RESUMO
Protein Kinase CK2, a constitutively active serine/threonine kinase, fulfills its functions via phosphorylating hundreds of proteins in nearly all cells. It regulates a variety of cellular signaling pathways and contributes to cell survival, proliferation and inflammation. CK2 has been implicated in the pathogenesis of hematologic and solid cancers. Recent data have documented that CK2 has unique functions in both innate and adaptive immune cells. In this article, we review aspects of CK2 biology, functions of the major innate and adaptive immune cells, and how CK2 regulates the function of immune cells. Finally, we provide perspectives on how CK2 effects in immune cells, particularly T-cells, may impact the treatment of cancers via targeting CK2.
RESUMO
Protein kinase CK2 (also known as Casein Kinase 2) is a serine/threonine kinase composed of two catalytic subunits (CK2α and/or CK2α') and two regulatory CK2ß subunits. CK2 is overexpressed and overactive in B cell acute lymphoblastic leukemia and diffuse large B cell lymphomas, leading to inappropriate activation of the NF-κB, JAK/STAT, and PI3K/AKT/mTOR signaling pathways and tumor growth. However, whether CK2 regulates normal B cell development and differentiation is not known. We generated mice lacking CK2α specifically in B cells (using CD19-driven Cre recombinase). These mice exhibited cell-intrinsic expansion of marginal zone B cells at the expense of transitional B cells, without changes in follicular B cells. Transitional B cells required CK2α to maintain adequate BCR signaling. In the absence of CK2α, reduced BCR signaling and elevated Notch2 signaling activation increased marginal zone B cell differentiation. Our results identify a previously unrecognized function for CK2α in B cell development and differentiation.
Assuntos
Linfócitos B/imunologia , Caseína Quinase II/metabolismo , Células Precursoras de Linfócitos B/imunologia , Animais , Antígenos CD19/metabolismo , Caseína Quinase II/genética , Diferenciação Celular , Células Cultivadas , Integrases/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de SinaisRESUMO
The transitional stage of B cell development is a formative stage in the spleen where autoreactive specificities are censored as B cells gain immune competence, but the intrinsic and extrinsic factors regulating survival of transitional stage 1 (T1) B cells are unknown. We report that B cell expression of IFN-ß is required for optimal survival and TLR7 responses of transitional B cells in the spleen and was overexpressed in T1 B cells from BXD2 lupus-prone mice. Single-cell gene expression analysis of B6 Ifnb+/+ versus B6 Ifnb-/- T1 B cells revealed heterogeneous expression of Ifnb in wild-type B cells and distinct gene expression patterns associated with endogenous IFN-ß. Single-cell analysis of BXD2 T1 B cells revealed that Ifnb is expressed in early T1 B cell development with subsequent upregulation of Tlr7 and Ifna1 Together, these data suggest that T1 B cell expression of IFN-ß plays a key role in regulating responsiveness to external factors.
Assuntos
Linfócitos B/imunologia , Interferon beta/metabolismo , Nefrite Lúpica/imunologia , Células Precursoras de Linfócitos B/imunologia , Baço/imunologia , Animais , Subpopulações de Linfócitos B/imunologia , Diferenciação Celular , Sobrevivência Celular , Suscetibilidade a Doenças , Interferon beta-1a/genética , Interferon beta-1a/metabolismo , Interferon-alfa , Ativação Linfocitária , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos , Análise de Célula Única , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismoRESUMO
Transforming growth factor (TGF)-ß supports multiple myeloma progression and associated osteolytic bone disease. Conversion of latent TGF-ß to its biologically active form is a major regulatory node controlling its activity. Thrombospondin1 (TSP1) binds and activates TGF-ß. TSP1 is increased in myeloma, and TSP1-TGF-ß activation inhibits osteoblast differentiation. We hypothesized that TSP1 regulates TGF-ß activity in myeloma and that antagonism of the TSP1-TGF-ß axis inhibits myeloma progression. Antagonists (LSKL peptide, SRI31277) derived from the LSKL sequence of latent TGF-ß that block TSP1-TGF-ß activation were used to determine the role of the TSP1-TGF-ß pathway in mouse models of myeloma. TSP1 binds to human myeloma cells and activates TGF-ß produced by cultured human and mouse myeloma cell lines. Antagonists delivered via osmotic pump in an intratibial severe combined immunodeficiency CAG myeloma model or in a systemic severe combined immunodeficiency CAG-heparanase model of aggressive myeloma reduced TGF-ß signaling (phospho-Smad 2) in bone sections, tumor burden, mouse IL-6, and osteoclasts, increased osteoblast number, and inhibited bone destruction as measured by microcomputed tomography. SRI31277 reduced tumor burden in the immune competent 5TGM1 myeloma model. SRI31277 was as effective as dexamethasone or bortezomib, and SRI31277 combined with bortezomib showed greater tumor reduction than either agent alone. These studies validate TSP1-regulated TGF-ß activation as a therapeutic strategy for targeted inhibition of TGF-ß in myeloma.
Assuntos
Mieloma Múltiplo/tratamento farmacológico , Osteólise/tratamento farmacológico , Peptídeos/farmacologia , Trombospondina 1/efeitos dos fármacos , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Bortezomib/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Mieloma Múltiplo/patologia , Osteogênese/efeitos dos fármacos , Osteólise/patologia , Peptídeos/uso terapêutico , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos , Trombospondina 1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Microambiente TumoralRESUMO
Thiazolidinediones are synthetic peroxisome proliferator-activated receptor γ agonists used to treat type 2 diabetes mellitus. Clinical evidence indicates that thiazolidinediones increase fracture risks in type 2 diabetes mellitus patients, but the mechanism by which thiazolidinediones augment fracture risks is not fully understood. Several groups recently demonstrated that thiazolidinediones stimulate osteoclast formation, thus proposing that thiazolidinediones induce bone loss in part by prompting osteoclastogenesis. However, numerous other studies showed that thiazolidinediones inhibit osteoclast formation. Moreover, the molecular mechanism by which thiazolidinediones modulate osteoclastogenesis is not fully understood. Here we independently address the role of thiazolidinediones in osteoclastogenesis in vitro and furthermore investigate the molecular mechanism underlying the in vitro effects of thiazolidinediones on osteoclastogenesis. Our in vitro data indicate that thiazolidinediones dose-dependently inhibit osteoclastogenesis from bone marrow macrophages, but the inhibitory effect is considerably reduced when bone marrow macrophages are pretreated with RANKL. In vitro mechanistic studies reveal that thiazolidinediones inhibit osteoclastogenesis not by impairing RANKL-induced activation of the NF-κB, JNK, p38 and ERK pathways in bone marrow macrophages. Nonetheless, thiazolidinediones inhibit osteoclastogenesis by suppressing RANKL-induced expression of NFATc1 and c-Fos, two key transcriptional regulators of osteoclastogenesis, in bone marrow macrophages. In addition, thiazolidinediones inhibit the RANKL-induced expression of osteoclast genes encoding matrix metalloproteinase 9, cathepsin K, tartrate-resistant acid phosphatase and carbonic anhydrase II in bone marrow macrophages. However, the ability of thiazolidinediones to inhibit the expression of NFATc1, c-Fos and the four osteoclast genes is notably weakened in RANKL-pretreated bone marrow macrophages. These in vitro studies have not only independently demonstrated that thiazolidinediones exert inhibitory effects on osteoclastogenesis but have also revealed crucial new insights into the molecular mechanism by which thiazolidinediones inhibit osteoclastogenesis.
Assuntos
Osteoclastos/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Fosfatase Ácida/metabolismo , Animais , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Anidrase Carbônica II/metabolismo , Catepsina K/metabolismo , Diferenciação Celular/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Isoenzimas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ligante RANK/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fosfatase Ácida Resistente a Tartarato , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
Interleukin (IL)-3, a multilineage hematopoietic growth factor, is implicated in the regulation of osteoclastogenesis. However, the role of IL-3 in osteoclastogenesis remains controversial; whereas early studies showed that IL-3 stimulates osteoclastogenesis, recent investigations demonstrated that IL-3 inhibits osteoclast formation. The objective of this work is to further address the role of IL-3 in osteoclastogenesis. We found that IL-3 treatment of bone marrow cells generated a population of cells capable of differentiating into osteoclasts in tissue culture dishes in response to the stimulation of the monocyte/macrophage-colony stimulating factor (M-CSF) and the receptor activator of nuclear factor kappa B ligand (RANKL). The IL-3-dependent hematopoietic cells were able to further proliferate and differentiate in response to M-CSF stimulation and the resulting cells were also capable of forming osteoclasts with M-CSF and RANKL treatment. Interestingly, IL-3 inhibits M-CSF-/RANKL-induced differentiation of the IL-3-dependent hematopoietic cells into osteoclasts. The flow cytometry analysis indicates that while IL-3 treatment of bone marrow cells slightly affected the percentage of osteoclast precursors in the surviving populations, it considerably increased the percentage of osteoclast precursors in the populations after subsequent M-CSF treatment. Moreover, osteoclasts derived from IL-3-dependent hematopoietic cells were fully functional. Thus, we conclude that IL-3 plays dual roles in osteoclastogenesis by promoting the development of osteoclast progenitors but inhibiting the osteoclastogenic process. These findings provide a better understanding of the role of IL-3 in osteoclastogenesis.
Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Hematopoéticas/citologia , Interleucina-3/fisiologia , Osteoclastos/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Células-Tronco Hematopoéticas/efeitos dos fármacos , Interleucina-3/farmacologia , Fator Estimulador de Colônias de Macrófagos/farmacologia , Camundongos , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: Interleukin (IL)-11, a cytokine produced by breast cancer, has been implicated in breast cancer-induced osteolysis (bone destruction) but the mechanism(s) of action remain controversial. Some studies show that IL-11 is able to promote osteoclast formation independent of the receptor activator of NF-κB ligand (RANKL), while others demonstrate IL-11 can induce osteoclast formation by inducing osteoblasts to secrete RANKL. This work aims to further investigate the role of IL-11 in metastasis-induced osteolysis by addressing a new hypothesis that IL-11 exerts effects on osteoclast progenitor cells. METHODS: To address the precise role of breast cancer-derived IL-11 in osteoclastogenesis, we determined the effect of breast cancer conditioned media on osteoclast progenitor cells with or without an IL-11 neutralizing antibody. We next investigated whether recombinant IL-11 exerts effects on osteoclast progenitor cells and survival of mature osteoclasts. Finally, we examined the ability of IL-11 to mediate osteoclast formation in tissue culture dishes and on bone slices in the absence of RANKL, with suboptimal levels of RANKL, or from RANKL-pretreated murine bone marrow macrophages (BMMs). RESULTS: We found that freshly isolated murine bone marrow cells cultured in the presence of breast cancer conditioned media for 6 days gave rise to a population of cells which were able to form osteoclasts upon treatment with RANKL and M-CSF. Moreover, a neutralizing anti-IL-11 antibody significantly inhibited the ability of breast cancer conditioned media to promote the development and/or survival of osteoclast progenitor cells. Similarly, recombinant IL-11 was able to sustain a population of osteoclast progenitor cells. However, IL-11 was unable to exert any effect on osteoclast survival, induce osteoclastogenesis independent of RANKL, or promote osteoclastogenesis in suboptimal RANKL conditions. CONCLUSIONS: Our data indicate that a) IL-11 plays an important role in osteoclastogenesis by stimulating the development and/or survival of osteoclast progenitor cells and b) breast cancer may promote osteolysis in part by increasing the pool of osteoclast progenitor cells via tumor cell-derived IL-11. However, given the heterogeneous nature of the bone marrow cells, the precise mechanism by which IL-11 treatment gives rise to a population of osteoclast progenitor cells warrants further investigation.