Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 242(2): 592-609, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402567

RESUMO

The plant hormone ethylene plays a critical role in fruit defense against Botrytis cinerea attack, but the underlying mechanisms remain poorly understood. Here, we showed that ethylene response factor SlERF.C1 acts as a key regulator to trigger the ethylene-mediated defense against B. cinerea in tomato fruits without compromising ripening. Knockout of SlERF.C1 increased fruit susceptibility to B. cinerea with no effect on ripening process, while overexpression enhanced resistance. RNA-Seq, transactivation assays, EMSA and ChIP-qPCR results indicated that SlERF.C1 activated the transcription of PR genes by binding to their promoters. Moreover, SlERF.C1 interacted with the mitogen-activated protein kinase SlMPK8 which allowed SlMPK8 to phosphorylate SlERF.C1 at the Ser174 residue and increases its transcriptional activity. Knocking out of SlMPK8 increased fruit susceptibility to B. cinerea, whereas overexpression enhanced resistance without affecting ripening. Furthermore, genetic crosses between SlMPK8-KO and SlERF.C1-OE lines reduced the resistance to B. cinerea attack in SlERF.C1-OE fruits. In addition, B. cinerea infection induced ethylene production which in turn triggered SlMPK8 transcription and enhanced the phosphorylation of SlERF.C1. Overall, our findings reveal the regulatory mechanism of the 'Ethylene-MPK8-ERF.C1-PR' module in resistance against B. cinerea and provide new insight into the manipulation of gray mold disease in fruits.


Assuntos
Frutas , Solanum lycopersicum , Frutas/metabolismo , Solanum lycopersicum/genética , Etilenos/metabolismo , Botrytis/fisiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas
2.
Nature ; 622(7981): 139-148, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37704724

RESUMO

Aphids transmit viruses and are destructive crop pests1. Plants that have been attacked by aphids release volatile compounds to elicit airborne defence (AD) in neighbouring plants2-5. However, the mechanism underlying AD is unclear. Here we reveal that methyl-salicylate (MeSA), salicylic acid-binding protein-2 (SABP2), the transcription factor NAC2 and salicylic acid-carboxylmethyltransferase-1 (SAMT1) form a signalling circuit to mediate AD against aphids and viruses. Airborne MeSA is perceived and converted into salicylic acid by SABP2 in neighbouring plants. Salicylic acid then causes a signal transduction cascade to activate the NAC2-SAMT1 module for MeSA biosynthesis to induce plant anti-aphid immunity and reduce virus transmission. To counteract this, some aphid-transmitted viruses encode helicase-containing proteins to suppress AD by interacting with NAC2 to subcellularly relocalize and destabilize NAC2. As a consequence, plants become less repellent to aphids, and more suitable for aphid survival, infestation and viral transmission. Our findings uncover the mechanistic basis of AD and an aphid-virus co-evolutionary mutualism, demonstrating AD as a potential bioinspired strategy to control aphids and viruses.


Assuntos
Ar , Afídeos , Doenças das Plantas , Plantas , Ácido Salicílico , Transdução de Sinais , Afídeos/fisiologia , Afídeos/virologia , Interações entre Hospedeiro e Microrganismos , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Plantas/parasitologia , Plantas/virologia , Ácido Salicílico/metabolismo , Simbiose , Nicotiana/imunologia , Nicotiana/metabolismo , Nicotiana/parasitologia , Nicotiana/virologia , Proteínas Virais/metabolismo , Animais
3.
J Hazard Mater ; 457: 131744, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37285789

RESUMO

High energy consumption is impedimental for eliminating refractory organics in wastewater by current technologies. Herein, we develop an efficient self-purification process for actual non-biodegradable dyeing wastewater at pilot scale, using N-doped graphene-like (CN) complexed Cu-Al2O3 supported Al2O3 ceramics (HCLL-S8-M) fixed-bed reactor without additional input. About 36% chemical oxygen demand removal was achieved within 20 min empty bed retention time and maintained stability for almost one year. The HCLL-S8-M structure feature and its interface on microbial community structure, functions, and metabolic pathways were analyzed by density-functional theory calculation, X-ray photoelectron spectroscopy, multiomics analysis of metagenome, macrotranscriptome and macroproteome. On the surface of HCLL-S8-M, a strong microelectronic field (MEF) was formed by the electron-rich/poor area due to Cu-π interaction from the complexation between phenolic hydroxy of CN and Cu species, driving the electrons of the adsorbed dye pollutants to the microorganisms through extracellular polymeric substance and the direct transfer of extracellular electrons, causing their degradation into CO2 and intermediates, which was degraded partly via intracellular metabolism. The lower energy feeding for the microbiome produced less adenosine triphosphate, resulting in little sludge throughout reaction. The MEF from electronic polarization is greatly potential to develop low-energy wastewater treatment technology.

4.
Plant Physiol ; 193(1): 708-720, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37073495

RESUMO

Autophagy plays an important role in plant antiviral defense. Several plant viruses are reported to encode viral suppressor of autophagy (VSA) to prevent autophagy for effective virus infection. However, whether and how other viruses, in particular DNA viruses, also encode VSAs to affect viral infection in plants is unknown. Here, we report that the C4 protein encoded by Cotton leaf curl Multan geminivirus (CLCuMuV) inhibits autophagy by binding to the autophagy negative regulator eukaryotic translation initiation factor 4A (eIF4A) to enhance the eIF4A-Autophagy-related protein 5 (ATG5) interaction. By contrast, the R54A or R54K mutation in C4 abolishes its capacity to interact with eIF4A, and neither C4R54A nor C4R54K can suppress autophagy. However, the R54 residue is not essential for C4 to interfere with transcriptional gene silencing or post-transcriptional gene silencing. Moreover, plants infected with mutated CLCuMuV-C4R54K develop less severe symptoms with decreased levels of viral DNA. These findings reveal a molecular mechanism underlying how the DNA virus CLCuMuV deploys a VSA to subdue host cellular antiviral autophagy defense and uphold viral infection in plants.


Assuntos
Begomovirus , Viroses , Nicotiana/genética , Begomovirus/genética , Proteínas/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Autofagia/genética , Antivirais/metabolismo , Doenças das Plantas
5.
New Phytol ; 236(4): 1358-1374, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35978547

RESUMO

Autophagy is an essential degradation pathway that assists eukaryote survival under multiple stress conditions. Autophagosomes engulfing cargoes accomplish degradation only when they have matured through fusing with lysosomes or vacuoles. However, the molecular machinery mediating autophagosome maturation in plants remains unknown. Using the combined approaches of mass spectrometry, biochemistry, reverse genetics and microscopy, we uncover that UVRAG, a subunit of the class III phosphatidylinositol 3-kinase complexes in Nicotiana benthamiana, plays an essential role in autophagsome maturation via ATG14-assisted recruitment to autophagosomes and by facilitating RAB7 activation. An interaction between N. benthamiana UVRAG and ATG14 was observed in vitro and in vivo, which strikingly differed from their mutually exclusive appearance in different PI3KC3 complexes in yeast and mammals. This interaction increased the localisation of UVRAG on autophagosomes and enabled the convergence of autophagic and late endosomal structures, where they contributed to fusions between these two types of organelles by recruiting the essential membrane fusion factors RAB7 GTPase and the homotypic fusion and protein sorting (HOPS) complex. In addition, we uncovered a joint contribution of ATG14 and UVRAG to geminiviral infection, beyond autophagy. Our study provides insights into the mechanisms of autophagosome maturation in plants and expands the understanding of organisations and roles of the PI3KC3 complexes.


Assuntos
Autofagossomos , Geminiviridae , Animais , Autofagossomos/metabolismo , Geminiviridae/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Autofagia/fisiologia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Mamíferos
6.
Biology (Basel) ; 11(5)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35625441

RESUMO

A hallmark of antiviral RNA interference (RNAi) is the production of viral small interfering RNA (vsiRNA). Profiling of vsiRNAs indicates that certain regions of viral RNA genome or transcribed viral RNA, dubbed vsiRNA hotspots, are more prone to RNAi-mediated cleavage for vsiRNA biogenesis. However, the biological relevance of hotspot vsiRNAs to the host innate defence against pathogens remains to be elucidated. Here, we show that direct targeting a hotspot by a synthetic vsiRNA confers host resistance to virus infection. Using Northern blotting and RNAseq, we obtained a profile of vsiRNAs of the African cassava mosaic virus (ACMV), a single-stranded DNA virus. Sense and anti-sense strands of small RNAs corresponding to a hotspot and a coldspot vsiRNA were synthesised. Co-inoculation of Nicotiana benthamiana with the double-stranded hotspot siRNA protected plants from ACMV infection, where viral DNA replication and accumulation of viral mRNA were undetectable. The sense or anti-sense strand of this hotspot vsiRNA, and the coldspot vsiRNA in both double-stranded and single-stranded formats possessed no activity in viral protection. We further demonstrated that the hotspot vsiRNA-mediated virus resistance had a threshold effect and required an active RDR6. These data show that hotspot vsiRNAs bear a functional significance on antiviral RNAi, suggesting that they may have the potential as an exogenous protection agent for controlling destructive viral diseases in plants.

7.
J Integr Plant Biol ; 64(5): 1059-1075, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35297168

RESUMO

Iron (Fe) homeostasis is critical for plant growth, development, and stress responses. Fe levels are tightly controlled by intricate regulatory networks in which transcription factors (TFs) play a central role. A series of basic helix-loop-helix (bHLH) TFs have been shown to contribute to Fe homeostasis, but the regulatory layers beyond bHLH TFs remain largely unclear. Here, we demonstrate that the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL) TF SlSPL-CNR negatively regulates Fe-deficiency responses in tomato (Solanum lycopersicum) roots. Fe deficiency rapidly repressed the expression of SlSPL-CNR, and Fe deficiency responses were intensified in two clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9-generated SlSPL-CNR knock-out lines compared to the wild-type. Comparative transcriptome analysis identified 47 Fe deficiency-responsive genes the expression of which is negatively regulated by SlSPL-CNR, one of which, SlbHLH101, helps regulate Fe uptake genes. SlSPL-CNR localizes the nucleus and interacts with the GTAC and BOX 4 (ATTAAT) motifs in the SlbHLH101 promoter to repress its expression. Inhibition of SlSPL-CNR expression in response to Fe deficiency was well correlated with the expression of the microRNA SlymiR157. SlymiR157-overexpressing tomato lines displayed enhanced Fe deficiency responses, as did SlSPL-CNR loss-of-function mutants. We propose that the SlymiR157-SlSPL-CNR module represents a novel pathway that acts upstream of SlbHLH101 to regulate Fe homeostasis in tomato roots.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Deficiências de Ferro , Solanum lycopersicum , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo
8.
EMBO J ; 41(2): e108713, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34888888

RESUMO

Vacuolar acidification is essential for vacuoles in diverse physiological functions. However, its role in plant defense, and whether and how pathogens affect vacuolar acidification to promote infection remain unknown. Here, we show that Barley stripe mosaic virus (BSMV) replicase γa, but not its mutant γaR569A , directly blocks acidification of vacuolar lumen and suppresses autophagic degradation to promote viral infection in plants. These were achieved via molecular interaction between γa and V-ATPase catalytic subunit B2 (VHA-B2), leading to disruption of the interaction between VHA-B2 and V-ATPase catalytic subunit E (VHA-E), which impairs the membrane localization of VHA-B2 and suppresses V-ATPase activity. Furthermore, a mutant virus BSMVR569A with the R569A point mutation possesses less viral pathogenicity. Interestingly, multiple viral infections block vacuolar acidification. These findings reveal that functional vacuolar acidification is required for plant antiviral defense and disruption of vacuolar acidification could be a general viral counter-defense strategy employed by multiple viruses.


Assuntos
Nicotiana/virologia , Vírus de Plantas/patogenicidade , Vacúolos/metabolismo , Proteínas do Complexo da Replicase Viral/metabolismo , Proteínas de Plantas/metabolismo , Vírus de Plantas/fisiologia , Ligação Proteica , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/virologia , Proteínas do Complexo da Replicase Viral/química , Replicação Viral
9.
Plant Physiol ; 187(4): 2865-2876, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34606612

RESUMO

Virus-induced gene silencing (VIGS) is a versatile and attractive approach for functional gene characterization in plants. Although several VIGS vectors for maize (Zea mays) have been previously developed, their utilities are limited due to low viral infection efficiency, insert instability, short maintenance of silencing, inadequate inoculation method, or abnormal requirement of growth temperature. Here, we established a Cucumber mosaic virus (CMV)-based VIGS system for efficient maize gene silencing that overcomes many limitations of VIGS currently available for maize. Using two distinct strains, CMV-ZMBJ and CMV-Fny, we generated a pseudorecombinant-chimeric (Pr) CMV. Pr CMV showed high infection efficacy but mild viral symptoms in maize. We then constructed Pr CMV-based vectors for VIGS, dubbed Pr CMV VIGS. Pr CMV VIGS is simply performed by mechanical inoculation of young maize leaves with saps of Pr CMV-infected Nicotiana benthamiana under normal growth conditions. Indeed, suppression of isopentenyl/dimethylallyl diphosphate synthase (ZmIspH) expression by Pr CMV VIGS resulted in non-inoculated leaf bleaching as early as 5 d post-inoculation (dpi) and exhibited constant and efficient systemic silencing over the whole maize growth period up to 105 dpi. Furthermore, utilizing a ligation-independent cloning (LIC) strategy, we developed a modified Pr CMV-LIC VIGS vector, allowing easy gene cloning for high-throughput silencing in maize. Thus, our Pr CMV VIGS system provides a much-improved toolbox to facilitate efficient and long-duration gene silencing for large-scale functional genomics in maize, and our pseudorecombination-chimera combination strategy provides an approach to construct efficient VIGS systems in plants.


Assuntos
Cucumovirus/fisiologia , Inativação Gênica , Genômica , Zea mays/virologia , Quimera , Nicotiana/fisiologia
10.
Cell Host Microbe ; 29(9): 1393-1406.e7, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34352216

RESUMO

RNA interference (RNAi) is an across-kingdom gene regulatory and defense mechanism. However, little is known about how organisms sense initial cues to mobilize RNAi. Here, we show that wounding to Nicotiana benthamiana cells during virus intrusion activates RNAi-related gene expression through calcium signaling. A rapid wound-induced elevation in calcium fluxes triggers calmodulin-dependent activation of calmodulin-binding transcription activator-3 (CAMTA3), which activates RNA-dependent RNA polymerase-6 and Bifunctional nuclease-2 (BN2) transcription. BN2 stabilizes mRNAs encoding key components of RNAi machinery, notably AGONAUTE1/2 and DICER-LIKE1, by degrading their cognate microRNAs. Consequently, multiple RNAi genes are primed for combating virus invasion. Calmodulin-, CAMTA3-, or BN2-knockdown/knockout plants show increased susceptibility to geminivirus, cucumovirus, and potyvirus. Notably, Geminivirus V2 protein can disrupt the calmodulin-CAMTA3 interaction to counteract RNAi defense. These findings link Ca2+ signaling to RNAi and reveal versatility of host antiviral defense and viral counter-defense.


Assuntos
Sinalização do Cálcio/genética , Calmodulina/metabolismo , Nicotiana/genética , Doenças das Plantas/prevenção & controle , Interferência de RNA/fisiologia , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Cálcio/metabolismo , Cucumovirus/patogenicidade , Endonucleases/metabolismo , Geminiviridae/patogenicidade , MicroRNAs/metabolismo , Doenças das Plantas/virologia , Plantas , Potyviridae/patogenicidade , RNA Interferente Pequeno/genética , RNA Polimerase Dependente de RNA/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Nicotiana/virologia , Fatores de Transcrição/metabolismo
11.
Methods Mol Biol ; 2166: 181-194, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32710409

RESUMO

Mobility assays coupled with RNA profiling have revealed the presence of hundreds of full-length non-cell-autonomous messenger RNAs that move through the whole plant via the phloem cell system. Monitoring the movement of these RNA signals can be difficult and time consuming. Here we describe a simple, virus-based system for surveying RNA movement by replacing specific sequences within the viral RNA genome of potato virus X (PVX) that are critical for movement with other sequences that facilitate movement. PVX is a RNA virus dependent on three small proteins that facilitate cell-to-cell transport and a coat protein (CP) required for long-distance spread of PVX. Deletion of the CP blocks movement, whereas replacing the CP with phloem-mobile RNA sequences reinstates mobility. Two experimental models validating this assay system are discussed. One involves the movement of the flowering locus T RNA that regulates floral induction and the second involves movement of StBEL5, a long-distance RNA signal that regulates tuber formation in potato.


Assuntos
Clonagem Molecular/métodos , Floema/genética , Potexvirus/genética , RNA Mensageiro/genética , RNA de Plantas/genética , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Transporte Biológico/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Vetores Genéticos , Técnicas In Vitro , Floema/metabolismo , Vírus de RNA/genética , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Transcrição Viral/genética
12.
PLoS Pathog ; 16(4): e1008475, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32339200

RESUMO

The nucleotide-binding, leucine-rich repeat-containing (NLR) class of immune receptors of plants and animals recognize pathogen-encoded proteins and trigger host defenses. Although animal NLRs form oligomers upon pathogen recognition to activate downstream signaling, the mechanisms of plant NLR activation remain largely elusive. Tm-22 is a plasma membrane (PM)-localized coiled coil (CC)-type NLR and confers resistance to Tobacco mosaic virus (TMV) by recognizing its viral movement protein (MP). In this study, we found that Tm-22 self-associates upon recognition of MP. The CC domain of Tm-22 is the signaling domain and its function requires PM localization and self-association. The nucleotide-binding (NB-ARC) domain is important for Tm-22 self-interaction and regulates activation of the CC domain through its nucleotide-binding and self-association. (d)ATP binding may alter the NB-ARC conformation to release its suppression of Tm-22 CC domain-mediated cell death. Our findings provide the first example of signaling domain for PM-localized NLR and insight into PM-localized NLR activation.


Assuntos
Proteínas NLR/metabolismo , Nicotiana/metabolismo , Nicotiana/virologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Receptores Imunológicos/metabolismo , Membrana Celular/metabolismo , Resistência à Doença , Proteínas NLR/imunologia , Doenças das Plantas/virologia , Imunidade Vegetal , Proteínas de Plantas/imunologia , Ligação Proteica , Domínios Proteicos , Receptores Imunológicos/imunologia , Transdução de Sinais , Nicotiana/imunologia , Vírus do Mosaico do Tabaco/metabolismo , Vírus do Mosaico do Tabaco/patogenicidade
13.
J Exp Bot ; 71(10): 2995-3011, 2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-32016417

RESUMO

SlSPL-CNR, an SBP-box transcription factor (TF) gene residing at the epimutant Colourless non-ripening (Cnr) locus, is involved in tomato ripening. This epimutant provides a unique model to investigate the (epi)genetic basis of fruit ripening. Here we report that SlSPL-CNR is a nucleus-localized protein with a distinct monopartite nuclear localization signal (NLS). It consists of four consecutive residues ' 30KRKR33' at the N-terminus of the protein. Mutation of the NLS abolishes SlSPL-CNR's ability to localize in the nucleus. SlSPL-CNR comprises two zinc-finger motifs (ZFMs) within the C-terminal SBP-box domain. Both ZFMs contribute to zinc-binding activity. SlSPL-CNR can induce cell death in tomato and tobacco, dependent on its nuclear localization. However, the two ZFMs have differential impacts on SlSPL-CNR's induction of severe necrosis or mild necrotic ringspot. NLS and ZFM mutants cannot complement Cnr fruits to ripen. SlSPL-CNR interacts with SlSnRK1. Virus-induced SlSnRK1 silencing leads to reduction in expression of ripening-related genes and inhibits ripening in tomato. We conclude that SlSPL-CNR is a multifunctional protein that consists of a distinct monopartite NLS, binds to zinc, and interacts with SlSnRK1 to affect cell death and tomato fruit ripening.


Assuntos
Solanum lycopersicum , Morte Celular , Etilenos , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Plant Cell ; 32(4): 1124-1135, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32051213

RESUMO

Autophagy plays an important role in plant-pathogen interactions. Several pathogens including viruses induce autophagy in plants, but the underpinning mechanism remains largely unclear. Furthermore, in virus-plant interactions, viral factor(s) that induce autophagy have yet to be identified. Here, we report that the ßC1 protein of Cotton leaf curl Multan betasatellite (CLCuMuB) interacts with cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC), a negative autophagic regulator, to induce autophagy in Nicotiana benthamiana CLCuMuB ßC1 bound to GAPCs and disrupted the interaction between GAPCs and autophagy-related protein 3 (ATG3). A mutant ßC1 protein (ßC13A) in which I45, Y48, and I53 were all substituted with Ala (A), had a dramatically reduced binding capacity with GAPCs, failed to disrupt the GAPCs-ATG3 interactions and failed to induce autophagy. Furthermore, mutant virus carrying ßC13A showed increased symptoms and viral DNA accumulation associated with decreased autophagy in plants. These results suggest that CLCuMuB ßC1 activates autophagy by disrupting GAPCs-ATG3 interactions.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Begomovirus/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Nicotiana/metabolismo , Nicotiana/virologia , Proteínas de Plantas/metabolismo , Proteínas Virais/metabolismo , Ligação Proteica , Nicotiana/ultraestrutura , Vacúolos/metabolismo , Vacúolos/ultraestrutura
15.
Funct Integr Genomics ; 20(4): 471-477, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31848794

RESUMO

RNA-guided CRISPR/Cas9 technology has been developed for gene/genome editing (GE) in organisms across kingdoms. However, in planta delivery of the two core GE components, Cas9 and small guide RNA (sgRNA), often involves time-consuming and labor-intensive production of transgenic plants. Here we show that Foxtail mosaic virus, a monocot- and dicot-infecting potexvirus, can simultaneously express Cas9, sgRNA, and an RNAi suppressor to efficiently induce GE in Nicotiana benthamiana through a transgenic plant-free manner.


Assuntos
Edição de Genes/métodos , Nicotiana/genética , Potexvirus/genética , RNA Interferente Pequeno/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , RNA Interferente Pequeno/metabolismo
16.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30626668

RESUMO

In plants, RNA-directed DNA methylation (RdDM)-mediated transcriptional gene silencing (TGS) is a natural antiviral defense against geminiviruses. Several geminiviral proteins have been shown to target the enzymes related to the methyl cycle or histone modification; however, it remains largely unknown whether and by which mechanism geminiviruses directly inhibit RdDM-mediated TGS. In this study, we showed that Cotton leaf curl Multan virus (CLCuMuV) V2 directly interacts with Nicotiana benthamiana AGO4 (NbAGO4) and that the L76S mutation in V2 (V2L76S) abolishes such interaction. We further showed that V2, but not V2L76S, can suppresses RdDM and TGS. Silencing of NbAGO4 inhibits TGS, reduces the viral methylation level, and enhances CLCuMuV DNA accumulation. In contrast, the V2L76S substitution mutant attenuates CLCuMuV infection and enhances the viral methylation level. These findings reveal that CLCuMuV V2 contributes to viral infection by interaction with NbAGO4 to suppress RdDM-mediated TGS in plants.IMPORTANCE In plants, the RNA-directed DNA methylation (RdDM) pathway is a natural antiviral defense mechanism against geminiviruses. However, how geminiviruses counter RdDM-mediated defense is largely unknown. Our findings reveal that Cotton leaf curl Multan virus V2 contributes to viral infection by interaction with NbAGO4 to suppress RNA-directed DNA methylation-mediated transcriptional gene silencing in plants. Our work provides the first evidence that a geminiviral protein is able to directly target core RdDM components to counter RdDM-mediated TGS antiviral defense in plants, which extends our current understanding of viral counters to host antiviral defense.


Assuntos
Geminiviridae/genética , Inativação Gênica/fisiologia , Transcrição Gênica/genética , Proteínas Virais/genética , Begomovirus/genética , Metilação de DNA/genética , DNA Viral/genética , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/virologia , Nicotiana/virologia
17.
Plant Sci ; 278: 113-117, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30471724

RESUMO

Non-cell autonomous RNA silencing can spread from cell to cell and over long-distances in animals and plants. This process is genetically determined and requires mobile RNA signals. Genetic requirement and molecular nature of the mobile signals for non-cell-autonomous RNA silencing were intensively investigated in past few decades. No consensus dogma for mobile silencing can be reached in plants, yet published data are sometimes inconsistent and controversial. Thus, the genetic requirements and molecular signals involved in plant mobile silencing are still poorly understood. This article revisits our present understanding of intercellular and systemic non-cell autonomous RNA silencing, and summarises current debates on RNA signals for mobile silencing. In particular, we discuss new evidence on siRNA mobility, a DCL2-dependent genetic network for mobile silencing and its potential biological relevance as well as 22 nt siRNA being a mobile signal for non-cell-autonomous silencing in both Arabidopsis and Nicotiana benthamiana. This sets up a new trend in unravelling genetic components and small RNA signal molecules for mobile silencing in (across) plants and other organisms of different kingdoms. Finally we raise several outstanding questions that need to be addressed in future plant silencing research.


Assuntos
Modelos Genéticos , Plantas/genética , Interferência de RNA , Comunicação Celular
18.
PLoS Pathog ; 14(8): e1007282, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30157283

RESUMO

Gene silencing is a natural antiviral defense mechanism in plants. For effective infection, plant viruses encode viral silencing suppressors to counter this plant antiviral response. The geminivirus-encoded C4 protein has been identified as a gene silencing suppressor, but the underlying mechanism of action has not been characterized. Here, we report that Cotton Leaf Curl Multan virus (CLCuMuV) C4 protein interacts with S-adenosyl methionine synthetase (SAMS), a core enzyme in the methyl cycle, and inhibits SAMS enzymatic activity. By contrast, an R13A mutation in C4 abolished its capacity to interact with SAMS and to suppress SAMS enzymatic activity. Overexpression of wild-type C4, but not mutant C4R13A, suppresses both transcriptional gene silencing (TGS) and post-transcriptional gene silencing (PTGS). Plants infected with CLCuMuV carrying C4R13A show decreased levels of symptoms and viral DNA accumulation associated with enhanced viral DNA methylation. Furthermore, silencing of NbSAMS2 reduces both TGS and PTGS, but enhanced plant susceptibility to two geminiviruses CLCuMuV and Tomato yellow leaf curl China virus. These data suggest that CLCuMuV C4 suppresses both TGS and PTGS by inhibiting SAMS activity to enhance CLCuMuV infection in plants.


Assuntos
Begomovirus/patogenicidade , Inativação Gênica , Metionina Adenosiltransferase/metabolismo , Interferência de RNA , Proteínas Virais/metabolismo , Begomovirus/metabolismo , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Metionina Adenosiltransferase/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Nicotiana/genética , Nicotiana/metabolismo , Transcrição Gênica , Proteínas Virais/fisiologia
19.
Plant Physiol ; 176(4): 2700-2719, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29439213

RESUMO

Non-cell autonomous RNA silencing can spread from cell to cell and over long distances in animals and plants. However, the genetic requirements and signals involved in plant mobile gene silencing are poorly understood. Here, we identified a DICER-LIKE2 (DCL2)-dependent mechanism for systemic spread of posttranscriptional RNA silencing, also known as posttranscriptional gene silencing (PTGS), in Nicotiana benthamiana Using a suite of transgenic DCL RNAi lines coupled with a GFP reporter, we demonstrated that N. benthamiana DCL1, DCL2, DCL3, and DCL4 are required to produce microRNAs and 22, 24, and 21nt small interfering RNAs (siRNAs), respectively. All investigated siRNAs produced in local incipient cells were present at low levels in distal tissues. Inhibition of DCL2 expression reduced the spread of gene silencing, while suppression of DCL3 or DCL4 expression enhanced systemic PTGS. In contrast to DCL4 RNAi lines, DCL2-DCL4 double-RNAi lines developed systemic PTGS similar to that observed in DCL2 RNAi. We further showed that the 21 or 24 nt local siRNAs produced by DCL4 or DCL3 were not involved in long-distance gene silencing. Grafting experiments demonstrated that DCL2 was required in the scion to respond to the signal, but not in the rootstock to produce/send the signal. These results suggest a coordinated DCL genetic pathway in which DCL2 plays an essential role in systemic PTGS in N. benthamiana, while both DCL4 and DCL3 attenuate systemic PTGS. We discuss the potential role of 21, 22, and 24 nt siRNAs in systemic PTGS.


Assuntos
Redes Reguladoras de Genes/genética , Plantas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Plantas Geneticamente Modificadas , Transdução de Sinais/genética , Nicotiana/genética , Nicotiana/metabolismo
20.
Plant Physiol ; 174(2): 875-885, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28400493

RESUMO

Virus-induced flowering (VIF) uses virus vectors to express Flowering Locus T (FT) to induce flowering in plants. This approach has recently attracted wide interest for its practical applications in accelerating breeding in crops and woody fruit trees. However, the insight into VIF and its potential as a powerful tool for dissecting florigenic proteins remained to be elucidated. Here, we describe the mechanism and further applications of Potato virus X (PVX)-based VIF in the short-day Nicotiana tabacum cultivar Maryland Mammoth. Ectopic delivery of Arabidopsis (Arabidopsis thaliana) AtFT by PVX/AtFT did not induce the expression of the endogenous FT ortholog NtFT4; however, it was sufficient to trigger flowering in Maryland Mammoth plants grown under noninductive long-day conditions. Infected tobacco plants developed no systemic symptoms, and the PVX-based VIF did not cause transgenerational flowering. We showed that the PVX-based VIF is a much more rapid method to examine the impacts of single amino acid mutations on AtFT for floral induction than making individual transgenic Arabidopsis lines for each mutation. We also used the PVX-based VIF to demonstrate that adding a His- or FLAG-tag to the N or C terminus of AtFT could affect its florigenic activity and that this system can be applied to assay the function of FT genes from heterologous species, including tomato (Solanum lycopersicum) SFT and rice (Oryza sativa) Hd3a Thus, the PVX-based VIF represents a simple and efficient system to identify individual amino acids that are essential for FT-mediated floral induction and to test the ability of mono- and dicotyledonous FT genes and FT fusion proteins to induce flowering.


Assuntos
Proteínas de Arabidopsis/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Nicotiana/virologia , Potexvirus/genética , Substituição de Aminoácidos , Flores/virologia , Solanum lycopersicum/genética , Solanum lycopersicum/virologia , Oryza/genética , Oryza/virologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA