Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Cell Commun Signal ; 21(1): 296, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864270

RESUMO

BACKGROUND: Exosomes are small extracellular vesicles that play important roles in intercellular communication and have potential therapeutic applications in regenerative medicine. Dermal mesenchymal stem cells (DMSCs) are a promising source of exosomes due to their regenerative and immunomodulatory properties. However, the molecular mechanisms regulating exosome secretion from DMSCs are not fully understood. RESULTS: In this study, the role of peroxiredoxin II (Prx II) in regulating exosome secretion from DMSCs and the underlying molecular mechanisms were investigated. It was discovered that depletion of Prx II led to a significant reduction in exosome secretion from DMSCs and an increase in the number of intracellular multivesicular bodies (MVBs), which serve as precursors of exosomes. Mechanistically, Prx II regulates the ISGylation switch that controls MVB degradation and impairs exosome secretion. Specifically, Prx II depletion decreased JNK activity, reduced the expression of the transcription inhibitor Foxo1, and promoted miR-221 expression. Increased miR-221 expression inhibited the STAT signaling pathway, thus downregulating the expression of ISGylation-related genes involved in MVB degradation. Together, these results identify Prx II as a critical regulator of exosome secretion from DMSCs through the ISGylation signaling pathway. CONCLUSIONS: Our findings provide important insights into the molecular mechanisms regulating exosome secretion from DMSCs and highlight the critical role of Prx II in controlling the ISGylation switch that regulates DMSC-exosome secretion. This study has significant implications for developing new therapeutic strategies in regenerative medicine. Video Abstract.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Exossomos/metabolismo , Peroxirredoxinas/metabolismo , Transdução de Sinais , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo
2.
J Med Chem ; 66(20): 14175-14187, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37823731

RESUMO

The impact of bacteria on cancer progression and treatment is becoming increasingly recognized. Cancer-associated bacteria are linked to metastases, reduced efficacy, and survival challenges. In this study, we present a sensitive hypoxia-activated prodrug, NR-NO2, which comprises an antibiotic combined with a chemotherapeutic. This prodrug demonstrates rapid and robust fluorescence enhancement and exhibits potent antibacterial activity against both Gram-positive and Gram-negative bacteria as well as tumor cells. Upon activation, NR-NO2 produces a distinct "fluorescence-on" signal, enabling real-time drug release monitoring. By leveraging elevated nitroreductase in cancer cells, NR-NO2 gives rise to heightened bacterial cytotoxicity while sparing normal cells. In A549 solid tumor-bearing mice, NR-NO2 selectively accumulated at tumor sites, displaying fluorescence signals under hypoxia superior to those of a corresponding prodrug-like control. These findings highlight the potential of NR-NO2 as a promising cancer therapy prodrug that benefits from targeted release, antibacterial impact, and imaging-based guidance.


Assuntos
Infecções Bacterianas , Neoplasias , Pró-Fármacos , Camundongos , Animais , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Medicina de Precisão , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Dióxido de Nitrogênio/uso terapêutico , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Hipóxia/diagnóstico por imagem , Hipóxia/tratamento farmacológico , Nanomedicina Teranóstica/métodos , Linhagem Celular Tumoral
3.
iScience ; 25(9): 105017, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36105584

RESUMO

The heterotypic CIC structures formed of cancer and immune cells have been observed in tumor tissues. We aimed to assess the feasibility of using heterotypic CICs as a functional biomarker to predict NK susceptibility and drug resistance. The heterotypic CIC-forming cancer cells showed a lower response to NK cytotoxicity and higher proliferative ability than non-CIC cancer cells. After treatment with anticancer drugs, cancer cells that formed heterotypic CICs showed a higher resistance to anticancer drugs than non-CIC cancer cells. We also observed the formation of more CIC structures in cancer cells treated with anticancer drugs than in the non-treated group. Our results confirm the association between heterotypic CIC structures and anticancer drug resistance in CICs formed from NK and cancer cells. These results suggest a mechanism underlying immune evasion in heterotypic CIC cancer cells and provide insights into the anticancer drug resistance of cancer cells.

4.
J Med Chem ; 65(10): 7106-7117, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35580357

RESUMO

Hypoxia is a feature of most solid tumors and a key determinant of cancer growth and propagation. Sensing hypoxia effectively could lead to more favorable clinical outcomes. Here, we report a molecular antenna-based bimodal probe designed to exploit the complementary advantages of magnetic resonance (MR)- and optical-based imaging. Specifically, we describe the synthesis and evaluation of a dual-action probe (NO2-Eu) that permits hypoxia-activated chemical exchange saturation transfer (CEST) MR and optical imaging. In CT26 cells, this NO2-Eu probe not only provides an enhanced CEST MRI signal but also turns "on" the optical signal under hypoxic conditions. Time-dependent in vivo CEST imaging in a hypoxic CT26 tumor xenograft mouse model revealed probe-dependent tumor detection by CEST MRI contrast in the tumor area. We thus suggest that dual-action hypoxia probes, like that reported here, could have a role to play in solid tumor diagnosis and monitoring.


Assuntos
Neoplasias , Dióxido de Nitrogênio , Animais , Meios de Contraste/química , Humanos , Hipóxia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Camundongos , Neoplasias/diagnóstico por imagem , Compostos Radiofarmacêuticos
5.
Front Immunol ; 13: 1089369, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713381

RESUMO

Natural killer (NK) cells are immune effector cells with outstanding features for adoptive immunotherapy. Immune effector cells with chimeric antigen receptors (CARs) are promising targeted therapeutic agents for various diseases. Because tumor cells exhibit heterogeneous antigen expression and lose cell surface antigen expression during malignant progression, many CARs fixed against only one antigen have limited efficacy and are associated with tumor relapse. To expand the utility of CAR-NK cells, we designed a split and universal cotinine-CAR (Cot-CAR) system, comprising a Cot-conjugator and NK92 cells (α-Cot-NK92 cells) engineered with a CAR containing an anti-Cot-specific single-chain variable fragment and intracellular signaling domain. The efficacy of the Cot-CAR system was assessed in vitro using a cytolysis assay against various tumor cells, and its single- or multiple- utility potential was demonstrated using an in vivo lung metastasis model by injecting A549-Red-Fluc cells. The α-Cot-NK92 cells could switch targets, logically respond to multiple antigens, and tune cytolytic activation through the alteration of conjugators without re-engineering. Therefore the universal Cot-CAR system is useful for enhancing specificity and diversity of antigens, combating relapse, and controlling cytolytic activity. In conclusion, this universal Cot-CAR system reveals that multiple availability and controllability can be generated with a single, integrated system.


Assuntos
Cotinina , Receptores de Antígenos Quiméricos , Humanos , Cotinina/metabolismo , Recidiva Local de Neoplasia/tratamento farmacológico , Células Matadoras Naturais , Imunoterapia Adotiva , Antígenos/metabolismo
6.
J Appl Biomater Funct Mater ; 19: 22808000211014751, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34520279

RESUMO

Identification of a vulnerable atherosclerotic plaque before rupture is an unmet clinical need. Integrating nanomedicine with multimodal imaging has the potential to precisely detect biological processes in atherosclerosis. We synthesized silica-coated iron oxide nanoparticles (SIONs) coated with rhodamine B isothiocyanate and polyethylene glycol and investigated their feasibility in the detection of macrophages in inflamed atherosclerotic plaques of apolipoprotein E-deficient (ApoE-/-) mice via magnetic resonance (MR) and fluorescence reflectance (FR) imaging. In vitro cellular uptake of SIONs was assessed in macrophages using confocal laser scanning microscopy (CLSM). In vivo MR imaging was performed 24 h after SION injection via the tail vein in 26-week-old ApoE-/- mice fed a high-cholesterol diet (HCD). We also performed FR imaging of the extracted aortas from four different mice: two normal-diet-fed C57BL/6 mice injected with saline or 10 mg/kg SIONs and two HCD-fed ApoE-/- mice injected with 5 or 10 mg/kg SIONs. The harvested aortas were cryosectioned and stained with immunohistochemical staining. The CLSM images at 24 h after incubation showed efficient uptake of SIONs by macrophages, with no evidence of cytotoxicity. The in vivo and ex vivo MR and FR images demonstrated SION deposition in the atheroma. Upon immunohistochemical staining of the aorta, CLSM images revealed colocalization of macrophages and SIONs in the atherosclerotic plaque. These results demonstrate that polyethylene glycosylated SIONs could be a highly effective method to identify macrophage activity in atherosclerotic plaques as a multimodal imaging agent.


Assuntos
Aterosclerose , Dióxido de Silício , Animais , Aterosclerose/diagnóstico por imagem , Macrófagos , Nanopartículas Magnéticas de Óxido de Ferro , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL
7.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203489

RESUMO

The most common type of spinal cord injury is the contusion of the spinal cord, which causes progressive secondary tissue degeneration. In this study, we applied genetically modified human neural stem cells overexpressing BDNF (brain-derived neurotrophic factor) (F3.BDNF) to determine whether they can promote functional recovery in the spinal cord injury (SCI) model in rats. We transplanted F3.BDNF cells via intrathecal catheter delivery after a contusion of the thoracic spinal cord and found that they were migrated toward the injured spinal cord area by MR imaging. Transplanted F3.BDNF cells expressed neural lineage markers, such as NeuN, MBP, and GFAP and were functionally connected to the host neurons. The F3.BDNF-transplanted rats exhibited significantly improved locomotor functions compared with the sham group. This functional recovery was accompanied by an increased volume of spared myelination and decreased area of cystic cavity in the F3.BDNF group. We also observed that the F3.BDNF-transplanted rats showed reduced numbers of Iba1- and iNOS-positive inflammatory cells as well as GFAP-positive astrocytes. These results strongly suggest the transplantation of F3.BDNF cells can modulate inflammatory cells and glia activation and also improve the hyperalgesia following SCI.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Eletrofisiologia , Humanos , Imuno-Histoquímica , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/metabolismo
8.
ACS Appl Mater Interfaces ; 13(31): 36697-36708, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34313117

RESUMO

Development of drug-delivery systems that allow simultaneous in vivo imaging has gained much interest. We report a novel strategy to encapsulate metal nanoparticles (NPs) within alginate gel for in vivo imaging. The cell lysate of recombinant Escherichia coli strain, expressing Arabidopsis thaliana phytochelatin synthase and Pseudomonas putida metallothionein genes, was encapsulated within the alginate gel. Incubation of alginate gel with metal ion precursors followed by UV irradiation resulted in the synthesis of high concentrations of metal NPs, such as Au, Ag, CdSe, and EuSe NPs, within the gel. The alginate gel with metal NPs was used as a drug-delivery system by further co-encapsulating doxorubicin and rifampicin, the release of which was made to be pH-dependent. This system can be conveniently and safely used for in vitro and in vivo bioimaging, enabled by the metal NPs formed within the gel matrix without using toxic reducing reagents or surfactants.


Assuntos
Alginatos/química , Portadores de Fármacos/química , Corantes Fluorescentes/química , Géis/química , Nanopartículas Metálicas/química , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Arabidopsis/enzimologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Escherichia coli/genética , Células Hep G2 , Humanos , Masculino , Metalotioneína/genética , Metalotioneína/metabolismo , Metais/química , Camundongos Nus , Pseudomonas putida/enzimologia , Rifampina/química , Rifampina/farmacologia
9.
Molecules ; 26(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916181

RESUMO

We have synthesized new magnetic resonance imaging (MRI) T1 contrast agents (CA1 and CA2) that permit the activatable recognition of the cellular vicinal thiol motifs of the protein thioredoxin. The contrast agents showed MR relaxivities typical of gadolinium complexes with a single water molecule coordinated to a Gd3+ center (i.e., ~4.54 mM-1s-1) for both CA1 and CA2 at 60 MHz. The contrast agent CA1 showed a ~140% relaxivity enhancement in the presence of thioredoxin, a finding attributed to a reduction in the flexibility of the molecule after binding to thioredoxin. Support for this rationale, as opposed to one based on preferential binding, came from 1H-15N-HSQC NMR spectral studies; these revealed that the binding affinities toward thioredoxin were almost the same for both CA1 and CA2. In the case of CA1, T1-weighted phantom images of cancer cells (MCF-7, A549) could be generated based on the expression of thioredoxin. We further confirmed thioredoxin expression-dependent changes in the T1-weighted contrast via knockdown of the expression of the thioredoxin using siRNA-transfected MCF-7 cells. The nontoxic nature of CA1, coupled with its relaxivity features, leads us to suggest that it constitutes a first-in-class MRI T1 contrast agent that allows for the facile and noninvasive monitoring of vicinal thiol protein motif expression in live cells.


Assuntos
Rastreamento de Células/métodos , Meios de Contraste , Espectroscopia de Ressonância Magnética , Compostos de Sulfidrila , Tiorredoxinas , Linhagem Celular Tumoral , Meios de Contraste/síntese química , Meios de Contraste/química , Humanos , Imagens de Fantasmas , Compostos de Sulfidrila/metabolismo , Tiorredoxinas/metabolismo
10.
J Med Chem ; 64(6): 2971-2981, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33711229

RESUMO

Tumor hypoxia is correlated with increased resistance to chemotherapy and poor overall prognoses across a number of cancer types. We present here a cancer cell-selective and hypoxia-responsive probe (fol-BODIPY) designed on the basis of density functional theory (DFT)-optimized quantum chemical calculations. The fol-BODIPY probe was found to provide a rapid fluorescence "off-on" response to hypoxia relative to controls, which lack the folate or nitro-benzyl moieties. In vitro confocal microscopy and flow cytometry analyses, as well as in vivo near-infrared optical imaging of CT26 solid tumor-bearing mice, provided support for the contention that fol-BODIPY is more readily accepted by folate receptor-positive CT26 cancer cells and provides a superior fluorescence "off-on" signal under hypoxic conditions than the controls. Based on the findings of this study, we propose that fol-BODIPY may serve as a tumor-targeting, hypoxia-activatable probe that allows for direct cancer monitoring both in vitro and in vivo.


Assuntos
Corantes Fluorescentes/metabolismo , Neoplasias/diagnóstico por imagem , Nitrorredutases/metabolismo , Imagem Óptica/métodos , Hipóxia Tumoral , Animais , Compostos de Boro/química , Compostos de Boro/metabolismo , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Humanos , Masculino , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Modelos Moleculares , Neoplasias/metabolismo
11.
ACS Appl Mater Interfaces ; 12(44): 49362-49370, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33050704

RESUMO

Natural killer (NK) cells, which are cytotoxic lymphocytes of the innate immune system and recognize cancer cells via various immune receptors, are promising agents in cell immunotherapy. To utilize NK cells as a therapeutic agent, their biodistribution and pharmacokinetics need to be evaluated following systemic administration. Therefore, in vivo imaging and tracking with efficient labeling and quantitative analysis of NK cells are required. However, the lack of the phagocytic capacity of NK cells makes it difficult to establish breakthroughs in cell labeling and subsequent in vivo studies. Herein, an effective labeling of upconverting nanoparticles (UCNPs) in NK cells is proposed using electroporation with high sensitivity and stability. The labeling performance of UCNPs functionalized with carboxy-polyethylene glycol (PEG) is better than with methoxy-PEG or with amine-PEG. The labeling efficiency becomes higher, but cell damage is greater as electric field increases; thus, there is an optimum electroporation condition for internalization of UCNPs into NK cells. The tracking and biodistribution imaging analyses of intravenously injected NK cells show that the labeled NK cells are initially distributed primarily in lungs and then spread to the liver and spleen. These advances will accelerate the application of NK cells as key components of immunotherapy against cancer.


Assuntos
Células Matadoras Naturais/química , Nanopartículas/química , Polietilenoglicóis/química , Animais , Células Cultivadas , Citocinas/metabolismo , Eletroporação , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Camundongos , Imagem Óptica , Tamanho da Partícula , Polietilenoglicóis/síntese química , Células RAW 264.7 , Propriedades de Superfície
12.
Biomaterials ; 247: 119960, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32278822

RESUMO

Adoptive transfer of natural killer (NK) cells is becoming one of the most important parts of cancer immunotherapy. However, recent accomplishments have focused on the improvement of the targeting effects based on the engineering of chimeric antigen receptors (CARs) on cell surfaces. Despite the large quantity of therapeutic cells required for clinical applications, the technology for ex vivo expansion is not well developed. Herein, a three-dimensional (3D) engineered hyaluronic acid-based niche for cell expansion (3D-ENHANCE) is introduced. Compared with the conventional two-dimensional (2D) method, NK-92 cell lines and human EGFR-specific (CAR)-NK cells cultured in 3D-ENHANCE yield favorable mRNA expressions, elevated cytokine release, upregulated proliferative and tumor-lytic abilities, and result in enhanced antitumor efficacy. Furthermore, controllable degradation rates can be realized by tuning the formulation of 3D-ENHANCE so that it can be applied as an implantable cell reservoir at surgical sites. In vivo results with the incompletely resected MDA-MB-231 model confirm that the peri-operative implantation of 3D-ENHANCE prevents the relapse and metastases after surgery. Overall, 3D-ENHANCE presents an effective cytokine-free niche for ex vivo expansion and postsurgical treatment that enhances the low-therapeutic efficacy of human NK cells.


Assuntos
Imunoterapia Adotiva , Neoplasias , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Humanos , Ácido Hialurônico , Imunoterapia , Células Matadoras Naturais , Neoplasias/terapia
13.
Proc Natl Acad Sci U S A ; 117(13): 7021-7029, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32179677

RESUMO

Described here is the development of gadolinium(III) texaphyrin-platinum(IV) conjugates capable of overcoming platinum resistance by 1) localizing to solid tumors, 2) promoting enhanced cancer cell uptake, and 3) reactivating p53 in platinum-resistant models. Side by side comparative studies of these Pt(IV) conjugates to clinically approved platinum(II) agents and previously reported platinum(II)-texaphyrin conjugates demonstrate that the present Pt(IV) conjugates are more stable against hydrolysis and nucleophilic attack. Moreover, they display high potent antiproliferative activity in vitro against human and mouse cell cancer lines. Relative to the current platinum clinical standard of care (SOC), a lead Gd(III) texaphyrin-Pt(IV) prodrug conjugate emerging from this development effort was found to be more efficacious in subcutaneous (s.c.) mouse models involving both cell-derived xenografts and platinum-resistant patient-derived xenografts. Comparative pathology studies in mice treated with equimolar doses of the lead Gd texaphyrin-Pt(IV) conjugate or the US Food and Drug Administration (FDA)-approved agent oxaliplatin revealed that the conjugate was better tolerated. Specifically, the lead could be dosed at more than three times (i.e., 70 mg/kg per dose) the tolerable dose of oxaliplatin (i.e., 4 to 6 mg/kg per dose depending on the animal model) with little to no observable adverse effects. A combination of tumor localization, redox cycling, and reversible protein binding is invoked to explain the relatively increased tolerability and enhanced anticancer activity seen in vivo. On the basis of the present studies, we conclude that metallotexaphyrin-Pt conjugates may have substantial clinical potential as antitumor agents.


Assuntos
Antineoplásicos/administração & dosagem , Metaloporfirinas/administração & dosagem , Oxaliplatina/administração & dosagem , Células A549 , Animais , Antineoplásicos/farmacocinética , Resistencia a Medicamentos Antineoplásicos , Feminino , Células HCT116 , Humanos , Metaloporfirinas/farmacocinética , Camundongos Nus , Oxaliplatina/farmacocinética , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacocinética , Distribuição Tecidual , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Chem Sci ; 11(36): 9875-9883, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34094247

RESUMO

Abnormal anaerobic metabolism leads to a lowering of the pH of many tumours, both within specific intracellular organelles and in the surrounding extracellular regions. Information relating to pH-fluctuations in cells and tissues could aid in the identification of neoplastic lesions and in understanding the determinants of carcinogenesis. Here we report an amphiphilic fluorescent pH probe (CS-1) that, as a result of its temporal motion, provides pH-related information in cancer cell membranes and selected intracellular organelles without the need for specific tumour targeting. Time-dependent cell imaging studies reveal that CS-1 localizes within the cancer cell-membrane about 20 min post-incubation. This is followed by migration to the lysosomes at 30 min before being taken up in the mitochondria after about 60 min. Probe CS-1 can selectively label cancer cells and 3D cancer spheroids and be readily observed using the green fluorescence channel (λ em = 532 nm). In contrast, CS-1 only labels normal cells marginally, with relatively low Pearson's correlation coefficients being found when co-incubated with standard intracellular organelle probes. Both in vivo and ex vivo experiments provide support for the suggestion that CS-1 acts as a fluorescent label for the periphery of tumours, an effect ascribed to proton-induced aggregation. A much lower response is seen for muscle and liver. Based on the present results, we propose that sensors such as CS-1 may have a role to play in the clinical and pathological detection of tumour tissues or serve as guiding aids for surgery.

15.
Nat Commun ; 10(1): 3745, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31431623

RESUMO

The low response rate of current cancer immunotherapy suggests the presence of few antigen-specific T cells and a high number of immunosuppressive factors in tumor microenvironment (TME). Here, we develop a syringeable immunomodulatory multidomain nanogel (iGel) that overcomes the limitation by reprogramming of the pro-tumoral TME to antitumoral immune niches. Local and extended release of immunomodulatory drugs from iGel deplete immunosuppressive cells, while inducing immunogenic cell death and increased immunogenicity. When iGel is applied as a local postsurgical treatment, both systemic antitumor immunity and a memory T cell response are generated, and the recurrence and metastasis of tumors to lungs and other organs are significantly inhibited. Reshaping of the TME using iGel also reverts non-responding groups to checkpoint blockade therapies into responding groups. The iGel is expected as an immunotherapeutic platform that can reshape immunosuppressive TMEs and synergize cancer immunotherapy with checkpoint therapies, with minimized systemic toxicity.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Vacinas Anticâncer/administração & dosagem , Imunoterapia/métodos , Nanogéis/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Vacinas Anticâncer/química , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Composição de Medicamentos/métodos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Injeções Intralesionais , Lipossomos , Camundongos , Nanogéis/química , Recidiva Local de Neoplasia/prevenção & controle , Neoplasias/imunologia , Neoplasias/patologia , Seringas , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Resultado do Tratamento , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
16.
J Nanobiotechnology ; 17(1): 19, 2019 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696428

RESUMO

BACKGROUND: Protein-based Cas9 in vivo gene editing therapeutics have practical limitations owing to their instability and low efficacy. To overcome these obstacles and improve stability, we designed a nanocarrier primarily consisting of lecithin that can efficiently target liver disease and encapsulate complexes of Cas9 with a single-stranded guide RNA (sgRNA) ribonucleoprotein (Cas9-RNP) through polymer fusion self-assembly. RESULTS: In this study, we optimized an sgRNA sequence specifically for dipeptidyl peptidase-4 gene (DPP-4) to modulate the function of glucagon-like peptide 1. We then injected our nanocarrier Cas9-RNP complexes directly into type 2 diabetes mellitus (T2DM) db/db mice, which disrupted the expression of DPP-4 gene in T2DM mice with remarkable efficacy. The decline in DPP-4 enzyme activity was also accompanied by normalized blood glucose levels, insulin response, and reduced liver and kidney damage. These outcomes were found to be similar to those of sitagliptin, the current chemical DPP-4 inhibition therapy drug which requires recurrent doses. CONCLUSIONS: Our results demonstrate that a nano-liposomal carrier system with therapeutic Cas9-RNP has great potential as a platform to improve genomic editing therapies for human liver diseases.


Assuntos
Sistemas CRISPR-Cas , Diabetes Mellitus Tipo 2/terapia , Dipeptidil Peptidase 4/genética , Sistemas de Liberação de Medicamentos , Terapia Genética/métodos , Lecitinas , Lipossomos , Animais , Glicemia/efeitos dos fármacos , Linhagem Celular , Dipeptidil Peptidase 4/metabolismo , Edição de Genes , Marcação de Genes , Peptídeo 1 Semelhante ao Glucagon/sangue , Humanos , Lecitinas/administração & dosagem , Lecitinas/química , Lipossomos/administração & dosagem , Lipossomos/química , Camundongos , Camundongos Knockout , RNA Guia de Cinetoplastídeos/administração & dosagem , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/genética
17.
ACS Appl Bio Mater ; 2(10): 4648-4655, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35021423

RESUMO

A theranostic, small-molecule-based prodrug, designed to be activated programmatically against hypoxic tumors, was successfully developed. The prodrug was stimulated to release the active chemotherapeutic drug in concurrent with a rhodol fluorophore in artificial hypoxia mimic conditions or an in vitro hypoxic environment. The extent of prodrug activation was monitored under the hypoxia condition by monitoring a fluorescence signal at 543 nm. The excellent therapeutic response and selective fluorescence labeling of biotin receptor overexpressed cancer cells ensured that the prodrug could be an effective strategy for the therapy of chronic hypoxic tumors.

18.
Cancer Lett ; 417: 141-151, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29307615

RESUMO

Rho GTPases control a wide range of cellular processes, and their deregulation is associated with promotion of an aggressive and metastatic tumor phenotype in human cancers. Rho guanine nucleotide dissociation inhibitor 1 (RhoGDI1) plays a key role in regulating the activity of Rho GTPases. However, the underlying mechanisms are still unclear. In this study, we show that protein phosphatase 1B (PPM1B) interacts with RhoGDI1 and functions as its phosphatase. Ectopic expression of PPM1B results in dephosphorylation of RhoGDI1 and, thereby, abates the activation of RhoA, Rac1 and CDC42 by epidermal growth factor (EGF). PPM1B overexpression in Hs578T and SKBR3 human breast cancer cells decreases their motility and invasiveness in vitro and cancer metastasis in vivo. In contrast, knockdown of PPM1B in MCF-7 and MDA-MB-468 human breast cancer cells that express endogenous PPM1B enhances EGF-induced RhoGDI1 phosphorylation, activation of Rho GTPases, and cancer cell migration and invasion. Knockdown of RhoA or Rac1 by siRNA reverses the enhanced cell migration seen after PP1MB depletion. Collectively, these results indicate that PPM1B negatively regulates cancer cell motility and invasiveness through dephosphorylating RhoGDI1.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular , Proteína Fosfatase 2C/metabolismo , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Fosforilação , Proteína Fosfatase 2C/genética , Interferência de RNA , Transplante Heterólogo
19.
J Nanobiotechnology ; 15(1): 73, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29017600

RESUMO

BACKGROUND: Multimodal nanomaterials are useful for providing enhanced diagnostic information simultaneously for a variety of in vivo imaging methods. According to our research findings, these multimodal nanomaterials offer promising applications for cancer therapy. RESULTS: Melanin nanoparticles can be used as a platform imaging material and they can be simply produced by complexation with various imaging active ions. They are capable of specifically targeting epidermal growth factor receptor (EGFR)-expressing cancer cells by being anchored with a specific antibody. Ion-doped melanin nanoparticles were found to have high bioavailability with long-term stability in solution, without any cytotoxicity in both in vitro and in vivo systems. CONCLUSION: By combining different imaging modalities with melanin particles, we can use the complexes to obtain faster diagnoses by computed tomography deep-body imaging and greater detailed pathological diagnostic information by magnetic resonance imaging. The ion-doped melanin nanoparticles also have applications for radio-diagnostic treatment and radio imaging-guided surgery, warranting further proof of concept experimental.


Assuntos
Íons/química , Imageamento por Ressonância Magnética/métodos , Melaninas/química , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Imagem Multimodal/métodos
20.
Int J Nanomedicine ; 12: 2607-2620, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28408827

RESUMO

Injectable and stimuli-responsive hydrogels have attracted attention in molecular imaging and drug delivery because encapsulated diagnostic or therapeutic components in the hydrogel can be used to image or change the microenvironment of the injection site by controlling various stimuli such as enzymes, temperature, pH, and photonic energy. In this study, we developed a novel injectable and photoresponsive composite hydrogel composed of anticancer drugs, imaging contrast agents, bio-derived collagen, and multifaceted anionic polypeptide, poly (γ-glutamic acid) (γ-PGA). By the introduction of γ-PGA, the intrinsic temperature-dependent phase transition behavior of collagen was modified to a low viscous sol state at room temperature and nonflowing gel state around body temperature. The modified temperature-dependent phase transition behavior of collagen/γ-PGA hydrogels was also evaluated after loading of near-infrared (NIR) fluorophore, indocyanine green (ICG), which could transform absorbed NIR photonic energy into thermal energy. By taking advantage of the abundant carboxylate groups in γ-PGA, cationic-charged doxorubicin (Dox) and hydrophobic MnFe2O4 magnetic nanoparticles were also incorporated successfully into the collagen/γ-PGA hydrogels. By illumination of NIR light on the collagen/γ-PGA/Dox/ICG/MnFe2O4 hydrogels, the release kinetics of Dox and magnetic relaxation of MnFe2O4 nanoparticles could be modulated. The experimental results suggest that the novel injectable and NIR-responsive collagen/γ-PGA hydrogels developed in this study can be used as a theranostic platform after loading of various molecular imaging probes and therapeutic components.


Assuntos
Colágeno/química , Sistemas de Liberação de Medicamentos/métodos , Ácido Poliglutâmico/análogos & derivados , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Liberação Controlada de Fármacos , Feminino , Hidrogéis/química , Concentração de Íons de Hidrogênio , Verde de Indocianina/administração & dosagem , Magnetismo , Camundongos Endogâmicos BALB C , Nanopartículas/química , Transição de Fase , Ácido Poliglutâmico/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA