Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Bioengineering (Basel) ; 11(7)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39061775

RESUMO

Corneal neovascularization is a significant cause of vision loss, often resulting in corneal clouding and chronic inflammation. Shark cartilage is widely recognized as a significant natural source of anti-angiogenic compounds. Our previous studies have shown that a polypeptide from white-spotted catshark (Chiloscyllium plagiosum Bonnet) has the potential to inhibit the angiogenesis of breast tumors. This study applied this peptide (SAIF) to a corneal alkali injury model to assess its effect on corneal neovascularization. Results revealed that SAIF inhibits endothelial cell proliferation, migration, and tube formation. SAIF inhibited VEGF-induced angiogenesis in the matrigel plug. Using the corneal alkali injury model, SAIF significantly inhibited corneal vascular neovascularization in mice. We found that SAIF not only significantly inhibited the upregulation of pro-angiogenic factors such as VEGF, bFGF, and PDGF expression induced by alkali injury, but also promoted the expression of anti-angiogenesis factor PEDF. Moreover, we also analyzed the MMPs and TIMPs involved in extracellular matrix (ECM) remodeling, angiogenesis, and lymphangiogenesis. We found that SAIF treatment inhibited the expression of pro-angiogenic factors like MMP1, MMP2, MMP3, MMP9, MMP13, and MMP14, and promoted the expression of anti-angiogenesis factors such as MMP7, TIMP1, TIMP2, and TIMP3. In conclusion, SAIF acts as an anti-angiogenic factor to inhibit the proliferation, migration, and tube formation of endothelial cells, inhibit pro-angiogenic factors, promote anti-angiogenic factors, and regulate the expression of MMPs, ultimately inhibiting corneal neovascularization.

2.
J Hazard Mater ; 476: 134901, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38909462

RESUMO

Acesulfame potassium (ACK) was generally regarded as innocuous and extensively ingested. Nevertheless, ACK has recently gained attention as a burgeoning pollutant that has the potential to induce a range of health hazards, particularly to the digestive system. Herein, we uncover that ACK initiates inflammatory bowel disease (IBD) in mice and zebrafish, as indicated by the aggregation of macrophages in the intestine and the inhibition of intestinal mucus secretion. Transcriptome analysis of mice and zebrafish guts revealed that exposure to ACK typically impacts the cell cycle, focal adhesion, and PI3K-Akt signaling pathways. Using pharmacological approaches, we demonstrate that the PI3K-Akt signaling pathway and the generation of reactive oxygen species (ROS) triggered by cell division are not significant factors in the initiation of IBD caused by ACK. Remarkably, inhibition of the focal adhesion pathway is responsible for the IBD onset induced by ACK. Our results indicate the detrimental impacts and possible underlying mechanisms of ACK on the gastrointestinal system and provide insights for making informed choices about everyday dietary habits.


Assuntos
Adesões Focais , Doenças Inflamatórias Intestinais , Transdução de Sinais , Tiazinas , Peixe-Zebra , Animais , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Tiazinas/farmacologia , Adesões Focais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Masculino
3.
J Affect Disord ; 349: 21-31, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38190858

RESUMO

BACKGROUND: Although smoking remains a leading cause of preventable disease, the treatment options for smoking are limited. The present study evaluated the neural features underlying effects of repetitive transcranial magnetic stimulation (rTMS) for reducing smoking cravings. In addition, the efficacy of a simulated retrieval-extinction procedure to augment rTMS efficacy was examined. METHODS: Sixty-one individuals with tobacco use disorder (TUD) were randomized into three groups: classic rTMS, retrieval rTMS (viewed smoking videos before rTMS), and sham rTMS. rTMS was performed on the left dorsolateral prefrontal cortex (DLPFC) over 5 days using a standard figure-8 coil. Smoking cravings and brain responses to smoking cues were measured before and after rTMS treatment. Changes in functional connectivity (FC) among different brain regions were calculated. RESULTS: rTMS reduced smoking urges in TUD. Both active-rTMS groups demonstrated greater activations of the DLPFC, caudate, and bilateral insula relative to the sham group. Increased FC was observed between executive and reward network brain regions, and decreased FC was observed within reward network regions. Compared with standard rTMS, retrieval-extinction rTMS demonstrated similar outcomes and was associated with less activation of the medial frontal gyrus. CONCLUSIONS: rTMS increased activations in brain regions implicated in executive control and reward processing. Strengthened prefrontal-striatal pathway suggests that rTMS enhanced top-down control over smoking cravings. The retrieval-extinction process, although associated with some different and multiple similar neural correlates as the standard rTMS, did not enhance cessation outcomes.


Assuntos
Tabagismo , Humanos , Fissura/fisiologia , Neostriado , Córtex Pré-Frontal , Fumar , Tabagismo/terapia , Estimulação Magnética Transcraniana/métodos
4.
Heliyon ; 9(7): e18240, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37539189

RESUMO

Shark cartilage was created as a cancer-fighting diet because it was believed to have an element that may suppress tumor growth. Due to overfishing, sharks have become endangered recently, making it impossible to harvest natural components from shark cartilage for therapeutic development research. Previously, we identified a peptide SAIF from shark cartilage with an-tiangiogenic and anti-tumor effects, successfully expressed it in Escherichia coli by using genetic engineering techniques. However, we did not elucidate the specific target of SAIF and its antiangiogenic molecular mechanism, which hindered its further drug development. Therefore, in this work, the exact mechanism of action was studied using various techniques, including cellular and in vivo animal models, computer-aided simulation, molecular target capture, and transcriptome sequencing analysis. With VEGF-VEGFR2 interaction and preventing the activation of VEGFR2/ERK signaling pathways, SAIF was discovered to decrease angiogenesis and hence significantly limit tumor development. The findings further demonstrated SAIF's strong safety and pharmaceutically potential. The evidence showed that SAIF, which is expressed by, is a potent and safe angiogenesis inhibitor and might be developed as a candidate peptide drug for the treatment of solid tumors such as hepatocellular carcinoma and other conditions linked with angiogenic overgrowth.

5.
ACS Omega ; 8(31): 28733-28748, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576624

RESUMO

Improving lipophilicity for drugs to penetrate the lipid membrane and decreasing bacterial and fungal coinfections for patients with cancer pose challenges in the drug development process. Here, a series of new N-alkylated-2-(substituted phenyl)-1H-benzimidazole derivatives were synthesized and characterized by 1H and 13C NMR, FTIR, and HRMS spectrum analyses to address these difficulties. All the compounds were evaluated for their antiproliferative, antibacterial, and antifungal activities. Results indicated that compound 2g exhibited the best antiproliferative activity against the MDA-MB-231 cell line and also displayed significant inhibition at minimal inhibitory concentration (MIC) values of 8, 4, and 4 µg mL-1 against Streptococcus faecalis, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus compared with amikacin. The antifungal data of compounds 1b, 1c, 2e, and 2g revealed their moderate activities toward Candida albicans and Aspergillus niger, with MIC values of 64 µg mL-1 for both strains. Finally, the molecular docking study found that 2g interacted with crucial amino acids in the binding site of complex dihydrofolate reductase with nicotinamide adenine dinucleotide phosphate.

6.
Math Biosci Eng ; 20(7): 12240-12262, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37501441

RESUMO

The recognition of traffic signs is of great significance to intelligent driving and traffic systems. Most current traffic sign recognition algorithms do not consider the impact of rainy weather. The rain marks will obscure the recognition target in the image, which will lead to the performance degradation of the algorithm, a problem that has yet to be solved. In order to improve the accuracy of traffic sign recognition in rainy weather, we propose a rainy traffic sign recognition algorithm. The algorithm in this paper includes two modules. First, we propose an image deraining algorithm based on the Progressive multi-scale residual network (PMRNet), which uses a multi-scale residual structure to extract features of different scales, so as to improve the utilization rate of the algorithm for information, combined with the Convolutional long-short term memory (ConvLSTM) network to enhance the algorithm's ability to extract rain mark features. Second, we use the CoT-YOLOv5 algorithm to recognize traffic signs on the recovered images. In this paper, in order to improve the performance of YOLOv5 (You-Only-Look-Once, YOLO), the 3 × 3 convolution in the feature extraction module is replaced by the Contextual Transformer (CoT) module to make up for the lack of global modeling capability of Convolutional Neural Network (CNN), thus improving the recognition accuracy. The experimental results show that the deraining algorithm based on PMRNet can effectively remove rain marks, and the evaluation indicators Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) are better than the other representative algorithms. The mean Average Precision (mAP) of the CoT-YOLOv5 algorithm on the TT100k datasets reaches 92.1%, which is 5% higher than the original YOLOv5.

7.
Acta Biochim Biophys Sin (Shanghai) ; 55(10): 1630-1639, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37381672

RESUMO

Umbilical cord blood (UCB) is an advantageous source for hematopoietic stem/progenitor cell (HSPC) transplantation, yet the current strategies for large-scale and cost-effective UCB-HSPC preparation are still unavailable. To overcome these obstacles, we systematically evaluate the feasibility of our newly identified CH02 peptide for ex vivo expansion of CD34 + UCB-HSPCs. We herein report that the CH02 peptide is specifically enriched in HSPC proliferation via activating the FLT3 signaling. Notably, the CH02-based cocktails are adequate for boosting 12-fold ex vivo expansion of UCB-HSPCs. Meanwhile, CH02-preconditioned UCB-HSPCs manifest preferable efficacy upon wound healing in diabetic mice via bidirectional orchestration of proinflammatory and anti-inflammatory factors. Together, our data indicate the advantages of the CH02-based strategy for ex vivo expansion of CD34 + UCB-HSPCs, which will provide new strategies for further development of large-scale HSPC preparation for clinical purposes.


Assuntos
Diabetes Mellitus Experimental , Transplante de Células-Tronco Hematopoéticas , Animais , Camundongos , Sangue Fetal , Células-Tronco Hematopoéticas , Antígenos CD34 , Moléculas de Adesão Celular , Peptídeos/farmacologia , Células Cultivadas
8.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37111305

RESUMO

Liver fibrosis represents a significant health hazard with a high morbidity rate and an increased risk of liver cancer. Targeting overactivated Fibroblast growth factor receptor 2 (FGFR2) is a promising strategy to counteract collagen accumulation during liver fibrosis. However, there is a shortage of drugs to specifically block the activation of FGFR2 in liver fibrosis patients. Data mining, cell validation, and animal studies showed a positive correlation between FGFR2 overexpression and liver fibrosis development. Novel FGFR2 inhibitors were screened using a microarray-based high-throughput binding analysis. The effectiveness of each candidate was validated through simulated docking, binding affinity verification, single-point mutation validation, and in vitro kinase inhibition measurements to demonstrate the ability of each inhibitor to block the catalytic pocket and reverse FGFR2 overactivation. A specific FGFR2 inhibitor, cynaroside (CYN, also known as luteoloside), was screened based on the finding that FGFR2 promotes hepatic stellate cell (HSC) activation and collagen secretion in hepatocytes. The results from cellular assays showed that CYN can inhibit FGFR2 hyperactivation resulting from its overexpression and excessive basic fibroblast growth factor (bFGF), reducing HSC activation and collagen secretion in hepatocytes. Animal experiments on a carbon tetrachloride (CCl4) mouse model and a nonalcoholic steatohepatitis mouse model indicate that CYN treatment reduces liver fibrosis during fibrosis formation. These findings suggest that CYN prevents liver fibrosis formation at the cell level and in mouse models.

9.
J Exp Clin Cancer Res ; 42(1): 96, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37085881

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common and lethal cancers worldwide, but current treatment options remain limited and cause serious life-threatening side effects. Aberrant FGFR4 signaling has been validated as an oncogenic driver of HCC, and EZH2, the catalytic subunit of the PRC2 complex, is a potential factor that contributes to acquired drug resistance in many tumors, including HCC. However, the functional relationship between these two carcinogenic factors, especially their significance for HCC treatment, remains unclear. In this study, we systematically evaluated the feasibility of a combination therapy targeting FGFR4 and EZH2 for HCC. METHODS: RNA sequencing data of patients with Liver hepatocellular carcinoma (LIHC) from The Cancer Genome Atlas (TCGA) were analyzed to determine FGFR4 and EZH2 expression and their interaction with prognosis. Moreover, the HCC cell lines, zebrafish/mouse HCC xenografts and zebrafish HCC primary tumors were treated with FGFR4 inhibitor (Roblitinib) and/or EZH2 inhibitor (CPI-169) and then subjected to cell proliferation, viability, apoptosis, and tumor growth analyses to evaluate the feasibility of combination therapy for HCC both in vitro and in vivo. Furthermore, RNA-Seq was performed in combination with ChIP-Seq data analysis to investigate the critical mechanism underlying the combination treatment with Roblitinib and CPI-169. RESULTS: EZH2 accumulated through the non-canonical NF-kB signaling in response to FGFR4 inhibitor treatment, and the elevated EZH2 levels led to the antagonism of HCC against Roblitinib (FGFR4 inhibitor). Notably, knockdown of EZH2 sensitized HCC cells to Roblitinib, while the combination treatment of Roblitinib and CPI-169 (EZH2 inhibitor) synergistically induced the HCC cell apoptosis in vitro and suppressed the zebrafish/mouse HCC xenografts and zebrafish HCC primary tumors development in vivo. Moreover, Roblitinib and CPI-169 synergistically inhibited HCC development via repressing YAP signaling. CONCLUSIONS: Collectively, our study highlighted the potential of the therapeutic combination of FGFR4 and EZH2 inhibitors, which would provide new references for the further development of clinical treatment strategies for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas de Sinalização YAP , Animais , Humanos , Camundongos , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Inibidores Enzimáticos/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra , Proteínas de Sinalização YAP/efeitos dos fármacos , Proteínas de Sinalização YAP/metabolismo
10.
J Nanobiotechnology ; 21(1): 55, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36803994

RESUMO

Acne is a chronic skin condition that has serious consequences for mental and social well-being because it frequently occurs on the face. Several acne treatment approaches have commonly been used but have been hampered by side effects or weak activity. Thus, the investigation of the safety and efficacy of anti-acne compounds is of considerable medical importance. Herein, an endogenous peptide (P5) derived from fibroblast growth factors 2 (FGF2) was conjugated to the polysaccharide hyaluronic acid (HA) to generate the bioconjugate nanoparticle HA-P5, which suppresses fibroblast growth factor receptors (FGFRs) to significantly rehabilitate acne lesions and reduce sebum accumulation in vivo and in vitro. Moreover, our results show that HA-P5 inhibits both fibroblast growth factor receptor 2 (FGFR2) and androgen receptor (AR) signalling in SZ95 cells, reverses the acne-prone transcriptome, and decreases sebum secretion. Furthermore, the cosuppression mechanism revealed that HA-P5 blocks FGFR2 activation, as well as the YTH N6-methyladenosine RNA binding protein F3 (YTHDF3) downstream molecules, including an N6-methyladenosine (m6A) reader that facilitates AR translation. More importantly, a significant difference between HA-P5 and the commercial FGFR inhibitor AZD4547 is that HA-P5 does not trigger the overexpression of aldo-keto reductase family 1 member C3 (AKR1C3), which blocks acne treatment by catalyzing the synthesis of testosterone. Overall, we demonstrate that a polysaccharide-conjugated and naturally derived oligopeptide HA-P5 can alleviate acne and act as an optimal FGFR2 inhibitor and reveal that YTHDF3 plays a crucial role in signalling between FGFR2 and AR.


Assuntos
Acne Vulgar , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Humanos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/uso terapêutico , Fator 2 de Crescimento de Fibroblastos , Ácido Hialurônico/uso terapêutico , Acne Vulgar/tratamento farmacológico , Peptídeos/uso terapêutico
11.
R Soc Open Sci ; 9(9): 220659, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36147940

RESUMO

In this study, a series of 14 Cu (II), Zn (II), Ni (II) and Ag (I) complexes containing bis-benzimidazole derivatives were successfully designed and synthesized from 2-(1H-benzimidazole-2-yl)-phenol derivatives and corresponding metal salt solutions. The compound structures were identified by FT-IR, 1H-NMR, powder X-ray diffraction and ESI-MS analyses, and the presence of the metal in the complexes was confirmed by ultraviolet-visible spectroscopy and ICP optical emission spectrometry. Electronic structure calculations were also carried out to describe the detailed structures in addition to the electronic absorption spectra of the ligands. The cytotoxic activity of the complexes was evaluated against three human cancer cell lines: lung (A549), breast (MDA-MB-231) and prostate (PC3) cancer cells. All complexes inhibited anti-proliferative cancer cells better than free ligands, especially Zn (II) and Ag (I) complexes, which are most sensitive to MDA-MB-231 cells. In addition, showing the growth inhibition of three cancer cell lines with IC50 < 10.4 µM, complexes C1 , C3 and C14 could be considered potential multi-targeted anti-cancer agents.

12.
SAGE Open Med Case Rep ; 10: 2050313X221103732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693925

RESUMO

Osteochondroma is the most common bone tumor representing 20%-50% of all benign bone tumors and 10%-15% of all bone tumors. Osteochondroma has similar radiological appearance in both solitary and multiple forms; the latter is an autosomal dominant disorder termed hereditary multiple exostoses. Associated complications of osteochondroma include deformity, fracture, neurovascular compromise, bursa formation, and malignant transformation. Measurement of the cartilage cap thickness is an important index suggesting secondary malignancy of osteochondroma. The upper limit of cap thickness after skeletal maturation is 1.5 cm which can be reliably measured on ultrasound or magnetic resonance imaging. Hereditary multiple exostoses are linked to the mutations of different exostoses genes located on chromosome 8, 11, and 19. We reported cases of two siblings presented with multiple osteochondromas managed by surgical excision. We evaluated their clinical and radiological presentation, genetic correlations and compared with the literature.

13.
Artigo em Inglês | MEDLINE | ID: mdl-36601331

RESUMO

Objective: Traditional Chinese medicine (TCM) has a long history in the treatment of Immunoglobulin A nephropathy (IgAN). A large number of animal experiments focused on the TCM treatment of IgAN are conducted every year. The evidence for these preclinical studies is not clear. This study summarized and evaluated the results of animal experiments on TCM treatment for IgAN. Methods: We systematically searched animal studies from 6 databases from inception to August 30, 2022. We included Chinese studies from the key magazine of China technology. The quality of the included studies was evaluated with the SYRCLE animal experimental bias risk assessment tool and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE). Results: Out of 832 records identified in the initial search, 30 studies were selected. The results indicated that, compared with the control group, the TCM treatment group improved 24 h urine protein (24 h-UP) level (standardized mean difference (SMD) 3.57, 95% confidence interval (CI) 4.48 to 2.66, P < 0.001), urine red blood cell (U-RBC) (SMD 13.66, 95% CI 17.99 to 9.32, P < 0.001), serum creatinine (Scr) (mean difference (MD) 10.89, 95% CI 17.00 to 4.77, P < 0.001), blood urea nitrogen (BUN) (MD 2.44, 95% CI 3.42 to 1.47, P < 0.001), tumor necrosis factor-α (TNF-α) (MD 171.28 to 95% CI 323.68 to 18.88, P=0.03), transforming growth factor-ß1 (TGF-ß) (SMD 4.02, 95% CI 7.26 to 0.77, P=0.02), matrix metalloproteinase-9/tissue inhibitors of metalloproteinase-1(MMP-9/TIMP-1) (MD 0.03, 95% CI 0.00 to 0.06, P=0.02), nephrin mRNA (SMD 3.39, 95% CI 2.59 to 4.18, P < 0.001). However, there is no difference in albumin level (MD 1.10, 95% CI 0.06 to 2.26, P=0.06) and interleukin-6 (IL-6) (MD 170.77, 95% CI 365.3 to 23.75, P=0.09). Conclusions: TCM can improve 24 h-UP, U-RBC, Scr, BUN, MMP-9/TIMP-1, TNF-α, TGF-ß, and nephrin mRNA of IgAN animal models. Moreover, there is a need for rigorous reporting of preclinical research methodology, which is essential to support the quality of preclinical research. Registration. This review was registered with a systematic review record CRD42020171404 in the PROSPERO database.

14.
Gut ; 71(1): 129-147, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33568427

RESUMO

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is the most lethal malignancy and lacks effective treatment. We aimed to understand molecular mechanisms of the intertwined interactions between tumour stromal components in metastasis and to provide a new paradigm for PDAC therapy. DESIGN: Two unselected cohorts of 154 and 20 patients with PDAC were subjected to correlation between interleukin (IL)-33 and CXCL3 levels and survivals. Unbiased expression profiling, and genetic and pharmacological gain-of-function and loss-of-function approaches were employed to identify molecular signalling in tumour-associated macrophages (TAMs) and myofibroblastic cancer-associated fibroblasts (myoCAFs). The role of the IL-33-ST2-CXCL3-CXCR2 axis in PDAC metastasis was evaluated in three clinically relevant mouse PDAC models. RESULTS: IL-33 was specifically elevated in human PDACs and positively correlated with tumour inflammation in human patients with PDAC. CXCL3 was highly upregulated in IL-33-stimulated macrophages that were the primary source of CXCL3. CXCL3 was correlated with poor survival in human patients with PDAC. Mechanistically, activation of the IL-33-ST2-MYC pathway attributed to high CXCL3 production. The highest level of CXCL3 was found in PDAC relative to other cancer types and its receptor CXCR2 was almost exclusively expressed in CAFs. Activation of CXCR2 by CXCL3 induced a CAF-to-myoCAF transition and α-smooth muscle actin (α-SMA) was uniquely upregulated by the CXCL3-CXCR2 signalling. Type III collagen was identified as the CXCL3-CXCR2-targeted adhesive molecule responsible for myoCAF-driven PDAC metastasis. CONCLUSIONS: Our work provides novel mechanistic insights into understanding PDAC metastasis by the TAM-CAF interaction and targeting each of these signalling components would provide an attractive and new paradigm for treating pancreatic cancer.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Carcinoma Ductal Pancreático/patologia , Quimiocinas CXC/metabolismo , Neoplasias Pancreáticas/patologia , Macrófagos Associados a Tumor/metabolismo , Animais , Carcinoma Ductal Pancreático/mortalidade , Estudos de Coortes , Humanos , Interleucina-33/metabolismo , Camundongos Knockout , Metástase Neoplásica , Neoplasias Pancreáticas/mortalidade , Regulação para Cima
15.
Theranostics ; 11(20): 10125-10147, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34815808

RESUMO

Background: Fibroblast growth factor receptors (FGFRs) are key targets for nerve regeneration and repair. The therapeutic effect of exogenous recombinant FGFs in vivo is limited due to their high molecular weight. Small peptides with low molecular weight, easy diffusion, low immunogenicity, and nontoxic metabolite formation are potential candidates. The present study aimed to develop a novel low-molecular-weight peptide agonist of FGFR to promote nerve injury repair. Methods: Phage display technology was employed to screen peptide ligands targeting FGFR2. The peptide ligand affinity for FGFRs was detected by isothermal titration calorimetry. Structural biology-based computer virtual analysis was used to characterize the interaction between the peptide ligand and FGFR2. The peptide ligand effect on axon growth, regeneration, and behavioral recovery of sensory neurons was determined in the primary culture of sensory neurons and dorsal root ganglia (DRG) explants in vitro and a rat spinal dorsal root injury (DRI) model in vivo. The peptide ligand binding to other membrane receptors was characterized by surface plasmon resonance (SPR) and liquid chromatography-mass spectrometry (LC-MS)/MS. Intracellular signaling pathways primarily affected by the peptide ligand were characterized by phosphoproteomics, and related pathways were verified using specific inhibitors. Results: We identified a novel FGFR-targeting small peptide, CH02, with seven amino acid residues. CH02 activated FGFR signaling through high-affinity binding with the extracellular segment of FGFRs and also had an affinity for several receptor tyrosine kinase (RTK) family members, including VEGFR2. In sensory neurons cultured in vitro, CH02 maintained the survival of neurons and promoted axon growth. Simultaneously, CH02 robustly enhanced nerve regeneration and sensory-motor behavioral recovery after DRI in rats. CH02-induced activation of FGFR signaling promoted nerve regeneration primarily via AKT and ERK signaling downstream of FGFRs. Activation of mTOR downstream of AKT signaling augmented axon growth potential in response to CH02. Conclusion: Our study revealed the significant therapeutic effect of CH02 on strengthening nerve regeneration and suggested a strategy for treating peripheral and central nervous system injuries.


Assuntos
Peptídeos/farmacologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Raízes Nervosas Espinhais/efeitos dos fármacos , Animais , Axônios/metabolismo , Células Cultivadas , Lesões por Esmagamento/tratamento farmacológico , Lesões por Esmagamento/metabolismo , Gânglios Espinais/metabolismo , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Ligantes , Masculino , Simulação de Acoplamento Molecular , Regeneração Nervosa/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Fatores de Crescimento de Fibroblastos/fisiologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Raízes Nervosas Espinhais/lesões , Serina-Treonina Quinases TOR/metabolismo
16.
Int J Biol Sci ; 17(14): 3689-3701, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671193

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most common gastrointestinal tumors, accounting for almost half a million deaths per year. Cancer-associated fibroblasts (CAFs) are the major constituent of the tumor microenvironment (TME) and dramatically impact ESCC progression. Recent evidence suggests that exosomes derived from CAFs are able to transmit regulating signals and promote ESCC development. In this study, we compared different the component ratios of miRNAs in exosomes secreted by CAFs in tumors and with those from normal fibroblasts (NFs) in precancerous tissues. The mRNA level of hsa-miR-3656 was significantly upregulated in the former exosomes. Subsequently, by comparing tumor cell development in vitro and in vivo, we found that the proliferation, migration and invasion capabilities of ESCC cells were significantly improved when miR-3656 was present. Further target gene analysis confirmed ACAP2 was a target gene regulated by miR-3656 and exhibited a negative regulatory effect on tumor proliferation. Additionally, the downregulation of ACAP2 triggered by exosomal-derived miR-3656 further promotes the activation of the PI3K/AKT and ß-catenin signaling pathways and ultimately improves the growth of ESCC cells both in vitro and in xenograft models. These results may represent a potential therapeutic target for ESCC and provide a new basis for clinical treatment plans.


Assuntos
Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Exossomos/metabolismo , Proteínas de Membrana/metabolismo , MicroRNAs/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Animais , Progressão da Doença , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Feminino , Fibroblastos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Camundongos Endogâmicos BALB C
17.
Biomedicines ; 9(8)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34440055

RESUMO

A maytansin derivative, DM1, is a promising therapeutic compound for treating tumors, but is also a highly poisonous substance with various side effects. For clinical expansion, we tried to develop novel peptide-drug conjugates (PDCs) with DM1. In the study, a one-bead one-compound (OBOC) platform was used to screen and identify a novel, highly stable, non-natural amino acid peptide targeting the tyrosine receptor FGFR2. Then, the identified peptide, named LLC2B, was conjugated with the cytotoxin DM1. Our results show that LLC2B has high affinity for the FGFR2 protein according to an isothermal titration calorimetry (ITC) test. LLC2B-Cy5.5 binding to FGFR2-positive cancer cells was confirmed by fluorescent microscopic imaging and flow cytometry in vitro. Using xenografted nude mouse models established with breast cancer MCF-7 cells and esophageal squamous cell carcinoma KYSE180 cells, respectively, LLC2B-Cy5.5 was observed to specifically target tumor tissues 24 h after tail vein injection. Incubation assays, both in aqueous solution at room temperature and in human plasma at 37 °C, suggested that LLC2B has high stability and strong anti-proteolytic ability. Then, we used two different linkers, one of molecular disulfide bonds and another of a maleimide group, to couple LLC2B to the toxin DM1. The novel peptide-drug conjugates (PDCs) inhibited tumor growth and significantly increased the maximum tolerated dose of DM1 in xenografted mice. In brief, our results suggest that LLC2B-DM1 can be developed into a potential PDC for tumor treatment in the future.

18.
Radiol Case Rep ; 16(9): 2388-2392, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34257767

RESUMO

We report a case of a 40-year-old female patient admitted to the hospital due to lumbar pain that spread to both legs and was associated with weakness of the lower extremities. Magnetic resonance imaging revealed an intradural - extramedullary tumor at the level of the T12 - L2 vertebra. The lesion was over 7 cm in greatest diameter and compressed the conus medullaris. The patient underwent surgery to remove the entire tumor. Postoperative pathology confirmed the diagnosis of schwannoma. The symptoms resolved almost completely without significant complications.

19.
J Extracell Vesicles ; 10(7): e12096, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34035882

RESUMO

Antiangiogenic tyrosine kinase inhibitors (AA-TKIs) have become a promising therapeutic strategy for colorectal cancer (CRC). In clinical practice, a significant proportion of cancer patients temporarily discontinue AA-TKI treatment due to recurrent toxicities, economic burden or acquired resistance. However, AA-TKI therapy withdrawal-induced tumour revascularization frequently occurs, hampering the clinical application of AA-TKIs. Here, this study demonstrates that tumour perivascular cells mediate tumour revascularization after withdrawal of AA-TKI therapy. Pharmacological inhibition and genetic ablation of perivascular cells largely attenuate the rebound effect of CRC vascularization in the AA-TKI cessation experimental settings. Mechanistically, tumour perivascular cell-derived extracellular vehicles (TPC-EVs) contain Gas6 that instigates the recruitment of endothelial progenitor cells (EPCs) for tumour revascularization via activating the Axl pathway. Gas6 silence and an Axl inhibitor markedly inhibit tumour revascularization by impairing EPC recruitment. Consequently, combination therapy of regorafenib with the Axl inhibitor improves overall survival in mice metastatic CRC model by inhibiting tumour growth. Together, these data shed new mechanistic insights into perivascular cells in off-AA-TKI-induced tumour revascularization and indicate that blocking the Axl signalling may provide an attractive anticancer approach for sustaining long-lasting angiostatic effects to improve the therapeutic outcomes of antiangiogenic drugs in CRC.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Vesículas Extracelulares/fisiologia , Neovascularização Patológica/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , China , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/prevenção & controle , Neoplasias de Células Epitelioides Perivasculares/tratamento farmacológico , Neoplasias de Células Epitelioides Perivasculares/metabolismo , Neoplasias de Células Epitelioides Perivasculares/fisiopatologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/fisiopatologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Res Rep Urol ; 13: 251-256, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017801

RESUMO

The coexistence of multiple synchronous primary malignancies is uncommon. The coexistence of hepatocellular carcinoma (HCC) and renal cell carcinoma (RCC) is even rarer. We present a case of a 44-year-old male patient with a history of chronic hepatitis B and a right renal mass treated by radical nephrectomy. At the 2-month follow-up, a new lesion was detected in the left lobe of the liver. Postsurgery histologic evaluation with immunohistochemical study of both lesions confirmed the renal and hepatic lesions to be RCC and HCC, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA