Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 207(9): 1397-405, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23359593

RESUMO

Bartonella henselae is capable of invading epithelial and endothelial cells by modulating the function of actin-dependent cytoskeleton proteins. Although understanding of the pathogenesis has been increased by the development of an in vitro infection model involving endothelial cells, little is known about the mechanism of interaction between B. henselae and epithelial cells. This study aims to identify the binding candidates of B. henselae in epithelial cells and explores their effect on B. henselae infection. Pull-down assays and mass spectrometry analysis confirmed that some of the binding proteins (keratin 14, keratin 6, and F-actin) are cytoskeleton associated. B. henselae infection significantly induces the expression of the cytokeratin genes. Chemical disruption of the keratin network by using ethylene glycol tetraacetic acid promotes the intracellular persistence of B. henselae in HeLa cells. However, cytochalasin B and phalloidin treatment inhibits B. henselae invasion. Immunofluorescent staining demonstrates that B. henselae infection induces an F-actin-dependent rearrangement of the cytoskeleton. However, we demonstrated via immunofluorescent staining and whole-mount cell electron microscopy that keratin intermediate filaments are depolymerized by B. henselae. The results indicate that B. henselae achieves an intracellular persistence in epithelial cells through the depolymerization of cytokeratin intermediate filaments that are protective against B. henselae invasion.


Assuntos
Bartonella henselae/patogenicidade , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno , Filamentos Intermediários/metabolismo , Queratinas/metabolismo , Centrifugação , Células HeLa , Humanos , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA