Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(1): e0280507, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36706086

RESUMO

Human epidermal growth factor receptor 2-positive (HER2+) breast cancer is an aggressive subtype of this disease. Targeted treatment has improved outcome, but there is still a need for new therapeutic strategies as some patients respond poorly to treatment. Our aim was to identify compounds that substantially affect viability in HER2+ breast cancer cells in response to combinatorial treatment. We performed a high-throughput drug screen of 278 compounds in combination with trastuzumab and lapatinib using two HER2+ breast cancer cell lines (KPL4 and SUM190PT). The most promising drugs were validated in vitro and in vivo, and downstream molecular changes of the treatments were analyzed. The screen revealed multiple drugs that could be used in combination with lapatinib and/or trastuzumab. The Src-inhibitor dasatinib showed the largest combinatorial effect together with lapatinib in the KPL4 cell line compared to treatment with dasatinib alone (p < 0.01). In vivo, only lapatinib significantly reduced tumor growth (p < 0.05), whereas dasatinib alone, or in combination with lapatinib, did not show significant effects. Protein analyses of the treated xenografts showed significant alterations in protein levels compared to untreated controls, suggesting that all drugs reached the tumor and exerted a measurable effect. In silico analyses suggested activation of apoptosis and reduced activity of survival pathways by all treatments, but the opposite pattern was observed for the combinatorial treatment compared to lapatinib alone.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Lapatinib/farmacologia , Lapatinib/uso terapêutico , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Receptor ErbB-2/metabolismo , Anticorpos Monoclonais Humanizados/uso terapêutico , Linhagem Celular Tumoral , Trastuzumab/uso terapêutico
2.
Sci Rep ; 11(1): 10893, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035375

RESUMO

HER2-positive (HER2 +) breast cancer patients that do not respond to targeted treatment have a poor prognosis. The effects of targeted treatment on endogenous microRNA (miRNA) expression levels are unclear. We report that responsive HER2 + breast cancer cell lines had a higher number of miRNAs with altered expression after treatment with trastuzumab and lapatinib compared to poorly responsive cell lines. To evaluate whether miRNAs can sensitize HER2 + cells to treatment, we performed a high-throughput screen of 1626 miRNA mimics and inhibitors in combination with trastuzumab and lapatinib in HER2 + breast cancer cells. We identified eight miRNA mimics sensitizing cells to targeted treatment, miR-101-5p, mir-518a-5p, miR-19b-2-5p, miR-1237-3p, miR-29a-3p, miR-29c-3p, miR-106a-5p, and miR-744-3p. A higher expression of miR-101-5p predicted better prognosis in patients with HER2 + breast cancer (OS: p = 0.039; BCSS: p = 0.012), supporting the tumor-suppressing role of this miRNA. In conclusion, we have identified miRNAs that sensitize HER2 + breast cancer cells to targeted therapy. This indicates the potential of combining targeted drugs with miRNAs to improve current treatments for HER2 + breast cancers.


Assuntos
Neoplasias da Mama/genética , Perfilação da Expressão Gênica/métodos , Lapatinib/farmacologia , MicroRNAs/genética , Trastuzumab/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Prognóstico , Análise de Sobrevida , Regulação para Cima
3.
Ann Am Thorac Soc ; 15(Suppl 2): S91-S97, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29676641

RESUMO

An immense variety of different types of engineered nanomaterials are currently being developed and increasingly applied to consumer products. Importantly, engineered nanomaterials may pose unexplored adverse health effects because of their small size. Particularly in occupational settings, the dustiness of certain engineered nanomaterials involves risk of inhalation and influences on lung function. These facts call for quick and cost-effective safety testing practices, such as that obtained through multiparametric high-throughput screening using cultured human lung cells. The predictive value of such in vitro-based testing depends partly on the effectiveness of coverage of the mechanisms underlying toxicity effects. The concept of adverse outcome pathways covers the array of causative effects starting from a molecular initiating event via cellular-, organ-, individual-, and population-level effects. Screening for adverse outcome pathway-related effects that drive the eventual toxic outcome provides a good basis for developing predictive testing methods and data-driven integrated testing strategies for hazard and risk assessment. Temporal and inherited genomic changes are likely to drive many adverse responses to engineered nanomaterials, such as multiwalled carbon nanotubes, of which one specific form has recently been evaluated as possibly carcinogenic. Here, we briefly describe current state-of-the-art strategies for analyzing and understanding genomic influences of engineered nanomaterial exposure, including the selected focus on lung disease, and strategies for using mechanistic knowledge to predict and prevent adverse outcome.


Assuntos
Pneumopatias/induzido quimicamente , Pneumopatias/genética , Pulmão/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Toxicogenética , Biologia Computacional , Genômica , Humanos , Pulmão/metabolismo , Pulmão/patologia , Nanotecnologia , Medição de Risco , Transcrição Gênica/efeitos dos fármacos
4.
Artigo em Inglês | MEDLINE | ID: mdl-28356768

RESUMO

BACKGROUND: Approximately 15%-20% of all diagnosed breast cancers are characterized by amplified and overexpressed HER2 (= ErbB2). These breast cancers are aggressive and have a poor prognosis. Although improvements in treatment have been achieved after the introduction of trastuzumab and lapatinib, many patients do not benefit from these drugs. Therefore, in-depth understanding of the mechanisms behind the treatment responses is essential to find alternative therapeutic strategies. MATERIALS AND METHODS: Thirteen HER2 positive breast cancer cell lines were screened with 22 commercially available compounds, mainly targeting proteins in the ErbB2-signaling pathway, and molecular mechanisms related to treatment sensitivity were sought. Cell viability was measured, and treatment responses between the cell lines were compared. To search for response predictors and genomic and transcriptomic profiling, PIK3CA mutations and PTEN status were explored and molecular features associated with drug sensitivity sought. RESULTS: The cell lines were divided into three groups according to the growth-retarding effect induced by trastuzumab and lapatinib. Interestingly, two cell lines insensitive to trastuzumab (KPL4 and SUM190PT) showed sensitivity to an Akt1/2 kinase inhibitor. These cell lines had mutation in PIK3CA and loss of PTEN, suggesting an activated and druggable Akt-signaling pathway. Expression levels of five genes (CDC42, MAPK8, PLCG1, PTK6, and PAK6) were suggested as predictors for the Akt1/2 kinase-inhibitor response. CONCLUSION: Targeting the Akt-signaling pathway shows promise in cell lines that do not respond to trastuzumab. In addition, our results indicate that several molecular features determine the growth-retarding effects induced by the drugs, suggesting that parameters other than HER2 amplification/expression should be included as markers for therapy decisions.

5.
N Biotechnol ; 33(3): 399-406, 2016 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-26902670

RESUMO

Marine organisms constitute approximately one-half of the total global biodiversity, being rich reservoirs of structurally diverse biofunctional components. The potential of cyanobacteria, micro- and macroalgae as sources of antimicrobial, antitumoral, anti-inflammatory, and anticoagulant compounds has been reported extensively. Nonetheless, biological activities of marine fauna and flora of the Aegean Sea have remained poorly studied when in comparison to other areas of the Mediterranean Sea. In this study, we screened the antimicrobial, antifouling, anti-inflammatory and anticancer potential of in total 98 specimens collected from the Aegean Sea. Ethanol extract of diatom Amphora cf capitellata showed the most promising antimicrobial results against Candida albicans while the extract of diatom Nitzschia communis showed effective results against Gram-positive bacterium, S. aureus. Extracts from the red alga Laurencia papillosa and from three Cystoseira species exhibited selective antiproliferative activity against cancer cell lines and an extract from the brown alga Dilophus fasciola showed the highest anti-inflammatory activity as measured in primary microglial and astrocyte cell cultures as well as by the reduction of proinflammatory cytokines. In summary, our study demonstrates that the Aegean Sea is a rich source of species that possess interesting potential for developing industrial applications.


Assuntos
Biotecnologia/métodos , Cianobactérias/metabolismo , Microalgas/metabolismo , Oceanos e Mares , Alga Marinha/metabolismo , Animais , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Incrustação Biológica , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Ratos Wistar
6.
Oncotarget ; 7(6): 6891-901, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26771843

RESUMO

B7 family proteins are important immune response regulators, and can mediate oncogenic signaling and cancer development. We have used human triple-negative breast cancer cell lines with different expression levels of B7-H3 to evaluate its effects on the sensitivity to 22 different anticancer compounds in a drug screen. API-2 (triciribidine) and everolimus (RAD-001), two inhibitors that target the PI3K/AKT/mTOR pathway, showed enhanced inhibition of cell viability and proliferation in B7-H3 knockdown tumor cells compared to their B7-H3 expressing counterparts. Similar inhibition was seen in control cells treated with an anti-B7-H3 monoclonal antibody. In B7-H3 overexpressing cells, the effects of the two drugs were reduced, supported also by in vivo experiments in which B7-H3 overexpressing xenografts were less sensitive to everolimus than control tumors. In API-2 and everolimus-treated B7-H3 overexpressing cells, phospho-mTOR levels were decreased. However, phosphorylation of p70S6K was differentially regulated in B7-H3 cells treated with API-2 or everolimus, suggesting a different B7-H3-mediated mechanism downstream of mTOR. Both API-2 and everolimus decreased the glycolysis of the cells, whereas knockdown of B7-H3 decreased and B7-H3 overexpression increased the glycolytic capacity. In conclusion, we have unveiled a previously unknown relationship between B7-H3 expression and glycolytic capacity in tumor cells, and found that B7-H3 confers resistance to API-2 and everolimus. The results provide novel insights into the function of B7-H3 in cancer, and suggest that targeting of B7-H3 may be a novel alternative to improve current anticancer therapies.


Assuntos
Antígenos B7/biossíntese , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Antígenos B7/antagonistas & inibidores , Antígenos B7/metabolismo , Linhagem Celular Tumoral , Feminino , Glicólise , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosforilação , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/genética
7.
Altern Lab Anim ; 43(5): 325-32, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26551289

RESUMO

This paper outlines the work for which Roland Grafström and Pekka Kohonen were awarded the 2014 Lush Science Prize. The research activities of the Grafström laboratory have, for many years, covered cancer biology studies, as well as the development and application of toxicity-predictive in vitro models to determine chemical safety. Through the integration of in silico analyses of diverse types of genomics data (transcriptomic and proteomic), their efforts have proved to fit well into the recently-developed Adverse Outcome Pathway paradigm. Genomics analysis within state-of-the-art cancer biology research and Toxicology in the 21st Century concepts share many technological tools. A key category within the Three Rs paradigm is the Replacement of animals in toxicity testing with alternative methods, such as bioinformatics-driven analyses of data obtained from human cell cultures exposed to diverse toxicants. This work was recently expanded within the pan-European SEURAT-1 project (Safety Evaluation Ultimately Replacing Animal Testing), to replace repeat-dose toxicity testing with data-rich analyses of sophisticated cell culture models. The aims and objectives of the SEURAT project have been to guide the application, analysis, interpretation and storage of 'omics' technology-derived data within the service-oriented sub-project, ToxBank. Particularly addressing the Lush Science Prize focus on the relevance of toxicity pathways, a 'data warehouse' that is under continuous expansion, coupled with the development of novel data storage and management methods for toxicology, serve to address data integration across multiple 'omics' technologies. The prize winners' guiding principles and concepts for modern knowledge management of toxicological data are summarised. The translation of basic discovery results ranged from chemical-testing and material-testing data, to information relevant to human health and environmental safety.


Assuntos
Alternativas aos Testes com Animais , Biologia Computacional , Humanos , Medição de Risco , Toxicogenética
8.
Basic Clin Pharmacol Toxicol ; 115(1): 50-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24779563

RESUMO

Toxicological research faces the challenge of integrating knowledge from diverse fields and novel technological developments generally in the biological and medical sciences. We discuss herein the fact that the multiple facets of cancer research, including discovery related to mechanisms, treatment and diagnosis, overlap many up and coming interest areas in toxicology, including the need for improved methods and analysis tools. Common to both disciplines, in vitro and in silico methods serve as alternative investigation routes to animal studies. Knowledge on cancer development helps in understanding the relevance of chemical toxicity studies in cell models, and many bioinformatics-based cancer biomarker discovery tools are also applicable to computational toxicology. Robotics-aided, cell-based, high-throughput screening, microscale immunostaining techniques and gene expression profiling analyses are common tools in cancer research, and when sequentially combined, form a tiered approach to structured safety evaluation of thousands of environmental agents, novel chemicals or engineered nanomaterials. Comprehensive tumour data collections in databases have been translated into clinically useful data, and this concept serves as template for computer-driven evaluation of toxicity data into meaningful results. Future 'cancer research-inspired knowledge management' of toxicological data will aid the translation of basic discovery results and chemicals- and materials-testing data to information relevant to human health and environmental safety.


Assuntos
Neoplasias/diagnóstico , Testes de Toxicidade/métodos , Animais , Antibióticos Antineoplásicos/toxicidade , Biologia Computacional/métodos , Bases de Dados Factuais , Doxorrubicina/toxicidade , Perfilação da Expressão Gênica , Humanos , Neoplasias/induzido quimicamente , Neoplasias/genética
9.
Genom Data ; 2: 249-53, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26484103

RESUMO

A large number of breast cancers are characterized by amplification and overexpression of the chromosome segment surrounding the HER2 (ERBB2) oncogene. As the HER2 amplicon at 17q12 contains multiple genes, we have systematically explored the role of the HER2 co-amplified genes in breast cancer cell growth and their relation to trastuzumab resistance. We integrated array comparative genomic hybridization (aCGH) data of the HER2 amplicon from 71 HER2 positive breast tumors and 10 cell lines with systematic functional RNA interference analysis of 23 core amplicon genes with several phenotypic endpoints in a panel of trastuzumab responding and non-responding HER2 positive breast cancer cells. In this Data in Brief we give a detailed description of the experimental procedures and the data analysis methods used in the study (1).

10.
PLoS One ; 8(10): e77232, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24194875

RESUMO

The traditional method for studying cancer in vitro is to grow immortalized cancer cells in two-dimensional monolayers on plastic. However, many cellular features are impaired in these artificial conditions, and large changes in gene expression compared to tumors have been reported. Three-dimensional cell culture models have become increasingly popular and are suggested to be better models than two-dimensional monolayers due to improved cell-to-cell contact and structures that resemble in vivo architecture. The aim of this study was to develop a simple high-throughput three-dimensional drug screening method and to compare drug responses in JIMT1 breast cancer cells when grown in two dimensions, in poly(2-hydroxyethyl methacrylate) induced anchorage-independent three-dimensional models, and in Matrigel three-dimensional cell culture models. We screened 102 compounds with multiple concentrations and biological replicates for their effects on cell proliferation. The cells were either treated immediately upon plating, or they were allowed to grow in three-dimensional cultures for 4 days before the drug treatment. Large variations in drug responses were observed between the models indicating that comparisons of culture model-influenced drug sensitivities cannot be made based on the effects of a single drug. However, we show with the 63 most prominent drugs that, in general, JIMT1 cells grown on Matrigel were significantly more sensitive to drugs than cells grown in two-dimensional cultures, while the responses of cells grown in poly(2-hydroxyethyl methacrylate) resembled those of the two-dimensional cultures. Furthermore, comparing the gene expression profiles of the cell culture models to xenograft tumors indicated that cells cultured in Matrigel and as xenografts most closely resembled each other. In this study, we also suggest that three-dimensional cultures can provide a platform for systematic experimentation of larger compound collections in a high-throughput mode and be used as alternatives to traditional two-dimensional screens for better comparability to the in vivo state.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Técnicas de Cultura de Células/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ensaios de Triagem em Larga Escala/métodos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colágeno , Combinação de Medicamentos , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Laminina , Modelos Lineares , Poli-Hidroxietil Metacrilato , Proteoglicanas
11.
Mol Oncol ; 7(3): 392-401, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23253899

RESUMO

About 20% of breast cancers are characterized by amplification and overexpression of the HER2 oncogene. Although significant progress has been achieved for treating such patients with HER2 inhibitor trastuzumab, more than half of the patients respond poorly or become resistant to the treatment. Since the HER2 amplicon at 17q12 contains multiple genes, we have systematically explored the role of the HER2 co-amplified genes in breast cancer cell growth and their relation to trastuzumab resistance. We integrated aCGH data of the HER2 amplicon from 71 HER2 positive breast tumors and 10 cell lines with systematic functional RNA interference analysis of 23 core amplicon genes with several phenotypic endpoints in a panel of trastuzumab responding and non-responding HER2 positive breast cancer cells. Silencing of HER2 caused a greater growth arrest and apoptosis in the responding compared to the non-responding cell lines, indicating that the resistant cells are inherently less dependent on the HER2 pathway. Several other genes in the amplicon also showed a more pronounced effect when silenced; indicating that expression of HER2 co-amplified genes may be needed to sustain the growth of breast cancer cells. Importantly, co-silencing of STARD3, GRB7, PSMD3 and PERLD1 together with HER2 led to an additive inhibition of cell viability as well as induced apoptosis. These studies indicate that breast cancer cells may become addicted to the amplification of several genes that reside in the HER2 amplicon. The simultaneous targeting of these genes may increase the efficacy of the anti-HER2 therapies and possibly also counteract trastuzumab resistance. The observed additive effects seem to culminate to both apoptosis and cell proliferation pathways indicating that these pathways may be interesting targets for combinatorial treatment of HER2+ breast cancers.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Mama/efeitos dos fármacos , Receptor ErbB-2/genética , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Feminino , Amplificação de Genes , Humanos , Interferência de RNA , Trastuzumab
12.
Genome Biol ; 12(1): R6, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21247443

RESUMO

BACKGROUND: Until recently, chromosomal translocations and fusion genes have been an underappreciated class of mutations in solid tumors. Next-generation sequencing technologies provide an opportunity for systematic characterization of cancer cell transcriptomes, including the discovery of expressed fusion genes resulting from underlying genomic rearrangements. RESULTS: We applied paired-end RNA-seq to identify 24 novel and 3 previously known fusion genes in breast cancer cells. Supported by an improved bioinformatic approach, we had a 95% success rate of validating gene fusions initially detected by RNA-seq. Fusion partner genes were found to contribute promoters (5' UTR), coding sequences and 3' UTRs. Most fusion genes were associated with copy number transitions and were particularly common in high-level DNA amplifications. This suggests that fusion events may contribute to the selective advantage provided by DNA amplifications and deletions. Some of the fusion partner genes, such as GSDMB in the TATDN1-GSDMB fusion and IKZF3 in the VAPB-IKZF3 fusion, were only detected as a fusion transcript, indicating activation of a dormant gene by the fusion event. A number of fusion gene partners have either been previously observed in oncogenic gene fusions, mostly in leukemias, or otherwise reported to be oncogenic. RNA interference-mediated knock-down of the VAPB-IKZF3 fusion gene indicated that it may be necessary for cancer cell growth and survival. CONCLUSIONS: In summary, using RNA-sequencing and improved bioinformatic stratification, we have discovered a number of novel fusion genes in breast cancer, and identified VAPB-IKZF3 as a potential fusion gene with importance for the growth and survival of breast cancer cells.


Assuntos
Neoplasias da Mama/genética , Fusão Oncogênica , Análise de Sequência de RNA/métodos , Linhagem Celular Tumoral , Aberrações Cromossômicas , Variações do Número de Cópias de DNA , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Fator de Transcrição Ikaros/genética , Íntrons , Fenótipo , Reprodutibilidade dos Testes , Proteínas de Transporte Vesicular/genética
13.
J Biol Chem ; 283(28): 19704-13, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18474608

RESUMO

JNKs are implicated in a range of brain pathologies and receive considerable attention as potential therapeutic targets. However, JNKs also regulate physiological and homeostatic processes. An attractive hypothesis from the drug development perspective is that distinct JNK isoforms mediate "physiological" and "pathological" responses. However, this lacks experimental evaluation. Here we investigate the isoforms, subcellular pools, and c-Jun/ATF2 targets of JNK in death of central nervous system neurons following withdrawal of trophic support. We use gene knockouts, gene silencing, subcellularly targeted dominant negative constructs, and pharmacological inhibitors. Combined small interfering RNA knockdown of all JNKs 1, 2, and 3, provides substantial neuroprotection. In contrast, knockdown or knock-out of individual JNKs or two JNKs together does not protect. This explains why the evidence for JNK in neuronal death has to date been largely pharmacological. Complete knockdown of c-Jun and ATF2 using small interfering RNA also fails to protect, casting doubt on c-Jun as a critical effector of JNK in neuronal death. Nonetheless, the death requires nuclear but not cytosolic JNK activity as nuclear dominant negative inhibitors of JNK protect, whereas cytosolic inhibitors only block physiological JNK function. Thus any one of the three JNKs is capable of mediating apoptosis and inhibition of nuclear JNK is protective.


Assuntos
Apoptose , Núcleo Celular/enzimologia , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Neurônios/enzimologia , Fator 2 Ativador da Transcrição/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Encefalopatias/tratamento farmacológico , Encefalopatias/enzimologia , Citoplasma/enzimologia , Inativação Gênica , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Camundongos , Camundongos Knockout , Proteína Quinase 10 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 8 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 9 Ativada por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Interferente Pequeno/farmacologia
14.
J Cell Biol ; 173(2): 265-77, 2006 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-16618812

RESUMO

c-Jun NH(2)-terminal kinases (JNKs) are essential during brain development, when they regulate morphogenic changes involving cell movement and migration. In the adult, JNK determines neuronal cytoarchitecture. To help uncover the molecular effectors for JNKs in these events, we affinity purified JNK-interacting proteins from brain. This revealed that the stathmin family microtubule-destabilizing proteins SCG10, SCLIP, RB3, and RB3' interact tightly with JNK. Furthermore, SCG10 is also phosphorylated by JNK in vivo on sites that regulate its microtubule depolymerizing activity, serines 62 and 73. SCG10-S73 phosphorylation is significantly decreased in JNK1-/- cortex, indicating that JNK1 phosphorylates SCG10 in developing forebrain. JNK phosphorylation of SCG10 determines axodendritic length in cerebrocortical cultures, and JNK site-phosphorylated SCG10 colocalizes with active JNK in embryonic brain regions undergoing neurite elongation and migration. We demonstrate that inhibition of cytoplasmic JNK and expression of SCG10-62A/73A both inhibited fluorescent tubulin recovery after photobleaching. These data suggest that JNK1 is responsible for regulation of SCG10 depolymerizing activity and neurite elongation during brain development.


Assuntos
Axônios/fisiologia , Dendritos/fisiologia , Microtúbulos/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Fatores de Crescimento Neural/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Proteínas de Ligação ao Cálcio , Proteínas de Transporte , Linhagem Celular , Células Cultivadas , Embrião de Mamíferos/citologia , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Camundongos , Proteínas dos Microtúbulos , Proteína Quinase 8 Ativada por Mitógeno/análise , Proteína Quinase 8 Ativada por Mitógeno/antagonistas & inibidores , Fosforilação , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estatmina
15.
Mol Cell Biol ; 23(17): 6027-36, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12917327

RESUMO

Lithium has been used as an effective mood-stabilizing drug for the treatment of manic episodes and depression for 50 years. More recently, lithium has been found to protect neurons from death induced by a wide array of neurotoxic insults. However, the molecular basis for the prophylactic effects of lithium have remained obscure. A target of lithium, glycogen synthase kinase 3 (GSK-3), is implicated in neuronal death after trophic deprivation. The mechanism whereby GSK-3 exerts its neurotoxic effects is also unknown. Here we show that lithium blocks the canonical c-Jun apoptotic pathway in cerebellar granule neurons deprived of trophic support. This effect is mimicked by the structurally independent inhibitors of GSK-3, FRAT1, and indirubin. Like lithium, these prevent the stress induced c-Jun protein increase and subsequent apoptosis. These events are downstream of c-Jun transactivation, since GSK-3 inhibitors block neuronal death induced by constitutively active c-Jun (Ser/Thr-->Asp) and FRAT1 expression inhibits AP1 reporter activity. Consistent with this, AP1-dependent expression of proapoptotic Bim requires GSK-3-like activity. These data suggest that a GSK-3-like kinase acts in tandem with c-Jun N-terminal kinase to coordinate the full execution of the c-Jun stress response and neuronal death in response to trophic deprivation.


Assuntos
Quinase 3 da Glicogênio Sintase/efeitos dos fármacos , Lítio/farmacologia , Proteínas de Membrana , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Proteínas de Neoplasias , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Reguladoras de Apoptose , Proteína 11 Semelhante a Bcl-2 , Proteínas de Transporte/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Células Cultivadas , Cerebelo/citologia , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Genes Reporter , Quinase 3 da Glicogênio Sintase/metabolismo , Indóis/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno , Camundongos , Camundongos Mutantes , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/metabolismo , Oximas/farmacologia , Monoéster Fosfórico Hidrolases/efeitos dos fármacos , Monoéster Fosfórico Hidrolases/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Ratos , Estresse Fisiológico , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA