Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 18(6): 1294-1304, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37172039

RESUMO

Acute kidney injury (AKI) is a global health problem that occurs in a variety of clinical settings. Despite some advances in supportive clinical care, no medicinal intervention has been demonstrated to reliably prevent AKI thus far. Therefore, it is highly necessary to investigate the pathophysiology and mechanisms involved in AKI for the discovery of therapeutics. In the current study, a robust change in the level of renal malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) and elevated renal iron levels were observed in murine rhabdomyolysis-induced AKI (RM-AKI), which supports a pathogenic role of labile iron-mediated ferroptosis and provides a chance to utilize iron chelation for RM-AKI prevention. Given that the existing small molecule-based iron chelators did not show promising preventative effects against RM-AKI, we further designed and synthesized a new hydroxypyridinone-based iron chelator to potently inhibit labile iron-mediated ferroptosis. Lead compound AKI-02 was identified, which remarkably protected renal proximal tubular epithelial cells from ferroptosis as well as showed excellent iron chelation ability. Moreover, administration of AKI-02 led to renal function recovery, a result that was substantiated by the decreased contents of BUN and creatinine, as well as the reduced labile iron level and improved histopathology. Thus, our studies highlighted that targeting labile iron-mediated ferroptosis could provide therapeutic benefits against RM-AKI.


Assuntos
Injúria Renal Aguda , Ferroptose , Rabdomiólise , Humanos , Camundongos , Animais , Ferro/farmacologia , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Rabdomiólise/complicações , Rabdomiólise/tratamento farmacológico , Rabdomiólise/induzido quimicamente , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico
2.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 39(1): 128-138, 2022 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-35231974

RESUMO

Cell migration is defined as the directional movement of cells toward a specific chemical concentration gradient, which plays a crucial role in embryo development, wound healing and tumor metastasis. However, current research methods showed low flux and are only suitable for single-factor assessment, and it was difficult to comprehensively consider the effects of other parameters such as different concentration gradients on cell migration behavior. In this paper, a four-channel microfluidic chip was designed. Its characteristics were as follows: it relied on laminar flow and diffusion mechanisms to establish and maintain a concentration gradient; it was suitable for observation of cell migration in different concentration gradient environment under a single microscope field; four cell isolation zones (20 µm width) were integrated into the microfluidic device to calibrate the initial cell position, which ensured the accuracy of the experimental results. In particular, we used COMSOL Multiphysics software to simulate the structure of the chip, which demonstrated the necessity of designing S-shaped microchannel and horizontal pressure balance channel to maintain concentration gradient. Finally, neutrophils were incubated with advanced glycation end products (AGEs, 0, 0.2, 0.5, 1.0 µmol·L -1), which were closely related to diabetes mellitus and its complications. The migration behavior of incubated neutrophils was studied in the 100 nmol·L -1 of chemokine (N-formylmethionyl-leucyl-phenyl-alanine) concentration gradient. The results prove the reliability and practicability of the microfluidic chip.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Movimento Celular , Quimiotaxia , Desenho de Equipamento , Dispositivos Lab-On-A-Chip , Neutrófilos , Reprodutibilidade dos Testes
3.
Eur J Pharmacol ; 908: 174366, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34314706

RESUMO

Carboplatin treatment is associated with potential benefits in practice in the neoadjuvant chemotherapy for Triple-negative breast cancer (TNBC) patients. In order to enhance its anti-tumor effects, new concepts for successful combination therapy are needed. Here, we interestingly found that the combination treatment of carboplatin with the Chk1 inhibitor AZD7762 synergistically inhibits TNBC cell growth in multiple TNBC cell lines in vitro. Mechanistically, we proved that prolonged carboplatin-treated induce cell mitotic arrest, and cells would fail to initiate the G2-M transition following the inhibition of the Chk1 pathway, leading to accumulation of DNA lesions. With this drug-in-combination treatment, the incidence of mitotic catastrophes including spindle multipolarity and cytokinesis failure is remarkably enhanced, which subsequently drives tumor cells multinucleation, polyploidization and apoptosis. Thus, our findings not only propose Chk1 as a therapeutic target for combination therapy with DNA-damaging agents such as carboplatin in TNBC, but also highlight that the induction of mitotic catastrophe could be considered as an alternative strategy for TNBC therapy.


Assuntos
Neoplasias de Mama Triplo Negativas , Carboplatina , Quinase 1 do Ponto de Checagem , Humanos , Terapia Neoadjuvante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA