changed to encode cysteine (Cys-TR1 or Cys-TR2). In C10 cells endogenous TR activity was insensitive to levels of hydrogen peroxide that hyperoxidize PRXs. Expression of Sec-TR1 increased TR activity, reduced the basal cytoplasmic redox state, and increased the rate of reduction of a redox-responsive cytoplasmic GFP probe (roGFP), but did not influence either the rate of inactivation or the rate of retro-reduction of PRXs. In comparison to roGFP, which was reduced within minutes once oxidants were removed reduction of 2-Cys PRXs occurred over many hours. Expression of wild type Sec-TR1 or Sec-TR2, but not Cys-TR1 or TR2, increased the rate of reduction of PRXs and improved cell survival after menadione exposure. These results indicate that expression levels of TR do not reduce the severity of initial oxidative insults, but rather govern the rate of reduction of cellular factors required for cell viability. Because Sec-TR is completely insensitive to cytotoxic levels of hydrogen peroxide, we suggest TR functions at the top of a redox pyramid that governs the oxidation state of peroxiredoxins and other protein factors, thereby dictating a hierarchy of phenotypic responses to oxidative insults.


Assuntos
Cisteína/análogos & derivados , Cisteína/metabolismo , Pulmão/enzimologia , Peroxirredoxinas/metabolismo , Tiorredoxina Redutase 1/metabolismo , Tiorredoxina Redutase 2/metabolismo , Animais , Sobrevivência Celular , Células Epiteliais/enzimologia , Glucose Oxidase/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Pulmão/citologia , Camundongos , Estresse Oxidativo , Selenocisteína/metabolismo , Tiorredoxina Redutase 1/genética , Tiorredoxina Redutase 2/genética , Vitamina K 3/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA