Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 355: 103-111, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29959026

RESUMO

The high-energy compound 3,4,5-trinitropyrazole (TNP) was developed as an alternative to other less energetic and more sensitive explosive materials, in particular 1-methyl-2,4,6-trinitrobenzene (TNT). However, the level of toxicity of TNP remains understudied. Here using an in vivo CD1 mouse model, we mimicked an acute exposure (24 h) to TNP, given either orally or intravenously, and determined the maximum administrable doses (190 mg/kg and 11 mg/kg, respectively), as well as the lethal dose for 50% (LD50) of female or male mice (390 mg/kg for both) treated intravenously with TNP alone. Several metabolites including nitroso-dinitro-pyrazole, hydroxylamino-dinitro-pyrazole, hydroxyl-dinitro-pyrazole and amino-dinitro-pyrazole were identified in urine. TNP is quickly metabolized and eliminated via urine as two main amino-dinitro-pyrazole metabolites. A comparison of the transcriptomic effects of TNP and TNT after 10 days exposure enabled us to demonstrate no major induction of transcripts involved both in cell death mechanisms (apoptosis, necrosis, autophagy) and physiological pathways (glycolysis, ATP production). Finally, subchronic exposure to TNP was replicated in female mice, fed 16.8-52.8 mg/kg/day of TNP for one month, to study the impact on cellular functions. Although blood TNP levels remained high, a lower rate of TNP accumulation in the liver and lungs were observed than during an acute exposure. Conversely, cellular stress functions explored using the RT2 Profiler™ PCR Array Mouse Molecular Toxicology PathwayFinder remained unaltered after this chronic exposure. These findings demonstrate that TNP can be rapidly eliminated in vivo without accumulating in vital organs.


Assuntos
Substâncias Explosivas/toxicidade , Trifosfato de Adenosina/biossíntese , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Biotransformação , Substâncias Explosivas/farmacocinética , Feminino , Glicólise/efeitos dos fármacos , Dose Letal Mediana , Masculino , Camundongos , Necrose , Pirazóis/toxicidade , Distribuição Tecidual , Transcriptoma/efeitos dos fármacos
2.
Biopharm Drug Dispos ; 38(5): 351-362, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28207160

RESUMO

PURPOSE: The chromone derivative MBL-II-141, specifically designed to inhibit ABCG2, was previously demonstrated to combine strong inhibition potency, low toxicity and good efficiency in reversing resistance to irinotecan in a xenografted mouse model. Here, the pharmacokinetic interactions in mice between irinotecan, its active metabolite SN-38 and MBL-II-141 were characterized quantitatively in the blood and in the brain. METHODS: Compartmental models were used to fit the data. Goodness-of-fit was assessed by simulation-based diagnostic tools. RESULTS: Irinotecan increased the MBL-II-141 apparent clearance and Vss 1.5-fold, probably by increasing the MBL-II-141 unbound fraction. MBL-II-141 decreased the total apparent clearance of irinotecan by 23%, by decreasing its biliary clearance. MBL-II-141 increased 3-fold the brain accumulation of irinotecan, as a result of the rise of systemic exposure combined with the inhibition of ABCG2-mediated efflux at the blood-brain barrier. Finally, SN-38 exposure was increased by 1.16-fold under treatment with MBL-II-141, owing to the higher irinotecan exposure with increased metabolism towards the formation of SN-38. CONCLUSIONS: These results may help to anticipate the pharmacokinetic interactions between MBL-II-141 and other ABCG2 substrates. The irinotecan-MBL-II-141 interaction is also expected to occur in humans. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos Fitogênicos/farmacocinética , Camptotecina/análogos & derivados , Cromonas/farmacocinética , Indóis/farmacocinética , Animais , Antineoplásicos Fitogênicos/sangue , Encéfalo/metabolismo , Camptotecina/sangue , Camptotecina/farmacocinética , Cromonas/sangue , Interações Medicamentosas , Feminino , Indóis/sangue , Irinotecano , Camundongos SCID , Modelos Biológicos
3.
Nucleic Acids Res ; 44(11): 5470-89, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27151200

RESUMO

The TWIST1 bHLH transcription factor controls embryonic development and cancer processes. Although molecular and genetic analyses have provided a wealth of data on the role of bHLH transcription factors, very little is known on the molecular mechanisms underlying their binding affinity to the E-box sequence of the promoter. Here, we used an in silico model of the TWIST1/E12 (TE) heterocomplex and performed molecular dynamics (MD) simulations of its binding to specific (TE-box) and modified E-box sequences. We focused on (i) active E-box and inactive E-box sequences, on (ii) modified active E-box sequences, as well as on (iii) two box sequences with modified adjacent bases the AT- and TA-boxes. Our in silico models were supported by functional in vitro binding assays. This exploration highlighted the predominant role of protein side-chain residues, close to the heart of the complex, at anchoring the dimer to DNA sequences, and unveiled a shift towards adjacent ((-1) and (-1*)) bases and conserved bases of modified E-box sequences. In conclusion, our study provides proof of the predictive value of these MD simulations, which may contribute to the characterization of specific inhibitors by docking approaches, and their use in pharmacological therapies by blocking the tumoral TWIST1/E12 function in cancers.


Assuntos
Elementos E-Box , Modelos Moleculares , Fator 3 de Transcrição/química , Proteína 1 Relacionada a Twist/química , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Humanos , Ligação de Hidrogênio , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Fator 3 de Transcrição/metabolismo , Proteína 1 Relacionada a Twist/metabolismo
4.
Drug Des Devel Ther ; 9: 3481-95, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26170632

RESUMO

Ketonic indeno[1,2-b]indole-9,10-dione derivatives, initially designed as human casein kinase II (CK2) inhibitors, were recently shown to be converted into efficient inhibitors of drug efflux by the breast cancer resistance protein ABCG2 upon suited substitutions including a N (5)-phenethyl on C-ring and hydrophobic groups on D-ring. A series of ten phenolic and seven p-quinonic derivatives were synthesized and screened for inhibition of both CK2 and ABCG2 activities. The best phenolic inhibitors were about threefold more potent against ABCG2 than the corresponding ketonic derivatives, and showed low cytotoxicity. They were selective for ABCG2 over both P-glycoprotein and MRP1 (multidrug resistance protein 1), whereas the ketonic derivatives also interacted with MRP1, and they additionally displayed a lower interaction with CK2. Quite interestingly, they strongly stimulated ABCG2 ATPase activity, in contrast to ketonic derivatives, suggesting distinct binding sites. In contrast, the p-quinonic indenoindoles were cytotoxic and poor ABCG2 inhibitors, whereas a partial inhibition recovery could be reached upon hydrophobic substitutions on D-ring, similarly to the ketonic derivatives.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Desenho de Fármacos , Indenos/farmacologia , Indóis/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Fenóis/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Sítios de Ligação , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Indenos/síntese química , Indenos/metabolismo , Indóis/síntese química , Indóis/metabolismo , Camundongos , Mitoxantrona/metabolismo , Modelos Moleculares , Estrutura Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Células NIH 3T3 , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Fenóis/síntese química , Fenóis/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Transfecção
5.
Oncotarget ; 5(23): 11957-70, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25474134

RESUMO

ABCG2 is responsible for the multidrug resistance (MDR) phenotype, and strongly modulates cancer outcomes. Its high expression at a number of physiological barriers, including blood-brain and intestinal barriers, impacts on drug pharmacokinetics parameters. We characterized MBL-II-141, a specific and potent ABCG2 inhibitor. Combination of 10 mg/kg MBL-II-141 with the anticancer agent CPT-11 completely blocked the growth of 90% freshly implanted ABCG2-positive tumors. Moreover, the same combination slowed the growth of already established tumors. As required for preclinical development, we defined the main pharmacokinetics parameters of MBL-II-141 and its influence on the kinetics of CPT-11 and its active metabolite SN-38 in mice. MBL-II-141 distribution into the brain occurred at a low, but detectable, level. Interestingly, preliminary data suggested that MBL-II-141 is well tolerated (at 50 mg/kg) and absorbed upon force-feeding. MBL-II-141 induced a potent sensitization of ABCG2-positive xenografts to CPT-11 through in vivo ABCG2 inhibition. MBL-II-141 strongly increased CPT-11 levels in the brain, and therefore would be a valuable agent to improve drug distribution into the brain to efficiently treat aggressive gliomas. Safety and other pharmacological data strongly support the reglementary preclinical development of MBL-II-141.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Cromonas/farmacologia , Indóis/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Cromatografia Líquida de Alta Pressão , Cromonas/farmacocinética , Células HEK293 , Humanos , Indóis/farmacocinética , Irinotecano , Espectrometria de Massas , Camundongos , Proteínas de Neoplasias/genética , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Fundam Clin Pharmacol ; 28(2): 161-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23384250

RESUMO

ATP-Binding Cassette transporters such as ABCG2 confer resistance to various anticancer drugs including irinotecan and its active metabolite, SN38. Early quantitative evaluation of efflux transporter inhibitors-cytotoxic combination requires quantitative drug-disease models. A proof-of-concept study has been carried out for studying the effect of a new ABCG2 transporter inhibitor, MBLI87 combined to irinotecan in mice xenografted with cells overexpressing ABCG2. Mice were treated with irinotecan alone or combined to MBLI87, and tumour size was periodically measured. To model those data, a tumour growth inhibition model was developed. Unperturbed tumour growth was modelled using Simeoni's model. Drug effect kinetics was accounted for by a Kinetic-Pharmacodynamic approach. Effect of inhibitor was described with a pharmacodynamic interaction model where inhibitor enhances activity of cytotoxic. This model correctly predicted tumour growth dynamics from our study. MBLI87 increased irinotecan potency by 20% per µmol of MBLI87. This model retains enough complexity to simultaneously describe tumour growth and effect of this type of drug combination. It can thus be used as a template to early evaluate efflux transporter inhibitors in-vivo.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Acridonas/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Camptotecina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Modelos Biológicos , Proteínas de Neoplasias/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Acridonas/administração & dosagem , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Transporte Biológico , Camptotecina/administração & dosagem , Camptotecina/farmacologia , Sinergismo Farmacológico , Feminino , Células HEK293 , Humanos , Irinotecano , Camundongos , Camundongos SCID , Proteínas de Neoplasias/genética , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
7.
BMC Struct Biol ; 13: 7, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23641929

RESUMO

BACKGROUND: The Multidrug Resistance Protein ABCC11/MRP8 is expressed in physiological barriers and tumor breast tissues in which it secretes various substrates including cGMP (cyclic guanosine monophosphate) and 5FdUMP (5-fluoro-2'-deoxyuridine-5'-monophosphate), the active metabolite of the anticancer drug 5-FluoroUracil (frequently included to anticancer therapy).Previously, we described that ABCC11 high levels are associated to the estrogen receptor (ER) expression level in breast tumors and in cell lines resistant to tamoxifen. Consequently, by lowering the intracellular concentration of anticancer drugs, ABCC11 likely promotes a multidrug resistance (MDR) phenotype and decreases efficiency of anticancer therapy of 5FdUMP. Since no experimental data about binding sites of ABCC11 substrate are available, we decided to in silico localize putative substrate interaction sites of the nucleotide derivatives. Taking advantage of molecular dynamics simulation, we also analysed their evolution under computational physiological conditions and during the time. RESULTS: Since ABCC11 crystal structure is not resolved yet, we used the X-ray structures of the mouse mdr3 (homologous to human ABCB1) and of the bacterial homolog Sav1866 to generate two independent ABCC11 homology models in inward- and outward-facing conformations. Based on docking analyses, two putative binding pockets, for cGMP and 5FdUMP, were localized in both inward- and outward-facing conformations. Furthermore, based on our 3D models, and available biochemical data from homologous transporters, we identified several residues, potentially critical in ABCC11 transport function. Additionally, molecular dynamics simulation on our inward-facing model revealed for the first time conformation changes assumed to occur during transport process. CONCLUSIONS: ABCC11 would present two binding sites for cGMP and for 5FdUMP. Substrates likely first bind at the intracellular side of the transmembrane segment while ABCC11 is open forward the cytoplasm (inward-facing conformation). Then, along with conformational changes, it would pass through ABCC11 and fix the second site (close to the extracellular side), until the protein open itself to the extracellular space and allow substrate release.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/metabolismo , GMP Cíclico/metabolismo , Fluordesoxiuridilato/metabolismo , Simulação de Dinâmica Molecular , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Animais , Antineoplásicos/química , Sítios de Ligação , GMP Cíclico/química , Bases de Dados de Proteínas , Fluordesoxiuridilato/química , Humanos , Camundongos , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Estrutura Terciária de Proteína , Alinhamento de Sequência , Eletricidade Estática
8.
Fundam Clin Pharmacol ; 27(5): 544-56, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22882086

RESUMO

Efflux transporters play an important role in drug absorption and also in multidrug resistance. ABCG2 (BCRP) is an efflux transporter conferring cross-resistance to mitoxantrone (Mit), irinotecan (CPT11), and its active metabolite SN38. MBLI87, a new ABCG2 inhibitor has proven its efficacy against ABCG2-mediated efflux in vitro and in vivo. This work aimed at modeling and quantifying the cellular interaction between MBLI87 and different substrates using a mechanistic template model. An in vitro competition experiment study was carried out with HEK293 cells overexpressing ABCG2 exposed to fixed concentrations of substrates (Mit, CPT11, SN38) and to MBLI87 at several concentration levels. A nonlinear mixed-effects transport inhibition model was developed to fit intracellular drug concentrations. In this model, drugs cross the cell membrane through passive diffusion, active drug efflux is ABCG2 mediated, interaction between substrates and inhibitor occurs within the transporter. The interaction was found to be noncompetitive. The MBLI87 Ki was estimated to 141 nm for Mit, 289 nm for CPT11, and 1160 nm for SN38. The ratio of intrinsic transport clearance divided by diffusion clearance was estimated to 2.5 for Mit, 1.01 for CPT11, and 5.4 for SN38. The maximal increase in the intracellular substrate concentration that is possible to achieve by inhibition of the transporter was estimated to 1.5 for Mit, 0.1 for CPT11, and 4.4 for SN38. This mechanistic template model describes both drug accumulation and cellular transport, and the mixed-effects approach allows an estimation of intra- and interassay variability. This model is of great interest to study cytotoxic cellular pharmacokinetics.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Acridonas/farmacologia , Antineoplásicos/farmacologia , Membrana Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Moduladores de Transporte de Membrana/farmacologia , Modelos Biológicos , Proteínas de Neoplasias/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Acridonas/metabolismo , Transporte Biológico/efeitos dos fármacos , Camptotecina/análogos & derivados , Camptotecina/metabolismo , Camptotecina/farmacologia , Membrana Celular/metabolismo , Difusão , Interações Medicamentosas , Resistência a Medicamentos , Células HEK293 , Humanos , Líquido Intracelular/química , Irinotecano , Cinética , Mitoxantrona/metabolismo , Mitoxantrona/farmacologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Concentração Osmolar , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes
9.
Int J Breast Cancer ; 2011: 807380, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22332017

RESUMO

The ATP-binding cassette multidrug resistance protein 8 (MRP8/ABCC11) mediates the excretion of anticancer drugs. ABCC11 mRNA and protein levels were enhanced by DEX (dexamethasone) and by PROG (progesterone) in MCF7 (progesterone receptor-(PR-) positive) but not in MDA-MB-231 (PR-negative) breast cancer cells. This suggested a PR-signaling pathway involvement in ABCC11 regulation. Nevertheless, pregnenolone-16α-carbonitrile (GR antagonist) and clotrimazole strongly and moderately decreased ABCC11 expression levels in Glucocortocoid Receptor-(GR-) and Pregnane X Receptor (PXR)-positive MCF7 cells but not in MDA-MB-231 cells (GR- and PXR-positive). Thus, GR-signaling pathway involvement could not be excluded in ABCC11 regulation in MCF7 cells. Furthermore, ABCC11 levels were positively correlated with the PR status of postmenopausal patient breast tumors from two independent cohorts. Thus, in the subclass of breast tumors (Estrogen Receptor-(ER-) negative/PR-positive), the elevated expression level of ABCC11 may alter the sensitivity to ABCC11 anticancer substrates, especially under treatment combinations with DEX.

10.
J Chromatogr B Analyt Technol Biomed Life Sci ; 877(27): 2937-44, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19620028

RESUMO

To specifically quantify several metabolites of 5-fluorouracil (5-FU) and two endogenous monophosphate nucleotides, we developed an original method based on a liquid chromatography-tandem mass spectrometry (LC-MS/MS). This assay allowed the determination of: (i) the intracellular production of 5-fluoro-2'-deoxyuridine-5'-monophosphate (5-FdUMP) from 5-FU or 5-fluoro-2'-deoxyuridine (5-FdUrd), (ii) the impact of 5-FdUMP concentration on the intracellular 2'-deoxyuridine-5'-monophosphate (dUMP)/thymidine-5'-monophosphate (TMP) ratio, and (iii) the secretion extent of 5-FdUMP and 5-FU from human cultured cells by ABC transporters. Under our experimental conditions, cells were incubated with 5-FU or 5-FUrd. Then, cellular proteins were precipitated by methanol. This procedure provided high extraction recovery. In addition, to measure 5-FU and 5-FdUMP secretion from cells, we carried out quantification of these molecules in culture medium. Media were either directly injected (5-FU) or underwent a solid phase extraction using Oasis Wax extraction cartridge (5-FdUMP). Separation of analytes was performed on a dC18 Atlantis 3.5microm, (100mmx2.1mm i.d) column with isocratic mode using ammonium formate buffer/methanol/water (5/5/90, v/v) as mobile phase. The run time did not exceed 6.2min. The analytes were ionized in an electrospray interface under negative ion mode. We validated the method over a range of 2.5-150ngmL(-1) according to the compounds. Intra- and inter-assay variability was lower than 10% over seven days. All compounds were stable in cells or in culture medium when samples were stored at -20 degrees C for at least two weeks, and after three freeze-thaw cycles. No matrix effect was observed in both media.


Assuntos
Cromatografia Líquida/métodos , Floxuridina/análogos & derivados , Floxuridina/análise , Fluordesoxiuridilato/análise , Fluoruracila/análise , Espectrometria de Massas em Tandem/métodos , Linhagem Celular , Linhagem Celular Tumoral , Nucleotídeos de Desoxiuracil/análise , Nucleotídeos de Desoxiuracil/metabolismo , Estabilidade de Medicamentos , Floxuridina/metabolismo , Fluordesoxiuridilato/metabolismo , Fluoruracila/metabolismo , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Extração em Fase Sólida , Timidina Monofosfato/análise , Timidina Monofosfato/metabolismo
11.
Biochem Biophys Res Commun ; 375(3): 308-14, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18692485

RESUMO

The breast cancer resistance protein ABCG2 effluxes a variety of drugs and is believed to play an important role in multidrug resistance to chemotherapy. We show here for the first time that dexamethasone (DEX) and progesterone (PROG) are able to strongly inhibit ABCG2 expression in progesterone receptor (PR)-positive MCF7 and PR-negative MDA-MB-231 breast cells. In contrast, in the latter cells stably-transfected with progesterone receptor isoforms A and B, ABCG2 expression was strongly up-regulated by DEX and PROG. In addition, two other ligands of Pregnane X Receptor (PXR) and/or Glucocorticoid Receptor (GR) were also able to down-regulate ABCG2 expression in PXR- and GR-positive MCF7 cells. ABCG2 expression regulation by DEX likely resulted from the activation of PR-, PXR-, and/or GR-signaling pathways. ABCG2 expression inhibition by DEX was associated with increased sensitivity to mitoxantrone, a known ABCG2 substrate. The findings suggest that DEX may be useful in improving drug efficacy under certain conditions.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/metabolismo , Dexametasona/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/biossíntese , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Mifepristona/farmacologia , Mitoxantrona/farmacologia , Proteínas de Neoplasias/biossíntese , Receptor de Pregnano X , Progesterona/farmacologia , Receptores de Glucocorticoides/metabolismo , Receptores de Esteroides/metabolismo , Especificidade por Substrato/efeitos dos fármacos
12.
Endocr Relat Cancer ; 15(1): 125-38, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18310281

RESUMO

ABCC11 (Multidrug resistance protein 8; MRP8), a plasma membrane ATP-binding cassette transporter, has been implicated in drug resistance of breast cancer by virtue of its ability to confer resistance to fluoropyrimidines and to efflux methotrexate, and by its expression in this tumor. Expression of ABCC11 in breast, a hormonally regulated tissue, as well as the pump's ability to transport estrogen conjugates, suggest the possibility that expression of ABCC11 may be susceptible to regulation by estrogen. However, nothing is currently known about regulation of this gene. In this study, estradiol (E(2)) treatment reduced expression of ABCC11 mRNA in estrogen receptor (ER)-alpha-positive MCF7 cells, and E(2) antagonists such as ICI 182 780 and tamoxifen (TAM) abrogated E(2)-mediated downregulation. ABCC11 expression was positively correlated with ER-alpha expression in both breast cell lines, and two independent series of tumors from postmenopausal patients. In addition, expression of ABCC11 was upregulated in MCF7 cells exposed to TAM for 72 h, and was overexpressed in TAM-resistant cell lines. Drug sensitivity analysis of the TAM-resistant cells indicated that they were also resistant to 5-fluorouracil (5-FU), consistent with the reported ability of ABCC11 to confer resistance to this agent. These studies indicate that ABCC11 expression is negatively regulated by E(2), but that ABCC11 expression is high in high-expressing ER-alpha breast cancers. Our findings support the notion that expression of ABCC11 in ER-alpha-positive breast cancers may contribute to decreased sensitivity to chemotherapy combinations that include 5-FU. ABCC11 may be a potential predictive tool in the choice of anticancer therapies in ER-positive breast cancers resistant to TAM.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Pós-Menopausa , Tamoxifeno/farmacologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/tratamento farmacológico , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/secundário , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA