Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Antioxidants (Basel) ; 12(7)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37507949

RESUMO

Diabetic retinopathy (DR) is the leading cause of vision loss and a major complication of diabetes. Hyperglycemia-induced accumulation of reactive oxygen species (ROS) is an important risk factor for DR. ß-asarone, a major component of volatile oil extracted from Acori graminei Rhizoma, exerts antioxidant effects; however, its efficacy in DR remains unknown. In this study, we investigated whether ß-asarone inhibits high-glucose (HG)-induced oxidative damage in human retinal pigment epithelial (RPE) ARPE-19 cells. We found that ß-asarone significantly alleviated cytotoxicity, apoptosis, and DNA damage in HG-treated ARPE-19 cells via scavenging of ROS generation. ß-Asarone also significantly attenuated the excessive accumulation of lactate dehydrogenase and mitochondrial ROS by increasing the manganese superoxide dismutase and glutathione activities. HG conditions markedly increased the release of interleukin (IL)-1ß and IL-18 and upregulated their protein expression and activation of the nuclear factor-kappa B (NF-κB) signaling pathway, whereas ß-asarone reversed these effects. Moreover, expression levels of the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome multiprotein complex molecules, including thioredoxin-interacting protein, NLRP3, apoptosis-associated speck-like protein containing a caspase-recruitment domain, and cysteinyl aspartate-specific proteinase-1, were increased in ARPE-19 cells under HG conditions. However, their expression levels remained similar to those in the control group in the presence of ß-asarone. Therefore, ß-asarone protects RPE cells from HG-induced injury by blocking ROS generation and NF-κB/NLRP3 inflammasome activation, indicating its potential as a therapeutic agent for DR treatment.

2.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36902068

RESUMO

Phloroglucinol is a class of polyphenolic compounds containing aromatic phenyl rings and is known to have various pharmacological activities. Recently, we reported that this compound isolated from Ecklonia cava, a brown alga belonging to the family Laminariaceae, has potent antioxidant activity in human dermal keratinocytes. In this study, we evaluated whether phloroglucinol could protect against hydrogen peroxide (H2O2)-induced oxidative damage in murine-derived C2C12 myoblasts. Our results revealed that phloroglucinol suppressed H2O2-induced cytotoxicity and DNA damage while blocking the production of reactive oxygen species. We also found that phloroglucinol protected cells from the induction of apoptosis associated with mitochondrial impairment caused by H2O2 treatment. Furthermore, phloroglucinol enhanced the phosphorylation of nuclear factor-erythroid-2 related factor 2 (Nrf2) as well as the expression and activity of heme oxygenase-1 (HO-1). However, such anti-apoptotic and cytoprotective effects of phloroglucinol were greatly abolished by the HO-1 inhibitor, suggesting that phloroglucinol could increase the Nrf2-mediated activity of HO-1 to protect C2C12 myoblasts from oxidative stress. Taken together, our results indicate that phloroglucinol has a strong antioxidant activity as an Nrf2 activator and may have therapeutic benefits for oxidative-stress-mediated muscle disease.


Assuntos
Antioxidantes , Estresse Oxidativo , Phaeophyceae , Floroglucinol , Animais , Humanos , Camundongos , Antioxidantes/farmacologia , Apoptose , Linhagem Celular , Heme Oxigenase-1/metabolismo , Peróxido de Hidrogênio/metabolismo , Mioblastos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Phaeophyceae/metabolismo , Floroglucinol/farmacologia , Espécies Reativas de Oxigênio/metabolismo
3.
Phytomedicine ; 112: 154705, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36796188

RESUMO

BACKGROUND: Monosodium urate (MSU) crystals are associated with gouty inflammatory diseases. MSU-associated inflammation is majorly triggered by NOD-like receptor protein 3 (NLRP3) inflammasome that promotes interleukin (IL)-1ß secretion. Although diallyl trisulfide (DATS) is well-known polysulfide garlic compounds with anti-inflammatory effects, its action in MSU-induced inflammasome activation has not been known yet. PURPOSE: The objective of the current study was to investigate anti-inflammasome effects and mechanisms of DATS in RAW 264.7 and bone marrow-derived macrophages (BMDM). METHODS: The concentrations of IL-1ß were analyzed with enzyme-linked immunosorbent assay. The MSU-induced mitochondrial damage and reactive oxygen species (ROS) production were detected by fluorescence microscope and flow cytometry. The protein expressions of NLRP3 signaling molecules, NADPH oxidase (NOX) 3/4 were assessed with Western blotting. RESULTS: DATS suppressed MSU-induced IL-1ß and caspase-1 accompanied by decreased inflammasome complex formation in RAW 264.7 and BMDM. In addition, DATS restored mitochondrial damage. DATS downregulated NOX 3/4 that were upregulated by MSU as predicted by gene microarray and confirmed by Western blotting. CONCLUSION: This study first reports mechanistic finding that DATS alleviates MSU-induced NLRP3 inflammasome by mediating NOX3/4-dependent mitochondrial ROS production in macrophages in vitro and ex vivo, suggesting DATS could be effective therapeutic candidate for gouty inflammatory condition.


Assuntos
Gota , Inflamassomos , Humanos , Ácido Úrico/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Gota/tratamento farmacológico , Macrófagos , Inflamação/tratamento farmacológico , Estresse Oxidativo , Interleucina-1beta/metabolismo
4.
Gen Physiol Biophys ; 41(4): 263-274, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35938960

RESUMO

Platycodin D (PD) is a triterpenoid saponin, a major bioactive constituent of the roots of Platycodon grandiflorum, which is well known for possessing various pharmacological properties. However, the anti-cancer mechanism of PD in bladder cancer cells remains poorly understood. In the current study, we investigated the effect of PD on the growth of human bladder urothelial carcinoma cells. PD treatment significantly reduced the cell survival of bladder cancer cells associated with induction of apoptosis and DNA damage. PD inhibited the expression of inhibitor of apoptosis family members, activated caspases, and induced cleavage of poly (ADP-ribose) polymerase. PD also increased the release of cytochrome c into the cytoplasm by disrupting the mitochondrial membrane potential while upregulating the expression ratio of Bax to Bcl-2. The PD-mediated anti-proliferative effect was significantly inhibited by pre-treatment with a pancaspase inhibitor, but not by an inhibitor of necroptosis. Moreover, PD suppressed the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway, and the apoptosis-inducing effect of PD was further enhanced by a PI3K inhibitor. In addition, PD increased the accumulation of reactive oxygen species (ROS), whereas N-acetyl cysteine (NAC), an ROS inhibitor, significantly attenuated the growth inhibition and inactivation of the PI3K/Akt/mTOR signaling caused by PD. Furthermore, NAC significantly suppressed apoptosis, DNA damage, and decreased cell viability induced by PD treatment. Collectively, our findings indicated that PD blocked the growth of bladder urothelial carcinoma cells by inducing ROS-mediated inactivation of the PI3K/Akt/mTOR signaling.


Assuntos
Carcinoma de Células de Transição , Saponinas , Triterpenos , Neoplasias da Bexiga Urinária , Apoptose , Humanos , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saponinas/farmacologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Triterpenos/farmacologia , Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
5.
Biosci Trends ; 16(4): 291-300, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-35691912

RESUMO

Loganin is a type of iridoid glycosides isolated from Corni fructus and is known to have various pharmacological properties, but studies on its antioxidant activity are still lacking. Therefore, in this study, the preventive effect of loganin on oxidative stress-mediated cellular damage in human keratinocyte HaCaT cells was investigated. Our results show that loganin pretreatment in a non-toxic concentration range significantly improved cell survival in hydrogen peroxide (H2O2)-treated HaCaT cells, which was associated with inhibition of cell cycle arrest at the G2/M phase and induction of apoptosis. H2O2-induced DNA damage and reactive oxygen species (ROS) generation were also greatly reduced in the presence of loganin. Moreover, H2O2 treatment enhanced the cytoplasmic release of cytochrome c, upregulation of the Bax/Bcl-2 ratio and degradation of cleavage of poly (ADP-ribose) polymerase, whereas loganin remarkably suppressed these changes. In addition, loganin obviously attenuated H2O2-induced autophagy while inhibiting the increased accumulation of autophagosome proteins, including as microtubule-associated protein 1 light chain 3-II and Beclin-1, and p62, an autophagy substrate protein, in H2O2-treated cells. In conclusion, our current results suggests that loganin could protect HaCaT keratinocytes from H2O2-induced cellular injury by inhibiting mitochondrial dysfunction, autophagy and apoptosis. This finding indicates the applicability of loganin in the prevention and treatment of skin diseases caused by oxidative damage.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Antioxidantes/farmacologia , Apoptose , Proteína Beclina-1/metabolismo , Citocromos c/metabolismo , Células HaCaT , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/toxicidade , Glicosídeos Iridoides/metabolismo , Glicosídeos Iridoides/farmacologia , Iridoides , Queratinócitos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/farmacologia , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ribose/metabolismo , Ribose/farmacologia , Proteína X Associada a bcl-2/metabolismo
6.
Oncol Rep ; 47(5)2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35293594

RESUMO

Subsequently to the publication of the above article, an interested reader drew to the authors' attention that certain of the data panels featured in Figs. 1B, 4A, 6A and 8A, showing DAPI or NAC staining of the cells, appeared to contain overlapping data. The authors have consulted their original data, and realize that errors were made during the compilation of these figures; consequently, they have repeated the affected experiments. The revised versions of Figs. 1, 4, 6 and 8, featuring replacement data for Figs. 1B, 4A, 6A and 8A, are shown on the subsequent pages. The authors regret the errors that were made during the preparation of the published figures, and confirm that these errors did not affect the conclusions reported in the study. The authors are grateful to the Editor of Oncology Reports for allowing them the opportunity to publish a Corrigendum, and all the authors agree to this Corrigendum. Furthermore, they apologize to the readership for any inconvenience caused. [the original article was published in Oncology Reports 36: 205­214, 2016; DOI: 10.3892/or.2016.4812].

7.
Pharmaceutics ; 13(10)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34683920

RESUMO

Isoalantolactone (IALT) is one of the isomeric sesquiterpene lactones isolated from the roots of Inula helenium L. IALT is known to possess various biological and pharmacological activities, but its anti-cancer mechanisms are not well understood. The aim of the present study was to investigate the anti-proliferative effects of IALT in human hepatocellular carcinoma (HCC) cells and to evaluate the potential anti-cancer mechanisms. Our results demonstrated that IALT treatment concentration-dependently suppressed the cell survival of HCC Hep3B cells, which was associated with the induction of apoptosis. IALT increased the expression of death-receptor-related proteins, activated caspases, and induced Bid truncation, subsequently leading to cleavage of poly (ADP-ribose) polymerase. In addition, IALT contributed to the cytosolic release of cytochrome c by destroying mitochondrial integrity, following an increase in the Bax/Bcl-2 expression ratio. However, IALT-mediated growth inhibition and apoptosis were significantly attenuated in the presence of a pan-caspase inhibitor, suggesting that IALT induced caspase-dependent apoptosis in Hep3B cells. Moreover, IALT activated the mitogen-activated protein kinases signaling pathway, and the anti-cancer effect of IALT was significantly diminished in the presence of a potent c-Jun N-terminal kinase (JNK) inhibitor. IALT also improved the generation of intracellular reactive oxygen species (ROS), whereas the ROS inhibitor significantly abrogated IALT-induced growth reduction, apoptosis, and JNK activation. Furthermore, ROS-dependent apoptosis was revealed as a mechanism involved in the anti-cancer activity of IALT in a 3D multicellular tumor spheroid model of Hep3B cells. Taken together, our findings indicate that IALT exhibited anti-cancer activity in HCC Hep3B cells by inducing ROS-dependent activation of the JNK signaling pathway.

8.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946527

RESUMO

Coptidis Rhizoma is the dried rhizome from the Coptis chinensis Franch. that has been shown to have a number of beneficial pharmacological properties including antioxidant, anti-inflammatory, and anti-cancer effects. However, the anti-cancer effects of Coptidis Rhizoma on hepatocellular carcinoma (HCC) remain unclear. In this study, we investigated the anti-cancer properties of Coptidis Rhizoma ethanol extract (CR) in HCC Hep3B cells and in a xenograft mouse model. Our results showed that the CR significantly inhibited cell growth and induced apoptosis in Hep3B cells through increased expression of Bcl-2 associated x-protein (Bax) and cleavage of poly-ADP ribose polymerase (PARP), reduced expression of Bcl-2, and activated caspases. CR also increased the generation of intracellular reactive oxygen species (ROS), which caused a loss of mitochondrial membrane potential (MMP, ΔΨm) and activation of the mitochondria-mediated intrinsic apoptosis pathway. Moreover, N-acetylcysteine (NAC), a ROS inhibitor, markedly blocked the effects of CR on apoptotic pathways. CR also induced the expression of light chain 3 (LC3)-I/II, a key autophagy regulator, whereas CR-mediated autophagy was significantly suppressed by NAC. In addition, pre-treatment with NAC perfectly attenuated the inhibition of cell invasion and migration of CR-stimulated Hep3B cells. Furthermore, oral administration of CR suppressed Hep3B tumor growth in xenograft mice without toxicity, alterations to body weight, or changes in hematological and biochemical profiles. Taken together, our findings suggest that CR has anti-tumor effects that result from ROS generation, and may be a potential pharmacological intervention for HCC.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Coptis/química , Coptis chinensis , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Humanos , Neoplasias Hepáticas/metabolismo , Camundongos Nus , Rizoma/química , Transdução de Sinais/efeitos dos fármacos
9.
Genes Genomics ; 43(1): 17-31, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33237503

RESUMO

BACKGROUND: Coptisine is a natural alkaloid compound and is known to have multiple beneficial effects including antioxidant activity. However, whether it can protect lung fibroblasts from oxidative damage has not been studied yet. OBJECTIVES: To investigate the potential inhibitory effect of coptisine against oxidative stress in V79-4 lung fibroblast cells. METHODS: V79-4 cells were treated with H2O2 (1 mM) in the presence or absence of coptisine (50 µg/ml), N-acetyl cysteine (NAC, 10 mM) or zinc protoporphyrin IX (ZnPP, 10 µM) for the indicated times. The alleviating effects of coptisine on cytotoxicity, cell cycle arrest, apoptosis, reactive oxygen species (ROS) production, DNA damage, mitochondrial dynamics, and inhibition of ATP production against H2O2 were investigated. Western blot analysis was used to analyze the expression levels of specific proteins. RESULTS: Coptisine inhibited H2O2-induced cytotoxicity and DNA damage by blocking abnormal ROS generation. H2O2 treatment caused cell cycle arrest at the G2/M phase accompanied by increased expression of cyclin-dependent kinase (Cdk) inhibitor p21WAF1/CIP1 and decreased expression of cyclin B1 and cyclin A. However, these effects were attenuated in the presence of coptisine or NAC. Coptisine also prevented apoptosis by decreasing the rate of Bax/Bcl-2 expression in H2O2-stimulated cells and suppressing the loss of mitochondrial membrane potential and the cytosolic release of cytochrome c. In addition, the activation of nuclear factor-erythroid-2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) was markedly promoted by coptisine in the presence of H2O2. However, zinc protoporphyrin IX, a potent inhibitor of HO-1, attenuated the ROS scavenging and anti-apoptotic effects of coptisine. CONCLUSIONS: Based on current data, we suggest that coptisine can be used as a potential treatment for oxidative stress-related lung disease.


Assuntos
Antioxidantes/farmacologia , Berberina/análogos & derivados , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Animais , Berberina/farmacologia , Linhagem Celular , Cricetinae , Cricetulus , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Peróxido de Hidrogênio/toxicidade , Fator 2 Relacionado a NF-E2/genética
10.
Arch Biochem Biophys ; 697: 108688, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33227289

RESUMO

Coptisine is isoquinoline alkaloid derived from Coptidis Rhizoma and is known to have potential anti-cancer activity toward various carcinomas. Targeting autophagy is one of the main approaches for cancer therapy, but whether the anti-cancer efficacy of coptisine involves autophagy is still unclear. Therefore, this study investigated the effect of coptisine on autophagy in hepatocellular carcinoma (HCC) Hep3B cells, and identified the underlying mechanism. Our results showed that coptisine increased cytotoxicity and autophagic vacuoles in a concentration-dependent manner. Furthermore, the expressions of light chain 3 (LC3)-I/II, Beclin-1 and autophagy genes were markedly increased by coptisine, while the expression of p62 decreased. In addition, we found that pretreatment with bafilomycin A1, an inhibitor of autophagosome-lysosome fusion, markedly reduced coptisine-mediated autophagic cell death, but 3-methyladenine, an inhibitor for autophagosome formation did not. Moreover, our results showed that although coptisine up-regulated AMP-activated protein kinase (AMPK) that partially induced LC3-I/II, coptisine-mediated AMPK signaling did not directly regulate autophagic cell death. Additionally, we found that coptisine suppressed the phosphorylation of phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR), and this effect was notably enhanced by PI3K inhibitor LY294002. Meanwhile, coptisine significantly increased both the production of mitochondrial reactive oxygen species (ROS) and the recruitment of mitophagy-regulated proteins to mitochondria. Furthermore, N-acetylcysteine, a potential ROS scavenger, substantially suppressed the expression of mitophagy-regulated proteins and LC3 puncta by coptisine. Overall, our results demonstrate that coptisine-mediated autophagic cell death was regulated by PI3K/Akt/mTOR signaling and mitochondrial ROS production associated with mitochondrial dysfunction. Taken together, these findings suggest that coptisine exerts its anti-cancer effects through induction of autophagy in HCC Hep3B cells.


Assuntos
Autofagia/efeitos dos fármacos , Berberina/análogos & derivados , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/farmacologia , Berberina/farmacologia , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/patologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima/efeitos dos fármacos
11.
Antioxidants (Basel) ; 9(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114221

RESUMO

Non-alcoholic fatty liver disease (NAFLD) causes liver dysfunction and is associated with obesity and type 2 diabetes. Chronic inflammation is associated not only with the development of NAFLD, but also with hepatic diseases, including steatohepatitis, cirrhosis, and hepatocellular carcinoma. Auranofin is a treatment for rheumatoid arthritis and has recently been reported to have potential effects against a variety of diseases, including inflammation, cancer, and viral infection. In this study, auranofin may be considered as a new treatment for the management of metabolic syndrome, as well as in the treatment of NAFLD through immunomodulation. To determine the effect of auranofin on NAFLD, C57BL/6 mice were randomly grouped, fed a regular diet or a high fat diet (HFD), and injected with normal saline or auranofin for 8 weeks. Auranofin significantly decreased the body weight, epididymal fat weight, serum aspartate aminotransferase (AST), and glucose, as well as the serum triglyceride, cholesterol, and low-density lipoprotein cholesterol levels as compared to the HFD group. We also observed that hepatic steatosis was increased in the HFD group and was suppressed by auranofin treatment. In addition, auranofin suppressed the expressions of interleukin (IL)-1ß, IL-18, caspase-1, and the NOD-like receptor family pyrin domain containing 3 (NLRP3) in the liver tissue. Furthermore, the expression of NADPH oxidase 4 and peroxisome proliferator-activated receptor γ (PPARγ), which are a major source of oxidative stress and a regulator of adipogenesis, respectively, were also decreased by auranofin. In addition, primary mouse hepatocytes were incubated with lipopolysaccharide (LPS) and palmitic acid (PA) to induce lipid accumulation and hepatic inflammation for an in vitro model. Auranofin could significantly inhibit LPS- and PA-induced inflammatory activity including nitric oxide and NLRP3 inflammasome-mediated cytokines. The results of this study demonstrate that auranofin treatment inhibits the characteristics of NAFLD through the inhibition of NLRP3 inflammasome. Therefore, auranofin may have potential as a candidate for improving NAFLD symptoms.

12.
Biomol Ther (Seoul) ; 28(5): 443-455, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32856616

RESUMO

The thioredoxin (Trx) system plays critical roles in regulating intracellular redox levels and defending organisms against oxidative stress. Recent studies indicated that Trx reductase (TrxR) was overexpressed in various types of human cancer cells indicating that the Trx-TrxR system may be a potential target for anti-cancer drug development. This study investigated the synergistic effect of auranofin, a TrxR-specific inhibitor, on sulforaphane-mediated apoptotic cell death using Hep3B cells. The results showed that sulforaphane significantly enhanced auranofin-induced apoptosis by inhibiting TrxR activity and cell proliferation compared to either single treatment. The synergistic effect of sulforaphane and auranofin on apoptosis was evidenced by an increased annexin-V-positive cells and Sub-G1 cells. The induction of apoptosis by the combined treatment caused the loss of mitochondrial membrane potential (ΔΨm) and upregulation of Bax. In addition, the proteolytic activities of caspases (-3, -8, and -9) and the degradation of poly (ADP-ribose) polymerase, a substrate protein of activated caspase-3, were also higher in the combined treatment. Moreover, combined treatment induced excessive generation of reactive oxygen species (ROS). However, treatment with N-acetyl-L-cysteine, a ROS scavenger, reduced combined treatment-induced ROS production and apoptosis. Thereby, these results deduce that ROS played a pivotal role in apoptosis induced by auranofin and sulforaphane. Furthermore, apoptosis induced by auranofin and sulforaphane was significantly increased through inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway. Taken together, the present study demonstrated that down-regulation of TrxR activity contributed to the synergistic effect of auranofin and sulforaphane on apoptosis through ROS production and inhibition of PI3K/Akt signaling pathway.

13.
Nutrients ; 12(6)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486100

RESUMO

Antimicrobial peptides (AMPs) are components of the innate immune system and form the first defense against pathogens for various organisms. In the present study, we assessed whether CSP32, a novel AMP oligomer of bacitracin isolated from a strain of Bacillus spp., regulates the polarization of murine macrophage-like RAW 264.7 cells. CSP32 stimulated phagocytosis while inducing the appearance of the typical M1 polarized macrophage phenotype; these M1 macrophages play a role in host defense against pathogens. Furthermore, our results showed that CSP32 enhanced the expression and production of pro-inflammatory mediators, such as cytokines and chemokines. In addition, the CSP32-stimulated inflammatory mediators were induced mainly by the mitogen-activated protein kinase/nuclear factor kappa B (MAPK/NF-κB) signaling pathway during M1 macrophage polarization. In particular, CSP32 markedly increased the numbers of Ca2+-positive macrophages while upregulating phospholipase C and activating protein kinase Cε. Furthermore, the inhibition of intracellular Ca2+ by BAPTA-AM, a Ca2+ chelator, significantly suppressed the CSP32-mediated phagocytosis, inflammatory mediator production, and NF-κB activation. In conclusion, our data suggested that CSP32-stimulated M1 macrophage polarization is dependent on the calcium signaling pathway and may result in enhanced immune capacities.


Assuntos
Bacitracina/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Polaridade Celular/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Fagocitose/efeitos dos fármacos , Animais , Bacillus/química , Bacitracina/isolamento & purificação , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/fisiologia , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Células RAW 264.7 , Transdução de Sinais , Fosfolipases Tipo C/metabolismo , Regulação para Cima/efeitos dos fármacos
14.
Asian Pac J Cancer Prev ; 21(5): 1275-1282, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32458633

RESUMO

BACKGROUND: Previous studies have reported that Hizikia fusiforme, an edible brown seaweed, has diverse health-promoting effects; however, evidence for its anti-cancer potential is still lacking. In this study, we examined the effect of ethanol extract of H. fusiforme (EHF) on the proliferation of B16F10 mouse melanoma cells. METHODS: Analyses of cell viability and apoptosis were performed to study the actions of EHF on B16F10 cells. Cellular reactive oxygen species (ROS) and mitochondrial membrane potential (ΔΨm) were measured using a flow cytometer. Western blot analysis was carried out to measure apoptosis and phosphoinositide 3-kinase (PI3K)/Akt signaling related proteins. RESULTS: EHF treatment significantly decreased B16F10 cell viability, which was associated with induction of apoptosis. EHF activated caspase-8 and caspase-9, which are involved in the initiation of extrinsic and intrinsic apoptosis pathways, respectively, and also increased caspase-3 activity, a typical effect caspase, subsequently leading to poly (ADP-ribose) polymerase cleavage. In addition, EHF destroyed the integrity of mitochondria and increased Bax/Bcl-2 ratio, which contributed to cytosolic release of cytochrome c. EHF further enhanced intracellular levels of ROS and the addition of N-acetyl cysteine (NAC), a ROS inhibitor, significantly diminished EHF-induced mitochondrial dysfunction and growth inhibition. Moreover, EHF inactivated the PI3K/Akt signaling pathway and LY294002, a PI3K/Akt inhibitor, increased the apoptosis-inducing effect of EHF. However, increased apoptosis and reduced cell viability by simultaneous treatment of EHF and LY294002 were significantly attenuated in the presence of NAC. CONCLUSION: These results indicate that EHF induces apoptosis through activation of extrinsic and intrinsic apoptotic pathways and ROS-dependent inactivation of PI3K/Akt signaling in B16F10 cells.
.


Assuntos
Melanoma Experimental/tratamento farmacológico , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Phaeophyceae/química , Fosfatidilinositol 3-Quinase/metabolismo , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose , Proliferação de Células , Etanol/química , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Células Tumorais Cultivadas
15.
Environ Pollut ; 262: 114301, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32155554

RESUMO

Although several studies have linked PM2.5 (particulate matter with a diameter less than 2.5 µm) to ocular surface diseases such as keratitis and conjunctivitis, very few studies have previously addressed its effect on the retina. Therefore, the aim of this study was to evaluate the effect of PM2.5 on epithelial-mesenchymal transition (EMT), a process involved in disorders of the retinal pigment epithelial (RPE) on APRE-19 cells. PM2.5 changed the phenotype of RPE cells from epithelial to fibroblast-like mesenchymal, and increased cell migration. Exposure to PM2.5 markedly increased the expression of mesenchymal markers, but reduced the levels of epithelial markers. Moreover, PM2.5 promoted the phosphorylation of MAPKs and the expression of transforming growth factor-ß (TGF-ß)-mediated nuclear transcriptional factors. However, these PM2.5-mediated changes were completely reversed by LY2109761, a small molecule inhibitor of the TGF-ß receptor type I/II kinases, and N-acetyl-L-cysteine (NAC), a reactive oxygen species (ROS) scavenger. Interestingly, NAC, but not LY2109761, effectively restored the PM2.5-induced mitochondrial defects, including increased ROS, decreased mitochondrial activity, and mitochondrial membrane potential disruption. Collectively, our findings indicate that the TGF-ß/Smad/ERK/p38 MAPK signaling pathway is activated downstream of cellular ROS during PM2.5-induced EMT. The present study provides the first evidence that EMT of RPE may be one of the mechanisms of PM2.5-induced retinal dysfunction.


Assuntos
Células Epiteliais , Transição Epitelial-Mesenquimal , Humanos , Espécies Reativas de Oxigênio , Pigmentos da Retina , Fator de Crescimento Transformador beta
16.
Biosci Trends ; 14(1): 23-34, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32092745

RESUMO

The roots of Angelica dahurica have long been used as a traditional medicine in Korea to treat various diseases such as toothache and cold. In this study, we investigated the effect of ethanol extract from the roots of this plant on metastatic melanoma, a highly aggressive skin cancer, in B16F10 melanoma cells and B16F10 cell inoculated-C57BL/6 mice. Our results showed that the ethanol extracts of Angelicae dahuricae Radix (EEAD) suppressed cell growth and induced apoptotic cell death in B16F10 cells. EEAD also activated the mitochondria-mediated intrinsic apoptosis pathway, with decreased mitochondrial membrane potential, and increased production of intracellular reactive oxygen species and ration of Bax/Bcl-2 expression. Furthermore, EEAD reduced the migration, invasion, and colony formation of B16F10 cells through the reduced expression and activity of matrix metalloproteinase (MMP)-2 and -9. In addition, in vivo results demonstrated that oral administration of EEAD inhibited lactate dehydrogenase activity, hepatotoxicity, and nephrotoxicity without weight loss in B16F10 cell inoculated-mice. Importantly, EEAD was able to markedly suppress lung hypertrophy, the incidence of B16F10 cells lung metastasis, and the expression of tumor necrosis factor-alpha in lung tissue. Taken together, our findings suggest that EEAD may be useful for managing metastasis and growth of malignant cancers, including melanoma.


Assuntos
Angelica/química , Melanoma Experimental/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Apoptose , Linhagem Celular Tumoral , Hipertrofia , L-Lactato Desidrogenase/antagonistas & inibidores , Pulmão/patologia , Neoplasias Pulmonares , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Metástase Neoplásica/prevenção & controle , Raízes de Plantas/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo
17.
Cancers (Basel) ; 11(10)2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31590241

RESUMO

Isorhamnetin is an O-methylated flavonol that is predominantly found in the fruits and leaves of various plants, which have been used for traditional herbal remedies. Although several previous studies have reported that this flavonol has diverse health-promoting effects, evidence is still lacking for the underlying molecular mechanism of its anti-cancer efficacy. In this study, we examined the anti-proliferative effect of isorhamnetin on human bladder cancer cells and found that isorhamnetin triggered the gap 2/ mitosis (G2/M) phase cell arrest and apoptosis. Our data showed that isorhamnetin decreased the expression of Wee1 and cyclin B1, but increased the expression of cyclin-dependent kinase (Cdk) inhibitor p21WAF1/CIP1, and increased p21 was bound to Cdk1. In addition, isorhamnetin-induced apoptosis was associated with the increased expression of the Fas/Fas ligand, reduced ratio of B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X protein (Bax) expression, cytosolic release of cytochrome c, and activation of caspases. Moreover, isorhamnetin inactivated the adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling pathway by diminishing the adenosine triphosphate (ATP) production due to impaired mitochondrial function. Furthermore, isorhamnetin stimulated production of intracellular reactive oxygen species (ROS); however, the interruption of ROS generation using a ROS scavenger led to an escape from isorhamnetin-mediated G2/M arrest and apoptosis. Collectively, this is the first report to show that isorhamnetin inhibited the proliferation of human bladder cancer cells by ROS-dependent arrest of the cell cycle at the G2/M phase and induction of apoptosis. Therefore, our results provide an important basis for the interpretation of the anti-cancer mechanism of isorhamnetin in bladder cancer cells and support the rationale for the need to evaluate more precise molecular mechanisms and in vivo anti-cancer properties.

18.
Phytother Res ; 33(12): 3228-3241, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31486124

RESUMO

The peel of Citrus unshiu Marcow. fruits (CU) has long been used as a traditional medicine that has therapeutic effects against pathogenic diseases, including asthma, vomiting, dyspepsia, blood circulation disorders, and various types of cancer. In this study, we investigated the effect of CU peel on metastatic melanoma, a highly aggressive skin cancer, in B16F10 melanoma cells, and in B16F10 cells inoculated-C57BL/6 mice. Our results show that ethanol extracts of CU (EECU) inhibited cell growth and increased the apoptotic cells in B16F10 cells. EECU also stimulated the induction of mitochondria-mediated intrinsic pathway, with reduced mitochondrial membrane potential and increased generation of intracellular reactive oxygen species. Furthermore, EECU suppressed the migration, invasion, and colony formation of B16F10 cells. In addition, the oral administration of EECU reduced serum lactate dehydrogenase activity without weight loss, hepatotoxicity, nor nephrotoxicity in B16F10 cell-inoculated mice. Moreover, EECU markedly suppressed lung hypertrophy, the number and expression of metastatic tumor nodules, and the expression of inflammatory tumor necrosis factor-alpha in lung tissue. In conclusion, our findings suggest that the inhibitory effect of EECU on the metastasis of melanoma indicates that it may be regarded as a potential therapeutic herbal drug for melanoma.


Assuntos
Citrus/química , Frutas/química , Melanoma Experimental/dietoterapia , Metástase Neoplásica/tratamento farmacológico , Animais , Apoptose , Camundongos , Camundongos Endogâmicos C57BL
19.
Antioxidants (Basel) ; 8(9)2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31540482

RESUMO

The present study investigated the immunomodulatory activity of reduced glutathione (GSH) by assessment of the macrophage polarization (MP)-mediated immune response in RAW 264.7 cells. Furthermore, we identified the signal pathway associated with immune regulation by GSH. The expressions of MP-associated cytokines and chemokines were assessed using cytokine array, nCounter Sprit platform, ELISA and immunoblotting. Phagocytosis activity and intracellular reactive oxygen species (ROS) generation were measured using fluorescence-activated cell sorter. As results of the cytokine array and nCounter gene array, GSH not only up-regulated pro-inflammatory cytokines, including interleukins and tumor necrosis factor-α, but also overexpressed neutrophil-attracting chemokines. Furthermore, GSH significantly stimulated the production of immune mediators, including nitric oxide and PGE2, as well as phagocytosis activity through nuclear factor kappa B activation. In addition, GSH significantly decreased LPS-induced ROS generation, which was associated with an activation of nuclear factor erythroid-derived 2-related factor 2 (Nrf2)/ heme oxygenease-1 (HO-1) signaling pathway. Our results suggest that GSH has potential ROS scavenging capacity via the induction of Nrf2-mediated HO-1, and immune-enhancing activity by regulation of M1-like macrophage polarization, indicating that GSH may be a useful strategy to increase the human defense system.

20.
Biosci Trends ; 13(4): 324-333, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31527329

RESUMO

Cordycepin, a derivative of nucleoside adenosine, is one of the active ingredients extracted from the fungi of genus Cordyceps, which have been used for traditional herbal remedies. In this study, we examined the effect of cordycepin on the proliferation and apoptosis of human bladder cancer T24 cells and its mechanism of action. Cordycepin treatment significantly reduced the cell survival rate of T24 cells in a concentration-dependent manner, which was associated with the induction of apoptosis. Cordycepin activated caspase-8 and -9, which are involved in the initiation of extrinsic and intrinsic apoptosis pathways, respectively, and also increased caspase-3 activity, a typical effect caspase, subsequently leading to poly (ADP-ribose) polymerase cleavage. Additionally, cordycepin increased the Bax/Bcl-2 ratio and truncation of Bid, and destroyed the integrity of mitochondria, which contributed to the cytosolic release of cytochrome c. Moreover, cordycepin effectively inactivated the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway, while LY294002, a PI3K/Akt inhibitor, increased the apoptosis-inducing effect of cordycepin. Cordycepin further enhanced the intracellular levels of reactive oxygen species (ROS), while the addition of N-acetyl cysteine (NAC), a ROS inhibitor, significantly diminished cordycepin-induced mitochondrial dysfunction and growth inhibition, and also blocked the inactivation of PI3K/Akt signaling pathway. Furthermore, the presence of NAC significantly attenuated the enhanced apoptotic cell death and reduction of cell viability by treatment with cordycepin and LY294002. Collectively, the data indicate that cordycepin induces apoptosis through the activation of extrinsic and intrinsic apoptosis pathways and the ROS-dependent inactivation of PI3K/Akt signaling in human bladder cancer T24 cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Desoxiadenosinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Acetilcisteína/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromonas/farmacologia , Desoxiadenosinas/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Humanos , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Neoplasias da Bexiga Urinária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA