Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6730, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36344528

RESUMO

Growth of the prominent nitrogen-fixing cyanobacterium Trichodesmium is often limited by phosphorus availability in the ocean. How nitrogen fixation by phosphorus-limited Trichodesmium may respond to ocean acidification remains poorly understood. Here, we use phosphate-limited chemostat experiments to show that acidification enhanced phosphorus demands and decreased phosphorus-specific nitrogen fixation rates in Trichodesmium. The increased phosphorus requirements were attributed primarily to elevated cellular polyphosphate contents, likely for maintaining cytosolic pH homeostasis in response to acidification. Alongside the accumulation of polyphosphate, decreased NADP(H):NAD(H) ratios and impaired chlorophyll synthesis and energy production were observed under acidified conditions. Consequently, the negative effects of acidification were amplified compared to those demonstrated previously under phosphorus sufficiency. Estimating the potential implications of this finding, using outputs from the Community Earth System Model, predicts that acidification and dissolved inorganic and organic phosphorus stress could synergistically cause an appreciable decrease in global Trichodesmium nitrogen fixation by 2100.


Assuntos
Cianobactérias , Trichodesmium , Nitrogênio/farmacologia , Concentração de Íons de Hidrogênio , Água do Mar/química , Fixação de Nitrogênio , Fósforo/farmacologia , Homeostase , Polifosfatos , Oceanos e Mares
2.
Photosynth Res ; 142(1): 17-34, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31077001

RESUMO

Growth and dinitrogen (N2) fixation of the globally important diazotrophic cyanobacteria Trichodesmium are often limited by iron (Fe) availability in surface seawaters. To systematically examine the combined effects of Fe limitation and ocean acidification (OA), T. erythraeum strain IMS101 was acclimated to both Fe-replete and Fe-limited concentrations under ambient and acidified conditions. Proteomic analysis showed that OA affected a wider range of proteins under Fe-limited conditions compared to Fe-replete conditions. OA also led to an intensification of Fe deficiency in key cellular processes (e.g., photosystem I and chlorophyll a synthesis) in already Fe-limited T. erythraeum. This is a result of reallocating Fe from these processes to Fe-rich nitrogenase to compensate for the suppressed N2 fixation. To alleviate the Fe shortage, the diazotroph adopts a series of Fe-based economic strategies (e.g., upregulating Fe acquisition systems for organically complexed Fe and particulate Fe, replacing ferredoxin by flavodoxin, and using alternative electron flow pathways to produce ATP). This was more pronounced under Fe-limited-OA conditions than under Fe limitation only. Consequently, OA resulted in a further decrease of N2- and carbon-fixation rates in Fe-limited T. erythraeum. In contrast, Fe-replete T. erythraeum induced photosystem I (PSI) expression to potentially enhance the PSI cyclic flow for ATP production to meet the higher demand for energy to cope with the stress caused by OA. Our study provides mechanistic insight into the holistic response of the globally important N2-fixing marine cyanobacteria Trichodesmium to acidified and Fe-limited conditions of future oceans.


Assuntos
Ferro/metabolismo , Proteoma , Água do Mar/química , Trichodesmium/metabolismo , Aclimatação , Carbono/metabolismo , Contagem de Células , Tamanho Celular , Clorofila A/metabolismo , Concentração de Íons de Hidrogênio , Fixação de Nitrogênio , Oceanos e Mares , Fotossíntese , Proteômica , Estresse Fisiológico
3.
Science ; 356(6337): 527-531, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28450383

RESUMO

Acidification of seawater caused by anthropogenic carbon dioxide (CO2) is anticipated to influence the growth of dinitrogen (N2)-fixing phytoplankton, which contribute a large fraction of primary production in the tropical and subtropical ocean. We found that growth and N2-fixation of the ubiquitous cyanobacterium Trichodesmium decreased under acidified conditions, notwithstanding a beneficial effect of high CO2 Acidification resulted in low cytosolic pH and reduced N2-fixation rates despite elevated nitrogenase concentrations. Low cytosolic pH required increased proton pumping across the thylakoid membrane and elevated adenosine triphosphate production. These requirements were not satisfied under field or experimental iron-limiting conditions, which greatly amplified the negative effect of acidification.


Assuntos
Fixação de Nitrogênio , Nitrogênio/metabolismo , Água do Mar/química , Água do Mar/microbiologia , Trichodesmium/crescimento & desenvolvimento , Trichodesmium/metabolismo , Dióxido de Carbono/metabolismo , Concentração de Íons de Hidrogênio , Deficiências de Ferro , Nitrogenase/metabolismo , Oceanos e Mares , Bombas de Próton/metabolismo
4.
Chemosphere ; 167: 155-162, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27718427

RESUMO

The brominated flame retardants hexabromocyclododecanes (HBCDs) are ubiquitous environmental contaminants, widely distributed in aquatic systems including the marine environment and marine organisms. HBCDs are toxic to the development of both freshwater and marine fish. However, the impacts of HBCDs on marine invertebrates are not well known. In this study, the marine copepod, Tigriopus japonicus, was used to assess the bioaccumulation and developmental toxicity of technical HBCD (tHBCD) through water-borne exposure. The uptake rate constant of tHBCD by T. japonicus was high, which resulted in high bioaccumulation potential. The bioconcentration factors of tHBCD were 8.73 × 104 and 6.34 × 104 L kg-1 in T. japonicus, calculated using the kinetic and steady-state methods, respectively. Exposure of T. japonicus nauplii to tHBCD caused significant growth delay. The lowest-observable-effect-concentrations of tHBCD induced developmental delay were 30 and 8 µg L-1 for the F0 and F1 generations, respectively, which suggested that the F1 generation was more sensitive to tHBCD than the F0 generation and warranted multiple-generation toxicity tests for future studies. Furthermore, exposure of the adult copepods to tHBCD induced the transcription of oxidative stress response genes and apoptotic genes, e.g., SOD,CAT, GST, OGG1, P53 and Caspase-3. It was therefore speculated that tHBCD exposure induced the generation of reactive oxygen species in T. japonicus, which activated the oxidative stress defense genes and meanwhile resulted in oxidative DNA damage. The damaged DNA activated the transcription of p53 and triggered the caspase-mediated apoptosis pathway, which may be the reason for the tHBCD induced developmental delay in T. japonicus nauplii.


Assuntos
Copépodes/efeitos dos fármacos , Hidrocarbonetos Bromados/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Caspase 3/genética , Catalase/genética , Copépodes/genética , Copépodes/crescimento & desenvolvimento , Copépodes/metabolismo , Dano ao DNA , DNA Glicosilases/genética , Glutationa Transferase/genética , Hidrocarbonetos Bromados/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Proteína Supressora de Tumor p53/genética , Poluentes Químicos da Água/metabolismo
5.
Drug Metab Dispos ; 39(9): 1658-67, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21673131

RESUMO

(3R,4R)-4-Amino-1-((4-((3-methoxyphenyl)amino)pyrrolo[2,1-f][1,2,4]triazin-5-yl)methyl)-3-piperidinol (BMS-690514) is a potent inhibitor of ErbB human epidermal growth factor receptors (HER1, 2, and 4) and vascular endothelial growth factor receptors 1 to 3 that has been under clinical development for solid tumor malignancies. BMS-690514 is primarily cleared by metabolism with the primary metabolic pathways being direct glucuronidation (M6), hydroxylation (M1, M2, and M37), and O-demethylation (M3). In the current investigation, the metabolic drug-drug interaction potential of BMS-690514 was evaluated in a series of in vitro studies. Reaction phenotyping experiments with cDNA-expressed human cytochrome P450 (P450) and UDP-glucuronosyltransferase (UGT) enzymes and human liver microsomes (HLM) in the presence of P450 or UGT inhibitors suggested that CYP3A4, CYP2D6, and CYP2C9 were the major enzymes responsible for the oxidative metabolism of BMS-690514, whereas both UGT2B4 and UGT2B7 were responsible for the formation of M6. BMS-690514 did not cause direct or time-dependent inhibition of P450 enzymes (IC(50) values ≥40 µM) in incubations with HLM and probe substrates of CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, or 3A4. The compound also did not substantially induce CYP1A1, CYP1A2, CYP2B6, CYP3A4, or UGT1A1 at concentrations up to 10 µM in cultured human hepatocytes. Considering the submicromolar plasma C(max) concentration at the anticipated clinical dose of 200 mg, BMS-690514 is unlikely to cause clinically relevant drug-drug interactions when coadministered with other medications. In addition, because multiple enzymatic clearance pathways are available for the compound, inhibition of an individual metabolic pathway either via coadministered drugs or gene polymorphisms is not expected to cause pronounced (>2-fold) increases in BMS-690514 exposure.


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Piperidinas/farmacologia , Pirróis/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Triazinas/farmacologia , Células Cultivadas , Interações Medicamentosas , Glucuronosiltransferase/antagonistas & inibidores , Glucuronosiltransferase/metabolismo , Hepatócitos/metabolismo , Humanos , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , NADP/metabolismo , Uridina Difosfato Ácido Glucurônico/metabolismo
6.
Chem Res Toxicol ; 24(1): 125-34, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21080678

RESUMO

BMS-690514 ((3R,4R)-4-amino-1-((4-((3-methoxyphenyl)amino)pyrrolo[2,1-f][1,2,4] triazin-5-yl)methyl)-3-piperidinol) is an oral oncologic agent being developed for the treatment of patients with advanced nonsmall cell lung cancer and breast cancer. The compound is metabolized via multiple metabolic pathways, including P450-mediated oxidation at one of the carbons of its pyrrolotriazine group. Oxidation at this site results in the formation of two metabolites, M1 and M37. Mass spectrometric and NMR analysis revealed that M1 underwent an unusual structural change, where the pyrrolotriazine moiety rearranged to yield a hydroxypyridotriazine group. In contrast, the structure of the pyrrolotriazine moiety remained intact in M37. In vitro experiments with liver microsomes and deuterated or tritiated BMS-690514 containing the isotopic label on the carbon that underwent oxidation indicated that during the formation of M1, the isotope label was retained at the site of hydroxylation, while the label was lost during the formation of M37. On the basis of these results, a mechanism for the formation of M1 was proposed as follows: BMS-690514 was first oxidized by P450 enzymes either via epoxidation or an iron-oxo addition pathway to form a zwitterionic intermediate. This was followed by opening of the pyrrolotriazine ring to form an aldehyde intermediate, which could be partially trapped with methoxyamine. The aldehyde intermediate then reacted with the secondary amine of the methoxyaniline group in the molecule to form the pyridotriazine moiety of M1. This mechanism is consistent with the observed retention of the isotope label in M1. Metabolite M37 may be formed either via a common zwitterionic intermediate, shared with M1, or through a direct insertion pathway. In in vitro human liver microsome incubations, the abundance of M1 was higher than M37, suggesting that breaking of the carbon-nitrogen bond to generate the aldehyde intermediate, a process similar to N-dealkylation, was a preferred pathway.


Assuntos
Antineoplásicos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Piperidinas/metabolismo , Pirróis/metabolismo , Triazinas/química , Antineoplásicos/química , Sistema Enzimático do Citocromo P-450/química , Humanos , Hidroxilação , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Microssomos Hepáticos/enzimologia , Oxirredução , Piperidinas/química , Pirróis/química , Triazinas/metabolismo
7.
Drug Metab Dispos ; 38(11): 2049-59, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20668249

RESUMO

(3R,4R)-4-Amino-1-((4-((3-methoxyphenyl)amino)pyrrolo[2,1-f][1,2,4]triazin-5-yl)methyl)-3-piperidinol (BMS-690514), an oral selective inhibitor of human epidermal growth factor receptors 1 (or epidermal growth factor receptor), 2, and 4, and vascular endothelial growth factor receptors 1, 2, and 3, is being developed as a treatment for patients with non-small-cell lung cancer and metastatic breast cancer. The disposition of [(14)C]BMS-690514 was investigated in nine healthy male subjects (group 1, n = 6; group 2, n = 3) after oral administration of a 200-mg dose. Urine, feces, and plasma were collected from all subjects for up to 12 days postdose. In group 2 subjects, bile was collected from 3 to 8 h postdose. Across groups, approximately 50 and 34% of administered radioactivity was recovered in the feces and urine, respectively. An additional 16% was recovered in the bile of group 2 subjects. Less than 28% of the dose was recovered as parent drug in the combined excreta, suggesting that BMS-690514 was highly metabolized. BMS-690514 was rapidly absorbed (median time of maximum observed concentration 0.5 h) with the absorbed fraction estimated to be approximately 50 to 68%. BMS-690514 represented ≤7.9% of the area under the concentration-time curve from time 0 extrapolated to infinite time of plasma radioactivity, indicating that the majority of the circulating radioactivity was from metabolites. BMS-690514 was metabolized via multiple oxidation reactions and direct glucuronidation. Circulating metabolites included a hydroxylated rearrangement product (M1), a direct ether glucuronide (M6), and multiple secondary glucuronide conjugates. None of these metabolites is expected to contribute to the pharmacology of BMS-690514. In summary, BMS-690514 was well absorbed and extensively metabolized via multiple metabolic pathways in humans, with excretion of drug-related radioactivity in both bile and urine.


Assuntos
Antineoplásicos/farmacocinética , Piperidinas/farmacocinética , Pirróis/farmacocinética , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Triazinas/farmacocinética , Absorção , Administração Oral , Adolescente , Adulto , Antineoplásicos/sangue , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/urina , Bile/química , Biotransformação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Relação Dose-Resposta a Droga , Fezes/química , Glucuronídeos/metabolismo , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Humanos , Hidroxilação , Masculino , Oxirredução , Piperidinas/sangue , Piperidinas/metabolismo , Piperidinas/farmacologia , Piperidinas/urina , Polimorfismo de Nucleotídeo Único , Proteínas Quinases/metabolismo , Pirróis/sangue , Pirróis/metabolismo , Pirróis/farmacologia , Pirróis/urina , Distribuição Tecidual , Triazinas/sangue , Triazinas/metabolismo , Triazinas/farmacologia , Triazinas/urina , Adulto Jovem
8.
Drug Metab Dispos ; 38(7): 1189-201, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20363952

RESUMO

(3R,4R)-4-Amino-1-((4-((3-methoxyphenyl)amino)pyrrolo[2,1-f] [1,2,4]triazin-5-yl)methyl)-3-piperidinol (BMS-690514) is a potent inhibitor of human epidermal growth factor receptors 1, 2, and 4 and vascular endothelial growth factor receptors 1 through 3. BMS-690514 is an oral oncologic agent currently being developed for the treatment of patients with advanced non-small cell lung cancer and breast cancer. In this investigation, a series of studies was conducted to determine the biotransformation of [(14)C]BMS-690514 after oral administration to rats, rabbits, and dogs. After administration of a single oral dose of [(14)C]BMS-690514 to rats and dogs, the majority of the radioactive dose (61-71%) was recovered in the feces, whereas 18 to 20% was eliminated in urine. In bile duct-cannulated rats, 83 and 17% of the administered radioactivity was recovered in the bile and urine, respectively, suggesting that biliary secretion was a major route for the elimination of BMS-690514-derived radioactivity in rats. The parent compound underwent extensive metabolism in both species, with <12% of the administered radioactivity recovered as BMS-690514 in the excreta samples. Metabolite profiles in plasma were qualitatively similar in rats, rabbits, and dogs. Unchanged BMS-690514 was a prominent drug-related component in the plasma profiles from all the species. However, multiple metabolites contributed significantly to the circulating radioactivity, particularly for rabbit and dog, in which metabolites comprised 73 to 93% of the area under the time curve (0-8 h). Circulating metabolites included M6, a direct O-glucuronide conjugate; M1, a hydroxylated metabolite; and glucuronide conjugates of hydroxylated and O-demethylated metabolites. Overall, the results from these studies suggested that BMS-690514 was well absorbed and highly metabolized through multiple pathways in these preclinical species.


Assuntos
Antineoplásicos/farmacocinética , Piperidinas/farmacocinética , Pirróis/farmacocinética , Triazinas/farmacocinética , Administração Oral , Animais , Bile/metabolismo , Biotransformação , Radioisótopos de Carbono/metabolismo , Cães , Feminino , Masculino , Redes e Vias Metabólicas , Piperidinas/administração & dosagem , Pirróis/administração & dosagem , Coelhos , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual , Triazinas/administração & dosagem
9.
Environ Res ; 109(5): 552-8, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19286174

RESUMO

Studies throughout the southern California bight have indicated persistent estrogenic activity in male hornyhead turbot (Pleuronichthys verticalis). Plasma 17beta-estradiol (E2) concentrations correlated with gonadal DNA damage in fish collected near a wastewater treatment plant outfall, but not from fish collected at the reference location. When the same species was collected from the same reference location and treated with E2, no relationship between uptake and gonadal DNA damage was observed. To evaluate the site-specific effects of E2 in fish from a wastewater outfall and fish from a reference location, male hornyhead turbot from each location were exposed to 15 microg/L aqueous E2 in a time-course experiment, with fish sampled every 12 h for 48 h. Concentrations of E2 were measured in the aqueous exposure and in plasma from the fish. Vitellogenin (vtg) was also measured in the plasma, and 8-oxo-7,8-dihydro-2'-deoxyguanosine levels in male gonads were measured as an indicator of DNA damage. Untreated fish from the outfall had significantly lower E2 in the plasma relative to the untreated reference fish, and this trend was consistent at each time point in the E2-treated fish. Vtg was significantly induced after 36 h of exposure in fish from both sites and no significant differences were observed between the sites. A significant increase of oxidative DNA damage was observed in E2-treated fish from the outfall population and the damage was significantly correlated with plasma E2 concentrations only in fish from the outfall after 48 h. These results indicated that there were significant differences in E2 disposition and gonadal genotoxicity between the hornyhead turbot populations following exposure to E2, suggesting that fish at wastewater outfalls may be more sensitive to DNA damage, which may be temporally related to concentrations of E2 in plasma.


Assuntos
Estradiol/toxicidade , Poluentes Químicos da Água/toxicidade , 8-Hidroxi-2'-Desoxiguanosina , Animais , Dano ao DNA , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Ensaio de Imunoadsorção Enzimática , Estradiol/sangue , Linguados , Masculino , Testículo/metabolismo , Vitelogeninas/sangue , Poluentes Químicos da Água/sangue
10.
Sci Total Environ ; 407(7): 2209-15, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19171371

RESUMO

Oxidative compounds have been demonstrated to decrease the fertilization capability and viability of offspring of treated spermatozoa. As estrogen and its hydroxylated metabolites readily undergo redox cycling, this study was undertaken to determine if estrogens and other oxidants could damage DNA and impair sperm function. Sperm was preexposed to either 17beta-estradiol (E2), 4-hydroxyestradiol (4OHE2) or the oxidant t-butyl hydroperoxide (t-BOOH), and allowed to fertilize untreated eggs. The fertilization rates and development of the larvae were assessed, as well as the amount of 8-oxodeoxyguanosine (8-oxodG) as an indication of oxidative DNA damage. All compounds caused significant decreases in fertilization and increases in pathological abnormalities in offspring, with 4OHE2 being the most toxic. Treatment with 4OHE2 caused a significant increase of 8-oxodG, but E2 failed to show any effect. Pathological abnormalities were significantly correlated (r(2)=0.44, p< or =0.05) with 8-oxodG levels in sperm treated with t-BOOH and 4OHE2, but not E2. 8-OxodG levels also were somewhat weakly correlated with impaired fertilization in 4OHE2-treated sperm (r(2)=0.33, p< or =0.05). The results indicate that biotransformation of E2 to 4OHE2 enhances oxidative damage of DNA in sperm, which can reduce fertilization and impair embryonic development, but other mechanisms of action may also contribute to these effects.


Assuntos
Dano ao DNA , Desenvolvimento Embrionário/efeitos dos fármacos , Estradiol/análogos & derivados , Estradiol/toxicidade , Estrogênios/toxicidade , Ouriços-do-Mar/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , 8-Hidroxi-2'-Desoxiguanosina , Animais , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Estrogênios de Catecol , Fertilização/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ouriços-do-Mar/embriologia , Ouriços-do-Mar/fisiologia , terc-Butil Hidroperóxido/toxicidade
11.
Proc Natl Acad Sci U S A ; 105(25): 8679-84, 2008 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-18562283

RESUMO

DinB, a Y-family DNA polymerase, is conserved among all domains of life; however, its endogenous substrates have not been identified. DinB is known to synthesize accurately across a number of N(2)-dG lesions. Methylglyoxal (MG) is a common byproduct of the ubiquitous glycolysis pathway and induces the formation of N(2)-(1-carboxyethyl)-2'-deoxyguanosine (N(2)-CEdG) as the major stable DNA adduct. Here, we found that N(2)-CEdG could be detected at a frequency of one lesion per 10(7) nucleosides in WM-266-4 human melanoma cells, and treatment of these cells with MG or glucose led to a dose-responsive increase in N(2)-CEdG formation. We further constructed single-stranded M13 shuttle vectors harboring individual diastereomers of N(2)-CEdG at a specific site and assessed the cytotoxic and mutagenic properties of the lesion in wild-type and bypass polymerase-deficient Escherichia coli cells. Our results revealed that N(2)-CEdG is weakly mutagenic, and DinB (i.e., polymerase IV) is the major DNA polymerase responsible for bypassing the lesion in vivo. Moreover, steady-state kinetic measurements showed that nucleotide insertion, catalyzed by E. coli pol IV or its human counterpart (i.e., polymerase kappa), opposite the N(2)-CEdG is both accurate and efficient. Taken together, our data support that N(2)-CEdG, a minor-groove DNA adduct arising from MG, is an important endogenous substrate for DinB DNA polymerase.


Assuntos
Adutos de DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Desoxiguanosina/análogos & derivados , Sequência de Bases , DNA Polimerase beta/metabolismo , Desoxiguanosina/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Humanos , Cinética , Modelos Biológicos , Dados de Sequência Molecular , Aldeído Pirúvico/metabolismo , Células Tumorais Cultivadas
12.
Anal Chem ; 79(1): 322-6, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17194156

RESUMO

Nucleoside 5-formyl-2'-deoxyuridine (FodU) is a major thymidine lesion generated by reactive oxygen species. In vitro and in vivo replication studies revealed that FodU can be mutagenic. A reliable and sensitive quantification method is, therefore, important for assessing the biological implications of this lesion. However, the detection limit of FodU by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was relatively poor compared with those of other oxidative DNA base damages. In this paper we described a new approach for the highly sensitive detection of FodU. We derivatized FodU with Girard reagent T to form a hydrazone conjugate harboring a precharged quaternary ammonium moiety, which enabled the facile detection of the resulting conjugate by positive-ion electrospray ionization MS. We also showed that the combination of derivatization with LC-MS/MS on a linear-ion-trap mass spectrometer could allow for the quantification of FodU at a detection limit of 3-4 fmol, which is approximately 20-fold better than that for the direct analysis of the underivatized compound. By using isotope-labeled FodU as the internal standard and this derivatization method, we further quantified, by using LC-MS/MS, the yield of FodU formed in cellular DNA.


Assuntos
Betaína/análogos & derivados , Cromatografia Líquida/métodos , DNA/análise , Desoxiuridina/análogos & derivados , Espectrometria de Massas/métodos , Betaína/química , DNA/metabolismo , Desoxiuridina/análise , Células HeLa/citologia , Células HeLa/metabolismo , Humanos , Hidrazonas/química , Compostos de Amônio Quaternário/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA