Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 10(9)2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30200571

RESUMO

Dietary fructose causes salt-sensitive hypertension. Proximal tubules (PTs) reabsorb 70% of the filtered NaCl. Angiotensin II (Ang II), atrial natriuretic peptide (ANP) and norepinephrine (NE) regulate this process. Although Ang II signaling blockade ameliorates fructose-induced salt-sensitive hypertension, basal PT Na⁺ reabsorption and its sensitivity to the aforementioned factors have not been studied in this model. We hypothesized consuming fructose with a high-salt diet selectively enhances the sensitivity of PT transport to Ang II. We investigated the effects of Ang II, ANP and NE on PT Na reabsorption in rats fed a high-salt diet drinking tap water (HS) or 20% fructose (HS-FRU). Oxygen consumption (QO2) was used as a measure of all ATP-dependent transport processes. Na⁺/K⁺-ATPase and Na⁺/H⁺-exchange (NHE) activities were studied because they represent primary apical and basolateral transporters in this segment. The effect of 10-12 mol/L Ang II in QO2 by PTs from HS-FRU was larger than HS (p < 0.02; n = 7). In PTs from HS-FRU 10-12 mol/L Ang II stimulated NHE activity by 2.6 ± 0.7 arbitrary fluorescence units/s (p < 0.01; n = 5) but not in those from HS. The stimulatory effect of Ang II on PT Na⁺/K⁺-ATPase activity was not affected by HS-FRU. Responses of QO2 and NHE activity to ANP did not differ between groups. The response of QO2 to NE was unaltered by HS-FRU. We concluded that the sensitivity of PT Na⁺ reabsorption specifically to Ang II is enhanced by HS-FRU. This maintains high rates of transport even in the presence of low concentrations of the peptide, and likely contributes to the hypertension.


Assuntos
Angiotensina II/farmacologia , Açúcares da Dieta , Frutose , Hipertensão/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Reabsorção Renal/efeitos dos fármacos , Cloreto de Sódio na Dieta , Sódio/metabolismo , Animais , Fator Natriurético Atrial/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Hipertensão/induzido quimicamente , Hipertensão/fisiopatologia , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/fisiopatologia , Masculino , Norepinefrina/farmacologia , Consumo de Oxigênio/efeitos dos fármacos , Ratos Sprague-Dawley , Trocadores de Sódio-Hidrogênio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
2.
Pediatr Emerg Care ; 33(11): e134-e136, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29095782

RESUMO

Infantile myofibromatosis is a disorder of mesenchymal tumors that usually presents within the first 2 years of life. Most patients initially present because of the presence of visible or palpable subcutaneous tumors. We report a case of a fussy 5-week-old infant who presented to an emergency department with bilateral femur fractures initially thought to be due to nonaccidental trauma or a metabolic bone disorder. She was ultimately diagnosed after admission with infantile myofibromatosis after taking an extensive family history and after further laboratory and radiologic evaluation. There are no previously published cases of undiagnosed infantile myofibromatosis presenting to the emergency department, especially with multiple long bone fractures.


Assuntos
Fraturas Múltiplas/etiologia , Miofibromatose/congênito , Diagnóstico Diferencial , Tratamento Farmacológico/métodos , Serviço Hospitalar de Emergência , Feminino , Humanos , Lactente , Miofibromatose/complicações , Miofibromatose/diagnóstico , Miofibromatose/tratamento farmacológico
3.
J Phys Chem C Nanomater Interfaces ; 120(37): 21007-21016, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-29662596

RESUMO

Multidrug membrane transporters can selectively extrude a wide variety of structurally and functionally unrelated substrates, and they are responsible for ineffective treatment of a wide range of diseases (e.g., infection and cancer). Their underlying molecular mechanisms remain elusive. In this study, we functionalized Ag NPs (11 nm in diameter) with two biocompatible peptides (CALNNK, CALNNE) to prepare positively and negatively charged Ag-peptide NPs (Ag-CALNNK NPs+ζ, Ag-CALNNE NPs-4ζ), respectively. We used them as photostable plasmonic imaging probes to study charge-dependent efflux kinetics of BmrA (ABC) membrane transporter of single live Bacillus (B.) subtilis cells. Two strains of the cells, normal expression of BmrA (WT) or devoid of BmrA (ΔBmrA), were used to study the charge-dependent efflux kinetics of single NPs upon the expression of BmrA. The NPs (1.4 nM) were stable (non-aggregated) in a PBS buffer and biocompatible to the cells. We found the high dependent accumulation of the intracellular NPs in both WT and ΔBmrA upon the charge and concentration of NPs. Notably, the accumulation rates of the positively charged NPs in single live WT cells are nearly identical to those in ΔBmrA cells, showing independence upon the expression of BmrA. In contrast, the accumulation rates of the negatively charged NPs in WT are much lower than in ΔBmrA, showing high dependence upon the expression of BmrA and suggesting that BmrA extrude the negatively charged NPs, but not positively charged NPs, out of the WT. The accumulation of positively charged NPs in both WT and ΔBmrA increases nearly proportionally to the NP concentration. The accumulation of negatively charged NPs in ΔBmrA, but not in WT, also increases nearly proportionally to the NP concentration. These results suggest that both negatively and positively charged NPs enter the cells via passive diffusion driven by concentration gradients across the cellular membrane, and BmrA can only extrude the negatively charged NPs out of the WT. This study shows that single NP plasmon spectroscopy can serve as a powerful tool to identify single plasmonic NPs and to probe the charge-dependent efflux kinetics and function of single membrane transporters in single live cells in real time.

4.
Physiol Behav ; 118: 14-24, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-23660277

RESUMO

Humans exposed to shiftwork conditions have been reported to have increased susceptibility to various health problems including various forms of dementia, cancer, heart disease, and metabolic disorders related to obesity. The present experiments assessed the effects of circadian disruption on learning and memory function and various food related processes including diet consumption rates, food metabolism, and changes in body weight. These experiments utilized a novel variant of the conditioned place preference task (CPP) that is normally used to assess Pavlovian associative learning and memory processes produced via repeated context-reward pairings. For the present experiments, the standard CPP paradigm was modified in that both contexts were paired with food, but the dietary constituents of the food were different. In particular, we were interested in whether rats could differentiate between two types of carbohydrates, simple (dextrose) and complex (starch). Consumption rates for each type of carbohydrate were measured throughout training. A test of context preference without the food present was also conducted. At the end of behavioral testing, a fasting glucose test and a glucose challenge test were administered. Chronic photoperiod shifting resulted in impaired context learning and memory processes thought to be mediated by a neural circuit centered on the hippocampus. The results also showed that preferences for the different carbohydrate diets were altered in rats experiencing photoperiod shifting in that they maintained an initial preference for the simple carbohydrate throughout training. Lastly, photoperiod shifting resulted in changes in fasting blood glucose levels and elicited weight gain. These results show that chronic photoperiod shifting, which likely resulted in circadian dysfunction, impairs multiple functions of the brain and/or body in the same individual.


Assuntos
Ritmo Circadiano/fisiologia , Alimentos , Memória/fisiologia , Fotoperíodo , Transtornos do Sono do Ritmo Circadiano/fisiopatologia , Transtornos do Sono do Ritmo Circadiano/psicologia , Animais , Peso Corporal/fisiologia , Condicionamento Psicológico/fisiologia , Carboidratos da Dieta , Ingestão de Alimentos/fisiologia , Feminino , Privação de Alimentos/fisiologia , Preferências Alimentares , Glucose/metabolismo , Hipocampo/fisiologia , Transtornos da Memória/etiologia , Transtornos da Memória/psicologia , Metabolismo/fisiologia , Ratos , Ratos Long-Evans , Transtornos do Sono do Ritmo Circadiano/metabolismo , Aumento de Peso/fisiologia
5.
Chem Res Toxicol ; 26(6): 904-17, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23621491

RESUMO

Nanomaterials possess unusually high surface area-to-volume ratios and surface-determined physicochemical properties. It is essential to understand their surface-dependent toxicity in order to rationally design biocompatible nanomaterials for a wide variety of applications. In this study, we have functionalized the surfaces of silver nanoparticles (Ag NPs, 11.7 ± 2.7 nm in diameter) with three biocompatible peptides (CALNNK, CALNNS, CALNNE) to prepare positively (Ag-CALNNK NPs(+ζ)), negatively (Ag-CALNNS NPs(-2ζ)), and more negatively charged NPs (Ag-CALNNE NPs(-4ζ)), respectively. Each peptide differs in a single amino acid at its C-terminus, which minimizes the effects of peptide sequences and serves as a model molecule to create positive, neutral, and negative charges on the surface of the NPs at pH 4-10. We have studied their charge-dependent transport into early developing (cleavage-stage) zebrafish embryos and their effects on embryonic development using dark-field optical microscopy and spectroscopy (DFOMS). We found that all three Ag-peptide NPs passively diffused into the embryos via their chorionic pore canals, and stayed inside the embryos throughout their entire development (120 h), showing charge-independent diffusion modes and charge-dependent diffusion coefficients. Notably, the NPs create charge-dependent toxic effects on embryonic development, showing that the Ag-CALNNK NPs(+ζ) (positively charged) are the most biocompatible while the Ag-CALNNE NPs(-4ζ) (more negatively charged) are the most toxic. By comparing with our previous studies of the same sized citrated Ag and Au NPs, the Ag-peptide NPs are much more biocompatible than the citrated Ag NPs, and nearly as biocompatible as the Au NPs, showing the dependence of nanotoxicity upon the surface charges, surface functional groups, and chemical compositions of the NPs. This study also demonstrates powerful applications of single NP plasmonic spectroscopy for quantitative analysis of single NPs in vivo and in tissues, and reveals the possibility of rational design of biocompatible NPs.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Peptídeos/química , Prata/toxicidade , Peixe-Zebra/embriologia , Animais , Embrião não Mamífero/anormalidades , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/química , Óptica e Fotônica , Prata/química , Análise Espectral , Eletricidade Estática
6.
Am J Physiol Cell Physiol ; 303(7): C781-9, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22875785

RESUMO

Angiotensin II (ANG II) stimulates production of superoxide (O(2)(-)) by NADPH oxidase (NOX) in medullary thick ascending limbs (TALs). There are three isoforms of the catalytic subunit (NOX1, 2, and 4) known to be expressed in the kidney. We hypothesized that NOX2 mediates ANG II-induced O(2)(-) production by TALs. To test this, we measured NOX1, 2, and 4 mRNA and protein by RT-PCR and Western blot in TAL suspensions from rats and found three catalytic subunits expressed in the TAL. We measured O(2)(-) production using a lucigenin-based assay. To assess the contribution of NOX2, we measured ANG II-induced O(2)(-) production in wild-type and NOX2 knockout mice (KO). ANG II increased O(2)(-) production by 346 relative light units (RLU)/mg protein in the wild-type mice (n = 9; P < 0.0007 vs. control). In the knockout mice, ANG II increased O(2)(-) production by 290 RLU/mg protein (n = 9; P < 0.007 vs. control). This suggests that NOX2 does not contribute to ANG II-induced O(2)(-) production (P < 0.6 WT vs. KO). To test whether NOX4 mediates the effect of ANG II, we selectively decreased NOX4 expression in rats using an adenovirus that expresses NOX4 short hairpin (sh)RNA. Six to seven days after in vivo transduction of the kidney outer medulla, NOX4 mRNA was reduced by 77%, while NOX1 and NOX2 mRNA was unaffected. In control TALs, ANG II stimulated O(2)(-) production by 96%. In TALs transduced with NOX4 shRNA, ANG II-stimulated O(2)(-) production was not significantly different from the baseline. We concluded that NOX4 is the main catalytic isoform of NADPH oxidase that contributes to ANG II-stimulated O(2)(-) production by TALs.


Assuntos
Angiotensina II/fisiologia , Alça do Néfron/enzimologia , NADPH Oxidases/metabolismo , Animais , Catálise , Isoenzimas/fisiologia , Masculino , Camundongos , Camundongos Knockout , NADPH Oxidase 4 , Ratos , Ratos Sprague-Dawley
7.
Hypertension ; 59(6): 1145-50, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22566503

RESUMO

Inappropriate Na(+) reabsorption by thick ascending limbs (THALs) induces hypertension. NO produced by NO synthase type 3 (NOS3) inhibits NaCl reabsorption by THALs. Tumor necrosis factor α (TNF-α) decreases NOS3 expression in endothelial cells and contributes to increases in blood pressure. However, the effects of TNF-α on THAL NOS3 and the signaling cascade are unknown. TNF-α activates several signaling pathways, including Rho/Rho kinase (ROCK), which is known to reduce NOS3 expression in endothelial cells. Therefore, we hypothesized that TNF-α decreases NOS3 expression via Rho/ROCK in rat THAL primary cultures. THAL cells were incubated with either vehicle or 1 nmol/L of TNF-α for 24 hours, and NOS3 expression was measured by Western blot. TNF-α decreased NOS3 expression by 51 ± 6% (P<0.002) and blunted stimulus-induced NO production. A 10-minute treatment with TNF-α stimulated RhoA activity by 60 ± 23% (P<0.04). Inhibition of Rho GTPase with 0.05 µg/mL of C3 exoenzyme blocked TNF-α-induced reductions in NOS3 expression by 30 ± 8% (P<0.02). Inhibition of ROCK with 10 µmol/L of H-1152 blocked TNF-α-induced decreases in NOS3 expression by 66 ± 15% (P<0.001). Simultaneous inhibition of Rho and ROCK had no additive effect. Myosin light chain kinase, NO, protein kinase C, mitogen-activated kinase kinase, c-Jun amino terminal kinases, and Rac-1 were also not involved in TNF-α-induced decreases in NOS3 expression. We conclude that TNF-α decreases NOS3 expression primarily via Rho/ROCK in rat THALs. These data suggest that some of the beneficial effects of ROCK inhibitors in hypertension could be attributed to the mitigation of TNF-α-induced reduction in NOS3 expression.


Assuntos
Alça do Néfron/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Quinases Associadas a rho/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Animais , Western Blotting , Células Cultivadas , Alça do Néfron/citologia , Alça do Néfron/metabolismo , Masculino , Microscopia de Fluorescência , Óxido Nítrico/metabolismo , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Quinases Associadas a rho/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/metabolismo
8.
Am J Physiol Renal Physiol ; 303(2): F194-200, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22496412

RESUMO

Mechanical stimulation caused by increasing flow induces nucleotide release from many cells. Luminal flow and extracellular ATP stimulate production of nitric oxide (NO) in thick ascending limbs. However, the factors that mediate flow-induced NO production are unknown. We hypothesized that luminal flow stimulates thick ascending limb NO production via ATP. We measured NO in isolated, perfused rat thick ascending limbs using the fluorescent dye DAF FM. The rate of increase in dye fluorescence reflects NO accumulation. Increasing luminal flow from 0 to 20 nl/min stimulated NO production from 17 ± 16 to 130 ± 37 arbitrary units (AU)/min (P < 0.02). Increasing flow from 0 to 20 nl/min raised ATP release from 4 ± 1 to 21 ± 6 AU/min (P < 0.04). Hexokinase (10 U/ml) plus glucose, which consumes ATP, completely prevented the measured increase in ATP. Luminal flow did not increase NO production in the presence of luminal and basolateral hexokinase (10 U/ml). When flow was increased with the ATPase apyrase in both luminal and basolateral solutions (5 U/ml), NO levels did not change significantly. The P2 receptor antagonist suramin (300 µmol/l) reduced flow-induced NO production by 83 ± 25% (P < 0.03) when added to both and basolateral sides. Luminal hexokinase decreased flow-induced NO production from 205.6 ± 85.6 to 36.6 ± 118.6 AU/min (P < 0.02). Basolateral hexokinase also reduced flow-induced NO production. The P2X receptor-selective antagonist NF023 (200 µmol/l) prevented flow-induced NO production when added to the basolateral side but not the luminal side. We conclude that ATP mediates flow-induced NO production in the thick ascending limb likely via activation of P2Y receptors in the luminal and P2X receptors in the basolateral membrane.


Assuntos
Trifosfato de Adenosina/fisiologia , Taxa de Filtração Glomerular/fisiologia , Alça do Néfron/metabolismo , Óxido Nítrico/metabolismo , Animais , Homeostase/fisiologia , Masculino , Modelos Animais , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Sódio/metabolismo , Água/metabolismo
9.
Nanoscale ; 4(9): 2797-812, 2012 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-22331098

RESUMO

Cellular signaling pathways play crucial roles in cellular functions and design of effective therapies. Unfortunately, study of cellular signaling pathways remains formidably challenging because sophisticated cascades are involved, and a few molecules are sufficient to trigger signaling responses of a single cell. Here we report the development of far-field photostable-optical-nanoscopy (PHOTON) with photostable single-molecule-nanoparticle-optical-biosensors (SMNOBS) for mapping dynamic cascades of apoptotic signaling pathways of single live cells in real-time at single-molecule (SM) and nanometer (nm) resolutions. We have quantitatively imaged single ligand molecules (tumor necrosis factor α, TNFα) and their binding kinetics with their receptors (TNFR1) on single live cells; tracked formation and internalization of their clusters and their initiation of intracellular signaling pathways in real-time; and studied apoptotic signaling dynamics and mechanisms of single live cells with sufficient temporal and spatial resolutions. This study provides new insights into complex real-time dynamic cascades and molecular mechanisms of apoptotic signaling pathways of single live cells. PHOTON provides superior imaging and sensing capabilities and SMNOBS offer unrivaled biocompatibility and photostability, which enable probing of signaling pathways of single live cells in real-time at SM and nm resolutions.


Assuntos
Nanotecnologia , Transdução de Sinais , Animais , Técnicas Biossensoriais , Linhagem Celular , Nanopartículas Metálicas/química , Camundongos , Imagem Molecular , Ligação Proteica , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Prata/química , Fator de Necrose Tumoral alfa/metabolismo
10.
Nanoscale ; 2(6): 942-52, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20648292

RESUMO

We have synthesized and purified silver nanoparticles (Ag NPs) (11.3+/-2.3 nm) that are stable (non-aggregated) in cell culture medium and inside single living cells. We have developed new imaging methods to characterize sizes and number of single NPs in the medium and in single living cells in real-time and determine their stability (non-aggregation) in the medium and in single living cells at single NP resolution. These new approaches allow us to study toxic and therapeutic effects of single Ag NPs on tumor cells (L929, mouse fibroblast cells) with determined sizes and concentrations (doses) of NPs over time at single NP and single cell resolution. We found that Ag NPs inhibited the growth and division of tumor cells and their nuclei, in a dose and time dependent manner, showing significant inhibitory effects and abnormal cells with giant undivided nuclei or multiple nuclei beyond 12 h incubation. The results show that Ag NPs inhibited the segregation of chromosomes, but not their replication. Intracellular Ag NPs were well distributed in the cell population, and located in the nuclei and cytoplasm with higher numbers in the cytoplasm. This study demonstrates the possibility of using Ag NPs to inhibit the growth and division of tumor cells and using their cytotoxicity for potential therapeutic treatments. This study offers a new method to count the number of single NPs in the medium for characterization of their concentration and stability at single NP resolution over time.


Assuntos
Linhagem Celular Tumoral/citologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Nanopartículas Metálicas , Prata , Animais , Divisão Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Meios de Cultura/química , Meios de Cultura/metabolismo , Estabilidade de Medicamentos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Camundongos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Tamanho da Partícula , Prata/química , Prata/farmacologia , Prata/toxicidade
11.
Biochemistry ; 49(28): 5942-53, 2010 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-20540528

RESUMO

Multidrug membrane transporters (efflux pumps) in both prokaryotes and eukaryotes are responsible for impossible treatments of a wide variety of diseases, including infections and cancer, underscoring the importance of better understanding of their structures and functions for the design of effective therapies. In this study, we designed and synthesized two silver nanoparticles (Ag NPs) with average diameters of 13.1 +/- 2.5 nm (8.1-38.6 nm) and 91.0 +/- 9.3 nm (56-120 nm) and used the size-dependent plasmonic spectra of single NPs to probe the size-dependent transport kinetics of MexAB-OprM (multidrug transporter) in Pseudomonas aeruginosa in real time at nanometer resolution. We found that the level of accumulation of intracellular NPs in wild-type (WT) cells was higher than in nalB1 (overexpression of MexAB-OprM) but lower than in DeltaABM (deletion of MexAB-OprM). In the presence of proton ionophores (CCCP, inhibitor of proton motive force), we found that intracellular NPs in nalB1 were nearly doubled. These results suggest that MexAB-OprM is responsible for the extrusion of NPs out of cells and NPs (orders of magnitude larger than conventional antibiotics) are the substrates of the transporter, which indicates that the substrates may trigger the assembly of the efflux pump optimized for the extrusion of the encountered substrates. We found that the smaller NPs stayed inside the cells longer than larger NPs, suggesting the size-dependent efflux kinetics of the cells. This study shows that multisized NPs can be used to mimic various sizes of antibiotics for probing the size-dependent efflux kinetics of multidrug membrane transporters in single living cells.


Assuntos
Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Antibacterianos/farmacologia , Transporte Biológico/efeitos dos fármacos , Estruturas Celulares/metabolismo , Eucariotos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/farmacologia , Membranas/metabolismo , Nanopartículas , Pseudomonas aeruginosa/citologia , Streptococcus pneumoniae/metabolismo
12.
Exp Brain Res ; 203(2): 285-97, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20449729

RESUMO

This research examined the roles played by the ventromedial orbital prefrontal cortex (OPFC) and the infralimbic/prelimbic prefrontal cortex (I/P PFC) during discriminative fear conditioning. The first experiment included nine rats with bilateral lesions to the I/P PFC, an additional nine with OPFC lesions, and eight sham lesion controls. Behavioural analysis was conducted using a discriminative fear conditioning to context task 10 days after surgery. Results indicate that lesions to ventromedial orbital prefrontal cortex result in generalized fear and impaired extinction. In contrast, infralimbic/prelimbic cortical lesioned animals exhibit appropriate fear response patterns and extinction, but show a specific impairment in spontaneous recovery. To ascertain why I/P PFC lesion rats did not exhibit spontaneous recovery, a second experiment was conducted. All procedures in the second experiment were identical to the first except a decay period was employed in place of extinction training. Results from the second experiment indicate that the difficulty retrieving the extinguished association is related to extinction processes and not decay. Taken together, these findings suggest that OPFC and I/P PFC have distinct roles in associative processes necessary for discriminative fear conditioning, extinction, and spontaneous recovery. These results further implicate OPFC and I/P PFC in the pathology underlying generalized anxiety disorder.


Assuntos
Condicionamento Psicológico/fisiologia , Aprendizagem por Discriminação/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Córtex Pré-Frontal/fisiologia , Análise de Variância , Animais , Aprendizagem por Associação/fisiologia , Masculino , Ratos , Ratos Long-Evans
13.
J Biol Chem ; 284(3): 1454-60, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19033447

RESUMO

Endothelin-1 inhibits sodium reabsorption in the thick ascending limb (THAL) via stimulation of nitric oxide (NO) production. The mechanism whereby endothelin-1 stimulates THAL NO is unknown. We hypothesized that endothelin-1 stimulates THAL NO production by activating phosphatidylinositol 3-kinase (PI3K), stimulating Akt activity, and phosphorylating NOS3 at Ser1177. This enhances NO production and inhibits sodium transport. We measured 1) NO production by fluorescence microscopy using DAF2-DA, 2) Akt activity using a fluorescence resonance energy transfer-based Akt reporter, 3) phosphorylated NOS3 and Akt by Western blotting, and 4) NKCC2 activity by fluorescence microscopy. In isolated THAL, endothelin-1 (1 nmol/liter) increased NO production from 0.23 +/- 0.24 to 2.81 +/- 0.32 fluorescence units/min (p < 0.001; n = 5) but failed to stimulate NO production in THALs isolated from NOS3-/- mice. Wortmannin (150 nmol/liter), a PI3K inhibitor, reduced endothelin-1-stimulated NO by 83% (0.49 +/- 0.13 versus 3.31 +/- 0.49 fluorescence units/min for endothelin-1 alone; p < 0.006; n = 5). Endothelin-1 stimulated Akt activity by 0.16 +/- 0.02 arbitrary units as measured by fluorescence resonance energy transfer (p < 0.001; n = 5) and increased phosphorylation of Akt at Ser473 by 56 +/- 11% (p < 0.002; n = 7). Dominant-negative Akt blocked endothelin-1-induced NO by 60 +/- 8% (p < 0.001 versus control; n = 6), and an Akt inhibitor had a similar effect. Endothelin-1 increased phosphorylation of NOS3 at Ser1177 by 89 +/- 24% (p < 0.01; n = 7) but had no effect on Ser633. Endothelin-1 inhibited NKCC2 activity, an effect that was blocked by dominant-negative Akt and NOS inhibition. We conclude that endothelin-1 stimulates THAL NO production by activating PI3K, stimulating Akt activity, and phosphorylating NOS3 at Ser1177. This enhances NO production and inhibits sodium transport.


Assuntos
Endotelina-1/farmacologia , Rim/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/biossíntese , Proteínas Proto-Oncogênicas c-akt/metabolismo , Androstadienos/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Endotelina-1/genética , Endotelina-1/metabolismo , Masculino , Camundongos , Camundongos Knockout , Óxido Nítrico/genética , Óxido Nítrico Sintase Tipo III/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Ratos Sprague-Dawley , Simportadores de Cloreto de Sódio-Potássio/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto , Equilíbrio Hidroeletrolítico/efeitos dos fármacos , Equilíbrio Hidroeletrolítico/fisiologia , Wortmanina
14.
J Am Chem Soc ; 130(50): 17095-105, 2008 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-19053435

RESUMO

We synthesized tiny stable silver nanoparticles (2.6 +/- 1.1 nm) and used its small surface area and functional groups to control single molecule detection (SMD) volumes on single nanoparticles. These new approaches allowed us to develop intrinsic single molecule nanoparticle optical biosensors (SMNOBS) for sensing and imaging of single human cytokine molecules, recombinant human tumor necrosis factor-alpha (TNFalpha), and probing its binding reaction with single monoclonal antibody (MAB) molecules in real-time. We found that SMNOBS retained their biological activity over months and showed exceptionally high photostability. Our study illustrated that smaller nanoparticles exhibited higher dependence of optical properties on surface functional groups, making it a much more sensitive biosensor. Localized surface plasmon resonance spectra (LSPRS) of SMNOBS showed a large red shift of peak wavelength of 29 +/- 11 nm, as single TNFalpha molecules bound with single MAB molecules on single nanoparticles. Utilizing its LSPRS, we quantitatively measured its binding reaction in real time at single molecule (SM) level, showing stochastic binding kinetics of SM reactions with binding equilibrium times ranging from 30 to 120 min. SMNOBS exhibited extraordinarily high sensitivity and selectivity, and a notably wide dynamic range of 0-200 ng/mL (0-11.4 nM). Thus, SMNOBS is well suited for the fundamental study of biological functions of single protein molecules and SM interactions of chemical functional groups with the surface of nanoparticles, as well as development of effective disease diagnosis and therapy.


Assuntos
Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/química , Humanos , Espectroscopia de Ressonância Magnética , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Fotoquímica , Proteínas Recombinantes/análise , Proteínas Recombinantes/química , Prata/química , Especificidade por Substrato , Fatores de Tempo
15.
Proc Natl Acad Sci U S A ; 104(30): 12445-50, 2007 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-17640884

RESUMO

Condensins are ubiquitously expressed multiprotein complexes that are important for chromosome condensation and epigenetic regulation of gene transcription, but whose specific roles in vertebrates are poorly understood. We describe a mouse strain, nessy, isolated during an ethylnitrosourea screen for recessive immunological mutations. The nessy mouse has a defect in T lymphocyte development that decreases circulating T cell numbers, increases their expression of the activation/memory marker CD44, and dramatically decreases the numbers of CD4(+)CD8(+) thymocytes and their immediate DN4 precursors. A missense mutation in an unusual alternatively spliced first exon of the kleisin beta gene, a member of the condensin II complex, was shown to be responsible and act in a T cell-autonomous manner. Despite the ubiquitous expression and role of condensins, kleisin beta(nes/nes) mice were viable, fertile, and showed no defects even in the parallel pathway of B cell lymphocyte differentiation. These data define a unique lineage-specific requirement for kleisin beta in mammalian T cell differentiation.


Assuntos
Adenosina Trifosfatases/metabolismo , Diferenciação Celular , Cromossomos de Mamíferos/genética , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Animais , Subpopulações de Linfócitos B/imunologia , Sequência de Bases , Linhagem da Célula , Células Cultivadas , Sequência Conservada , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Vetores Genéticos/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Mutação/genética , Fenótipo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Retroviridae/genética , Alinhamento de Sequência , Baço/metabolismo
16.
J Exp Med ; 204(4): 853-63, 2007 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-17420270

RESUMO

Mouse cytomegalovirus (MCMV) susceptibility often results from defects of natural killer (NK) cell function. Here we describe Jinx, an N-ethyl-N-nitrosourea-induced MCMV susceptibility mutation that permits unchecked proliferation of the virus, causing death. In Jinx homozygotes, activated NK cells and cytotoxic T lymphocytes (CTLs) fail to degranulate, although they retain the ability to produce cytokines, and cytokine levels are markedly elevated in the blood of infected mutant mice. Jinx was mapped to mouse chromosome 11 on a total of 246 meioses and confined to a 4.60-million basepair critical region encompassing 122 annotated genes. The phenotype was ascribed to the creation of a novel donor splice site in Unc13d, the mouse orthologue of human MUNC13-4, in which mutations cause type 3 familial hemophagocytic lymphohistiocytosis (FHL3), a fatal disease marked by massive hepatosplenomegaly, anemia, and thrombocytopenia. Jinx mice do not spontaneously develop clinical features of hemophagocytic lymphohistiocytosis (HLH), but do so when infected with lymphocytic choriomeningitis virus, exhibiting hyperactivation of CTLs and antigen-presenting cells, and inadequate restriction of viral proliferation. In contrast, neither Listeria monocytogenes nor MCMV induces the syndrome. In mice, the HLH phenotype is conditional, which suggests the existence of a specific infectious trigger of FHL3 in humans.


Assuntos
Modelos Animais de Doenças , Predisposição Genética para Doença , Infecções por Herpesviridae/metabolismo , Linfo-Histiocitose Hemofagocítica/metabolismo , Linfo-Histiocitose Hemofagocítica/patologia , Proteínas de Membrana/metabolismo , Muromegalovirus/fisiologia , Animais , Células Apresentadoras de Antígenos/metabolismo , Apoptose , Clonagem Molecular , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/patologia , Interferon gama/biossíntese , Linfo-Histiocitose Hemofagocítica/classificação , Linfo-Histiocitose Hemofagocítica/genética , Proteínas de Membrana/genética , Camundongos , Mutação/genética , Fenótipo
17.
Dev Cell ; 6(3): 423-35, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15030764

RESUMO

Runx2 is necessary and sufficient for osteoblast differentiation, yet its expression precedes the appearance of osteoblasts by 4 days. Here we show that Twist proteins transiently inhibit Runx2 function during skeletogenesis. Twist-1 and -2 are expressed in Runx2-expressing cells throughout the skeleton early during development, and osteoblast-specific gene expression occurs only after their expression decreases. Double heterozygotes for Twist-1 and Runx2 deletion have none of the skull abnormalities observed in Runx2(+/-) mice, a Twist-2 null background rescues the clavicle phenotype of Runx2(+/-) mice, and Twist-1 or -2 deficiency leads to premature osteoblast differentiation. Furthermore, Twist-1 overexpression inhibits osteoblast differentiation without affecting Runx2 expression. Twist proteins' antiosteogenic function is mediated by a novel domain, the Twist box, which interacts with the Runx2 DNA binding domain to inhibit its function. In vivo mutagenesis confirms the antiosteogenic function of the Twist box. Thus, relief of inhibition by Twist proteins is a mandatory event precluding osteoblast differentiation.


Assuntos
Diferenciação Celular/fisiologia , Fatores de Regulação Miogênica/fisiologia , Proteínas Nucleares/fisiologia , Osteoblastos/fisiologia , Osteogênese/fisiologia , Proteínas Repressoras/fisiologia , Fatores de Transcrição/fisiologia , Envelhecimento/metabolismo , Animais , Animais Recém-Nascidos , Northern Blotting/métodos , Western Blotting/métodos , Células Cultivadas , Chlorocebus aethiops , Subunidade alfa 1 de Fator de Ligação ao Core , Análise Mutacional de DNA/métodos , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Embrião de Mamíferos , Regulação da Expressão Gênica/fisiologia , Heterozigoto , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Regulação Miogênica/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Testes de Precipitina/métodos , Prolina/genética , Estrutura Terciária de Proteína/fisiologia , RNA/análise , Ratos , Proteínas Repressoras/genética , Serina/genética , Esqueleto , Coloração e Rotulagem , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional/fisiologia , Transfecção/métodos , Proteína 1 Relacionada a Twist
18.
Hypertension ; 42(4): 674-9, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12913056

RESUMO

The thick ascending limb of the loop of Henle (THAL) plays an essential role in the regulation of sodium and water homeostasis by the kidney. l-Arginine, the substrate for nitric oxide synthase (NOS), decreases NaCl absorption by THALs. We hypothesized that eNOS produces the NO that regulates THAL NaCl transport and that selective expression of eNOS in the THAL of eNOS knockout(-/-) mice would restore the effects of l-arginine on NaCl absorption. eNOS-/- mice were anesthetized, the left kidney was exposed, and the renal interstitium was injected with recombinant adenoviral vectors that expressed green fluorescent protein (GFP) or eNOS driven by the promoter of the Na/K/2Cl cotransporter Ad-NKCC2GFP and Ad-NKCC2eNOS, respectively. In Ad-NKCC2eNOS-transduced kidneys, eNOS expression was detected 7 days after injection but was absent in Ad-NKCC2GFP-transduced kidneys. In THALs from eNOS-/- mice transduced with Ad-NKCC2eNOS, adding L-arginine increased DAF-2DA fluorescence, a measure of NO production, by 9.1+/-1.1% (P<0.05; n=5), but not in THALs transduced with Ad-NKCC2GFP. In THALs from eNOS-/- mice transduced with Ad-NKCC2eNOS, Cl absorption averaged 85.9+/-11.8 pmol/min per millimeter. Adding l-arginine (1 mmol/L) to the bath decreased Cl absorption to 59.7+/-11.0 pmol/min per millimeter (P<0.05; n=6). In THALs transduced with Ad-NKCC2GFP, Cl absorption averaged 96.0+/-21.0 pmol/min per millimeter. Adding L-arginine to the bath did not significantly affect Cl absorption (100.6+/-20.6 pmol/min per millimeter; n=4). We concluded that gene transfer of eNOS to the THAL of eNOS-/- mice restores L-arginine-induced inhibition of NaCl transport and NO production. These data indicate that eNOS is essential for the regulation of THAL NaCl transport by NO.


Assuntos
Arginina/farmacologia , Alça do Néfron/enzimologia , Alça do Néfron/metabolismo , Óxido Nítrico Sintase/fisiologia , Cloreto de Sódio/metabolismo , Absorção , Adenoviridae/genética , Animais , Vetores Genéticos , Rim/citologia , Rim/enzimologia , Alça do Néfron/efeitos dos fármacos , Camundongos , Camundongos Knockout , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase Tipo II , Óxido Nítrico Sintase Tipo III , Transdução Genética
19.
Kidney Int ; 63(3): 1141-9, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12631099

RESUMO

BACKGROUND: The thick ascending limb of the loop of Henle (THAL) plays an important role in the maintenance of salt, water, and acid-base balance. While techniques for gene transfer of renal vascular cells and some tubular segments have been described, in vivo transduction of THALs has not been successful. We hypothesized that in vivo injection of adenoviral vectors into the renal medulla would result in efficient transduction of THALs. METHODS: We injected recombinant adenoviruses containing the reporter gene, green fluorescent protein (GFP), driven by either the cytomegalovirus promoter (Ad-CMVGFP) or the promoter for the Na/K/2 Cl cotransporter (Ad-NKCC2GFP), which is THAL-specific, into the outer medullary interstitium of Sprague-Dawley rat kidneys. Kidneys were removed at various times after viral injection and analyzed for GFP expression. RESULTS: Western blots revealed strong GFP expression in the outer medulla (which is composed primarily of THALs) 5 days after Ad-CMVGFP injection. We quantified THAL transduction efficiency by scoring the number of fluorescent tubules in THALs suspensions, which showed that at least 77 +/- 3% of THAL expressed GFP. To specifically transduce THALs, we injected Ad-NKCC2GFP into the medullary interstitium. As determined by Western blot, GFP expression was only detected in the outer medulla. Immunohistochemistry and confocal microscopy showed that GFP was localized to tubular cells positive for Tamm-Horsfall protein. Thus, GFP fluorescence was only detected in THALs, not in cortical, inner medulla or vascular cells. Time-course studies showed that GFP expression in THALs was measurable from 4 to 14 days, peaked at 7 days, and had returned to background levels by 21 days. CONCLUSION: This method facilitates highly efficient, THAL-specific transduction. While application of this technique for gene therapy in humans is unlikely due to the transient gene expression observed and the impossibility for repeated injections of adenoviral vectors, this method provides a valuable tool for investigators studying regulation and mechanisms of THAL ion transport and its relationship to whole-kidney physiology and pathophysiology.


Assuntos
Adenoviridae/genética , Vetores Genéticos , Alça do Néfron/fisiologia , Transdução Genética/métodos , Animais , Citomegalovirus/genética , Proteínas de Fluorescência Verde , Indicadores e Reagentes/metabolismo , Proteínas Luminescentes/genética , Masculino , Ratos , Ratos Sprague-Dawley , Simportadores de Cloreto de Sódio-Potássio/genética , Membro 1 da Família 12 de Carreador de Soluto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA