Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 410: 124645, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33257124

RESUMO

The release of asbestos fibers in old buildings, during demolition, or remodeling is associated with severe public health risks to building occupants and workers. In Korea, asbestos was used in several building materials during the 20th century. Although the use of asbestos is currently banned, its widespread earlier use and the current government initiatives to revitalize dilapidated areas make it essential to accurately evaluate the location and status of asbestos-containing materials (ACMs). This study surveyed buildings in an area of deteriorated dwellings targeted for renewal and determined the status and distribution of ACMs in that area. Asbestos distribution maps were generated and asbestos characteristics were analyzed. In addition, the risk posed by the identified ACMs was assessed using four international methods (the Korean Ministry of Environment, US Environmental Protection Agency, American Society for Testing and Materials, and UK Health and Safety Executive methods), and the results were compared. Notable differences between the assessment results were identified and were found to reflect the specific characteristics of buildings in the study area. These findings suggest ACM risk assessments should be specifically tailored to the regions in which they are applied, thereby improving ACM management and promoting both worker and occupant health.


Assuntos
Amianto , Amianto/análise , Amianto/toxicidade , Materiais de Construção , Humanos , Saúde Pública , República da Coreia , Medição de Risco , Estados Unidos
2.
Waste Manag ; 64: 272-285, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28372852

RESUMO

The safe management and disposal of asbestos is a matter of considerable importance. A large number of studies have been undertaken to quantify the issue of waste management following a disaster. Nevertheless, there have been few (if any) studies concerning asbestos waste, covering the amount generated, the cost of disposal, and the degree of hazard incurred. Thus, the current study focuses on developing a program for the management of Asbestos Containing Building Materials (ACBMs), which form the source of asbestos waste in the event of a disaster. The study will also discuss a case study undertaken in a specific region in Korea in terms of: (1) the location of ACBM-containing buildings; (2) types and quantities of ACBMs; (3) the cost of ACBM disposal; (4) the amount of asbestos fiber present during normal times and during post-disaster periods; (5) the required order in which ACBM-containing buildings should be dismantled; and (6) additional greenhouse gases generated during ACBM removal. The case study will focus on a specific building, with an area of 35.34m2, and will analyze information concerning the abovementioned points. In addition, the case study will focus on a selected area (108 buildings) and the administrative district (21,063 buildings). The significance of the program can be established by the fact that it visibly transmits information concerning ACBM management. It is a highly promising program, with a widespread application for the safe management and optimal disposal of asbestos in terms of technology, policy, and methodology.


Assuntos
Amianto , Materiais de Construção , Desastres , Gerenciamento de Resíduos , República da Coreia
3.
Artigo em Inglês | MEDLINE | ID: mdl-27626433

RESUMO

When asbestos containing materials (ACM) must be removed from the building before demolition, additional greenhouse gas (GHG) emissions are generated. However, precedent studies have not considered the removal of ACM from the building. The present study aimed to develop a model for estimating GHG emissions created by the ACM removal processes, specifically the removal of asbestos cement slates (ACS). The second objective was to use the new model to predict the total GHG emission produced by ACM removal in the entire country of Korea. First, an input-equipment inventory was established for each step of the ACS removal process. Second, an energy consumption database for each equipment type was established. Third, the total GHG emission contributed by each step of the process was calculated. The GHG emissions generated from the 1,142,688 ACS-containing buildings in Korea was estimated to total 23,778 tonCO2eq to 132,141 tonCO2eq. This study was meaningful in that the emissions generated by ACS removal have not been studied before. Furthermore, the study deals with additional problems that can be triggered by the presence of asbestos in building materials. The method provided in this study is expected to contribute greatly to the calculation of GHG emissions caused by ACM worldwide.


Assuntos
Amianto/química , Pegada de Carbono , Materiais de Construção , Modelos Teóricos , Efeito Estufa , República da Coreia
4.
Sci Total Environ ; 542(Pt A): 1-11, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26513124

RESUMO

Asbestos has been used since ancient times, owing to its heat-resistant, rot-proof, and insulating qualities, and its usage rapidly increased after the industrial revolution. In Korea, all slates were previously manufactured in a mixture of about 90% cement and 10% chrysotile (white asbestos). This study used a Generalized Poisson regression (GPR) model after creating databases of the mortality from asbestos-related diseases and of the amount of asbestos used in Korea as a means to predict the future mortality of asbestos-related diseases and mesothelioma in Korea. Moreover, to predict the future mortality according to the effects of slate buildings, a comparative analysis based on the result of the GPR model was conducted after creating databases of the amount of asbestos used in Korea and of the amount of asbestos used in making slates. We predicted the mortality from asbestos-related diseases by year, from 2014 to 2036, according to the amount of asbestos used. As a result, it was predicted that a total of 1942 people (maximum, 3476) will die by 2036. Moreover, based on the comparative analysis according to the influence index, it was predicted that a maximum of 555 people will die from asbestos-related diseases by 2031 as a result of the effects of asbestos-containing slate buildings, and the mortality was predicted to peak in 2021, with 53 cases. Although mesothelioma and pulmonary asbestosis were considered as asbestos-related diseases, these are not the only two diseases caused by asbestos. However the results of this study are highly important and relevant, as, for the first time in Korea, the future mortality from asbestos-related diseases was predicted. These findings are expected to contribute greatly to the Korean government's policies related to the compensation for asbestos victims.


Assuntos
Amianto , Asbestose/mortalidade , Neoplasias Pulmonares/mortalidade , Mesotelioma/mortalidade , Exposição Ocupacional/estatística & dados numéricos , Asbestos Serpentinas , Humanos , Indústrias , República da Coreia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA