Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(21)2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37947592

RESUMO

Liver organoids generated with single or multiple cell types have been used to investigate liver fibrosis development, toxicity, pathogenesis, and drug screening. However, organoid generation is limited by the availability of cells isolated from primary tissues or differentiated from various stem cells. To ensure cell availability for organoid formation, we investigated whether liver organoids could be generated with cell-line-based Huh-7 hepatocellular carcinoma cells, macrophages differentiated from THP-1 monocytes, and LX-2 hepatic stellate cells (HSCs) and primary liver sinusoidal endothelial cells (LSECs). In liver organoids, hepatocyte-, LSEC-, macrophage-, and HSC-related gene expression increased relative to that in two-dimensional (2D)-cultured Huh-7/LSEC/THP-1/LX-2 cells without Matrigel. Thioacetamide (TAA) increased α-smooth muscle actin expression in liver organoids but not in 2D-cultured cells, whereas in TAA-treated organoids, the expression of hepatic and LSEC markers decreased and that of macrophage and HSC markers increased. TAA-induced fibrosis was suppressed by treatment with N-acetyl-L-cysteine or tumor-necrosis-factor-stimulated gene 6 protein. The results showed that liver toxicants could induce fibrotic and inflammatory responses in liver organoids comprising Huh-7/LSEC/macrophages/LX-2 cells, resulting in fibrotic liver organoids. We propose that cell-line-based organoids can be used for disease modeling and drug screening to improve liver fibrosis treatment.


Assuntos
Células Endoteliais , Células Estreladas do Fígado , Humanos , Células Estreladas do Fígado/metabolismo , Células Endoteliais/metabolismo , Cirrose Hepática/metabolismo , Hepatócitos/metabolismo , Macrófagos/metabolismo , Organoides/metabolismo
2.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674651

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease of the joint synovial membranes. RA is difficult to prevent or treat; however, blocking proinflammatory cytokines is a general therapeutic strategy. Pulsed electromagnetic field (PEMF) is reported to alleviate RA's inflammatory response and is being studied as a non-invasive physical therapy. In this current study, PEMF decreased paw inflammation in a collagen-induced arthritis (CIA) murine model. PEMF treatment at 10 Hz was more effective in ameliorating arthritis than at 75 Hz. In the PEMF-treated CIA group, the gross inflammation score and cartilage destruction were lower than in the untreated CIA group. The CIA group treated with PEMF also showed lower serum levels of IL-1ß but not IL-6, IL-17, or TNF-α. Serum levels of total anti-type II collagen IgG and IgG subclasses (IgG1, IgG2a, and IgG2b) remained unchanged. In contrast, tissue protein levels of IL-1ß, IL-6, TNF-α, receptor activator of nuclear factor kappa-Β (RANK), RANK ligand (RANKL), IL-6 receptor (IL-6R), and TNF-α receptor1 (TNFR1) were all lower in the ankle joints of the PEMF-treated CIA group compared with the CIA group. The results of this study suggest that PEMF treatment can preserve joint morphology cartilage and delay the occurrence of CIA. PEMF has potential as an effective adjuvant therapy that can suppress the progression of RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Camundongos , Animais , Artrite Experimental/tratamento farmacológico , Fator de Necrose Tumoral alfa/uso terapêutico , Modelos Animais de Doenças , Campos Eletromagnéticos , Citocinas , Artrite Reumatoide/tratamento farmacológico , Inflamação/tratamento farmacológico , Imunoglobulina G/uso terapêutico
3.
Int J Mol Sci ; 25(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38203534

RESUMO

Enterotoxigenic Bacteroides fragilis (ETBF) causes colitis and is implicated in inflammatory bowel diseases and colorectal cancer. The ETBF-secreted B. fragilis toxin (BFT) causes cleavage of the adherence junction, the E-cadherin, resulting in the large intestine showing IL-17A inflammation in wild-type (WT) mice. However, intestinal pathology by ETBF infection is not fully understood in B-cell-deficient mice. In this study, ETBF-mediated inflammation was characterized in B-cell-deficient mice (muMT). WT or muMT C57BL/6J mice were orally inoculated with ETBF and examined for intestinal inflammation. The indirect indicators for colitis (loss of body weight and cecum weight, as well as mortality) were increased in muMT mice compared to WT mice. Histopathology and inflammatory genes (Nos2, Il-1ß, Tnf-α, and Cxcl1) were elevated and persisted in the large intestine of muMT mice compared with WT mice during chronic ETBF infection. However, intestinal IL-17A expression was comparable between WT and muMT mice during infection. Consistently, flow cytometry analysis applied to the mesenteric lymph nodes showed a similar Th17 immune response in both WT and muMT mice. Despite elevated ETBF colonization, the ETBF-infected muMT mice showed no histopathology or inflammation in the small intestine. In conclusion, B cells play a protective role in ETBF-induced colitis, and IL-17A inflammation is not attributed to prompted colitis in B-cell-deficient mice. Our data support the fact that B cells are required to ameliorate ETBF infection-induced colitis in the host.


Assuntos
Infecções Bacterianas , Colite , Animais , Camundongos , Camundongos Endogâmicos C57BL , Bacteroides fragilis , Interleucina-17/genética , Inflamação
4.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38203646

RESUMO

Mesenchymal stem cells (MSCs) regulate immune cell activity by expressing tumor necrosis factor-α (TNF-α)-stimulated gene 6 (TSG-6) in inflammatory environments; however, whether anti-inflammatory responses affect TSG-6 expression in MSCs is not well understood. Therefore, we investigated whether transforming growth factor-ß (TGF-ß) regulates TSG-6 expression in adipose tissue-derived stem cells (ASCs) and whether effective immunosuppression can be achieved using ASCs and TGF-ß signaling inhibitor A83-01. TGF-ß significantly decreased TSG-6 expression in ASCs, but A83-01 and the p38 inhibitor SB202190 significantly increased it. However, in septic C57BL/6 mice, A83-01 further reduced the survival rate of the lipopolysaccharide (LPS)-treated group and ASC transplantation did not improve the severity induced by LPS. ASC transplantation alleviated the severity of sepsis induced by LPS+A83-01. In co-culture of macrophages and ASCs, A83-01 decreased TSG-6 expression whereas A83-01 and SB202190 reduced Cox-2 and IDO-2 expression in ASCs. These results suggest that TSG-6 expression in ASCs can be regulated by high concentrations of pro-inflammatory cytokines in vitro and in vivo, and that A83-01 and SB202190 can reduce the expression of immunomodulators in ASCs. Therefore, our data suggest that co-treatment of ASCs with TGF-ß or p38 inhibitors is not adequate to modulate inflammation.


Assuntos
Pirazóis , Tiossemicarbazonas , Fator de Crescimento Transformador beta , Proteínas Quinases p38 Ativadas por Mitógeno , Camundongos , Animais , Camundongos Endogâmicos C57BL , Lipopolissacarídeos/farmacologia , Células-Tronco , Tecido Adiposo
5.
Biomedicines ; 10(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35453577

RESUMO

Enterotoxigenic Bacteroides fragilis (ETBF) has emerged as a gut microbiome pathogen that can promote colitis associated cancer in humans. ETBF secretes the metalloprotease, B. fragilis toxin (BFT), which can induce ectodomain cleavage of E-cadherin and IL-8 secretion through the ß-catenin, NF-κB, and MAPK pathways in intestinal epithelial cells. However, it is still unclear whether E-cadherin cleavage is required for BFT induced IL-8 secretion and the relative contribution of these signaling pathways to IL-8 secretion. Using siRNA knockdown and CRISPR knockout studies, we found that E-cadherin cleavage is required for BFT mediated IL-8 secretion. In addition, genetic ablation of ß-catenin indicates that ß-catenin is required for the BFT induced increase in transcriptional activity of NF-κB, p65 nuclear localization and early IL-8 secretion. These results suggest that BFT induced ß-catenin signaling is upstream of NF-κB activation. However, despite ß-catenin gene disruption, BFT still activated the MAPK pathway, suggesting that the BFT induced activation of the MAPK signaling pathway is independent from the E-cadherin/ß-catenin/NF-κB pathway. These findings show that E-cadherin and ß-catenin play a critical role in acute inflammation following ETBF infection through the inflammatory response to BFT in intestinal epithelial cells.

6.
Int J Med Sci ; 19(2): 353-363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35165521

RESUMO

Cultured human skeletal-muscle satellite cells have properties of mesenchymal stem cells (skeletal muscle satellite cell-derived mesenchymal stem cells, SkMSCs) and play anti-inflammatory roles by secreting prostaglandin E2 and hepatocyte growth factor (HGF). To evaluate the utility of SkMSCs in treating liver diseases, we determined whether SkMSCs could ameliorate acute liver and gut inflammation induced by binge ethanol administration. Binge drinking of ethanol led to weight loss in the body and spleen, liver inflammation and steatosis, and increased serum ALT and AST levels (markers of liver injury), along with increased IL-1ß, TNF-α, and iNOS expression levels in mice. However, levels of these binge-drinking-induced indicators were reduced by a single intraperitoneal treatment of SkMSCs. Furthermore, levels of bacteria-derived lipopolysaccharide decreased in the livers and sera of ethanol-exposed mice after SkMSC administration. SkMSCs decreased the extent of tissue inflammation and reduced villus and crypt lengths in the small intestine after alcohol binge drinking. SkMSCs also reduced the leakage of blood albumin, an indicator of leaky gut, in the stool of ethanol-exposed mice. Alcohol-induced damage to human colonic Caco-2/tc7 cells was also alleviated by HGF. Therefore, a single treatment with SkMSCs can attenuate alcoholic liver damage by reducing inflammatory responses in the liver and gut, suggesting that SkMSCs could be used in cell therapy to treat alcoholic liver diseases.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/sangue , Etanol/efeitos adversos , Hepatopatias Alcoólicas/terapia , Transplante de Células-Tronco Mesenquimais , Células Satélites de Músculo Esquelético/transplante , Animais , Consumo Excessivo de Bebidas Alcoólicas/complicações , Células CACO-2 , Células Cultivadas , Dinoprostona/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Inflamação , Fígado/metabolismo , Hepatopatias Alcoólicas/etiologia , Células-Tronco Mesenquimais , Camundongos
7.
Cancer Genomics Proteomics ; 18(4): 569-578, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34183389

RESUMO

BACKGROUND/AIM: Mesenchymal stem cell-based tumor therapy is still limited due to the insufficient secretion of effectors and discrepancies between their in vitro and in vivo efficacy. We investigated whether genetically engineered adipose tissue-derived mesenchymal stem cells (ASCs) overexpressing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) had inhibitory effects on H460 tumor growth both in vitro and in an H460 xenograft model. MATERIALS AND METHODS: Genetically engineered adipose tissue-derived mesenchymal stem cells (ASCs) overexpressing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) were obtained from plasmid transfection with pCMV3-TRAIL and -interferon (IFN)-ß (producing ASC-TRAIL and ASC-IFN-ß, respectively). Death of H460 cells co-cultured with ASCs, ASC-TRAIL, and ASC-IFN-ß or exposed to their conditioned medium was evaluated via apoptosis and cytotoxicity assays. In addition, in an H460 xenograft model (n=10 per group), the antitumor potential of TRAIL-overexpressing, and IFN-ß-overexpressing ASCs was investigated. RESULTS: Conditioned medium obtained from ASC-IFN-ß increased apoptosis of H460 cells more than did ASC-TRAIL. Additionally, in H460 xenograft models, while native ASCs promoted tumor growth, ASC-TRAIL and ASC-IFN-ß both dramatically suppressed tumor growth. Interestingly, in the context of ASC-IFN-ß, tumors were detected only in 20% of nude mice, with smaller sizes and lower weights than those of the control group. CONCLUSION: TRAIL-overexpressing ASCs can be used to treat tumors; ASC-IFN-ß in particular secrete a higher level of TRAIL.


Assuntos
Tecido Adiposo/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Tecido Adiposo/citologia , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Humanos , Interferon beta/genética , Interferon beta/metabolismo , Camundongos , Camundongos Nus , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Int J Mol Sci ; 21(3)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013191

RESUMO

Chronic inflammation has been linked to colitis-associated colorectal cancer in humans. The human symbiont enterotoxigenic Bacteroides fragilis (ETBF), a pro-carcinogenic bacterium, has the potential to initiate and/or promote colorectal cancer. Antibiotic treatment of ETBF has shown promise in decreasing colonic polyp formation in murine models of colon cancer. However, there are no reported natural products that have shown efficacy in decreasing polyp burden. In this study, we investigated the chemopreventive effects of oral administration of zerumbone in ETBF-colonized mice with azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced tumorigenesis. Zerumbone significantly reduced the severity of disease activity index (DAI) scores as well as several parameters of colonic inflammation (i.e., colon weight, colon length, cecum weight and spleen weight). In addition, inflammation of the colon and cecum as well as hyperplasia was reduced. Zerumbone treatment significantly inhibited colonic polyp numbers and prevented macroadenoma progression. Taken together, these findings suggest that oral treatment with zerumbone inhibited ETBF-promoted colon carcinogenesis in mice indicating that zerumbone could be employed as a promising protective agent against ETBF-mediated colorectal cancer.


Assuntos
Bacteroides fragilis/patogenicidade , Neoplasias do Colo/prevenção & controle , Substâncias Protetoras/uso terapêutico , Sesquiterpenos/uso terapêutico , Administração Oral , Animais , Azoximetano/toxicidade , Peso Corporal/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Colite/complicações , Colite/microbiologia , Colite/patologia , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/patologia , Sulfato de Dextrana/toxicidade , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Substâncias Protetoras/farmacologia , Sesquiterpenos/farmacologia , Índice de Gravidade de Doença
9.
Int J Mol Sci ; 20(18)2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31540059

RESUMO

Enterotoxigenic Bacteroides fragilis (ETBF) is human intestinal commensal bacterium and a potent initiator of colitis through secretion of the metalloprotease Bacteroides fragilis toxin (BFT). BFT induces cleavage of E-cadherin in colon cells, which subsequently leads to NF-κB activation. Zerumbone is a key component of the Zingiber zerumbet (L.) Smith plant and can exhibit anti-bacterial and anti-inflammatory effects. However, whether zerumbone has anti-inflammatory effects in ETBF-induced colitis remains unknown. The aim of this study was to determine the anti-inflammatory effect of orally administered zerumbone in a murine model of ETBF infection. Wild-type C57BL/6 mice were infected with ETBF and orally administered zerumbone (30 or 60 mg/kg) once a day for 7 days. Treatment of ETBF-infected mice with zerumbone prevented weight loss and splenomegaly and reduced colonic inflammation with decreased macrophage infiltration. Zerumbone treatment significantly decreased expression of IL-17A, TNF-α, KC, and inducible nitric oxide synthase (iNOS) in colonic tissues of ETBF-infected mice. In addition, serum levels of KC and nitrite was also diminished. Zerumbone-treated ETBF-infected mice also showed decreased NF-κB signaling in the colon. HT29/C1 colonic epithelial cells treated with zerumbone suppressed BFT-induced NF-κB signaling and IL-8 secretion. However, BFT-mediated E-cadherin cleavage was unaffected. Furthermore, zerumbone did not affect ETBF colonization in mice. In conclusion, zerumbone decreased ETBF-induced colitis through inhibition of NF-κB signaling.


Assuntos
Antibacterianos/uso terapêutico , Infecções por Bacteroides/tratamento farmacológico , Bacteroides fragilis , Colite/tratamento farmacológico , NF-kappa B/antagonistas & inibidores , Sesquiterpenos/uso terapêutico , Animais , Toxinas Bacterianas , Infecções por Bacteroides/imunologia , Bacteroides fragilis/metabolismo , Caderinas/metabolismo , Colite/imunologia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/fisiopatologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/patologia , Células HT29 , Humanos , Interleucina-17/metabolismo , Interleucina-8/sangue , Metaloendopeptidases , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA