Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 276(45): 42146-52, 2001 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-11560929

RESUMO

Vertebrates possess two isozymes of adenylosuccinate synthetase. The acidic isozyme is similar to the synthetase from bacteria and plants, being involved in the de novo biosynthesis of AMP, whereas the basic isozyme participates in the purine nucleotide cycle. Reported here is the first instance of overexpression and crystal structure determination of a basic isozyme of adenylosuccinate synthetase. The recombinant mouse muscle enzyme purified to homogeneity in milligram quantities exhibits a specific activity comparable with that of the rat muscle enzyme isolated from tissue and K(m) parameters for GTP, IMP, and l-aspartate (12, 45, and 140 microm, respectively) similar to those of the enzyme from Escherichia coli. The mouse muscle and E. coli enzymes have similar polypeptide folds, differing primarily in the conformation of loops, involved in substrate recognition and stabilization of the transition state. Residues 65-68 of the muscle isozyme adopt a conformation not observed in any previous synthetase structure. In its new conformation, segment 65-68 forms intramolecular hydrogen bonds with residues essential for the recognition of IMP and, in fact, sterically excludes IMP from the active site. Observed differences in ligand recognition among adenylosuccinate synthetases may be due in part to conformational variations in the IMP pocket of the ligand-free enzymes.


Assuntos
Adenilossuccinato Sintase/química , Músculos/enzimologia , Adenilossuccinato Sintase/biossíntese , Sequência de Aminoácidos , Animais , Sítios de Ligação , Catálise , Cristalização , Cinética , Camundongos , Dados de Sequência Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química
2.
FEBS Lett ; 492(3): 254-8, 2001 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-11257504

RESUMO

No evidence to date suggests the possibility of subunit exchange between tetramers of mammalian fructose-1,6-bisphosphatase. An engineered fructose-1,6-bisphosphatase, with subunits of altered electrostatic charge, exhibits spontaneous subunit exchange with wild-type enzyme in the absence of ligands. The exchange process reaches equilibrium in approximately 5 h at 4 degrees C, as monitored by non-denaturing gel electrophoresis and anion exchange chromatography. Active site ligands, such as fructose 6-phosphate, abolish subunit exchange at the level of the monomer, but permit dimer-dimer exchanges. AMP, alone or in the presence of active site ligands, abolishes all exchange processes. Exchange phenomena may play a role in the kinetic mechanism of allosteric regulation of fructose-1,6-bisphosphatase.


Assuntos
Frutose-Bifosfatase/química , Fígado/enzimologia , Subunidades Proteicas , Monofosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Cromatografia por Troca Iônica , Eletroforese em Gel de Poliacrilamida , Fígado/química , Conformação Proteica , Suínos
3.
FEBS Lett ; 482(3): 237-41, 2000 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-11024467

RESUMO

S-Glutathiolation of carbonic anhydrase III (CAIII) occurs rapidly in hepatocytes under oxidative stress. The crystal structure of the S-glutathiolated CAIII from rat liver reveals covalent adducts on cysteines 183 and 188. Electrostatic charge and steric contacts at each modification site inversely correlate with the relative rates of reactivity of these cysteines toward glutathione (GSH). Diffuse electron density associated with the GSH adducts suggests a lack of preferred bonding interactions between CAIII and the glutathionyl moieties. Hence, the GSH adducts are available for binding by a protein capable of reducing this mixed disulfide. These properties are consistent with the participation of CAIII in the protection/recovery from the damaging effects of oxidative agents.


Assuntos
Anidrases Carbônicas/química , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Estabilidade Enzimática , Glutationa/química , Fígado/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Ratos , Homologia de Sequência de Aminoácidos
4.
J Biol Chem ; 275(39): 29986-92, 2000 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-10896931

RESUMO

Loop 52-72 of porcine fructose-1,6-bisphosphatase may play a central role in the mechanism of catalysis and allosteric inhibition by AMP. The loop pivots between different conformational states about a hinge located at residues 50 and 51. The insertion of proline separately at positions 50 and 51 reduces k(cat) by up to 3-fold, with no effect on the K(m) for fructose 1,6-bisphosphate. The K(a) for Mg(2+) in the Lys(50) --> Pro mutant increases approximately 15-fold, whereas that for the Ala(51) --> Pro mutant is unchanged. Although these mutants retain wild-type binding affinity for AMP and the fluorescent AMP analog 2'(3')-O-(trinitrophenyl)adenosine 5'-monophosphate, the K(i) for AMP increases 8000- and 280-fold in the position 50 and 51 mutants, respectively. In fact, the mutation Lys(50) --> Pro changes the mechanism of AMP inhibition with respect to Mg(2+) from competitive to noncompetitive and abolishes K(+) activation. The K(i) for fructose 2,6-bisphosphate increases approximately 20- and 30-fold in the Lys(50) --> Pro and Ala(51) --> Pro mutants, respectively. Fluorescence from a tryptophan introduced by the mutation of Tyr(57) suggests an altered conformational state for Loop 52-72 due to the proline at position 50. Evidently, the Pro(50) mutant binds AMP with high affinity at the allosteric site, but the mechanism of allosteric regulation of catalysis has been disabled.


Assuntos
Frutose-Bifosfatase/metabolismo , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/metabolismo , Alanina/genética , Regulação Alostérica/genética , Animais , Domínio Catalítico/genética , Frutose-Bifosfatase/antagonistas & inibidores , Frutose-Bifosfatase/genética , Cinética , Lisina/genética , Modelos Químicos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Prolina/genética , Suínos
5.
J Mol Biol ; 296(4): 1001-15, 2000 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-10686099

RESUMO

Hexokinase I, the pacemaker of glycolysis in brain tissue, is composed of two structurally similar halves connected by an alpha-helix. The enzyme dimerizes at elevated protein concentrations in solution and in crystal structures; however, almost all published data reflect the properties of a hexokinase I monomer in solution. Crystal structures of mutant forms of recombinant human hexokinase I, presented here, reveal the enzyme monomer for the first time. The mutant hexokinases bind both glucose 6-phosphate and glucose with high affinity to their N and C-terminal halves, and ADP, also with high affinity, to a site near the N terminus of the polypeptide chain. Exposure of the monomer crystals to ADP in the complete absence of glucose 6-phosphate reveals a second binding site for adenine nucleotides at the putative active site (C-half), with conformational changes extending 15 A to the contact interface between the N and C-halves. The structures reveal distinct conformational states for the C-half and a rigid-body rotation of the N-half, as possible elements of a structure-based mechanism for allosteric regulation of catalysis.


Assuntos
Difosfato de Adenosina/metabolismo , Hexoquinase/química , Difosfato de Adenosina/química , Regulação Alostérica , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli/enzimologia , Glucose-6-Fosfato/química , Glucose-6-Fosfato/metabolismo , Hexoquinase/metabolismo , Modelos Moleculares , Conformação Proteica
6.
Biochemistry ; 38(26): 8359-66, 1999 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-10387081

RESUMO

Hexokinase I governs the rate-limiting step of glycolysis in brain tissue, being inhibited by its product, glucose 6-phosphate, and allosterically relieved of product inhibition by phosphate. On the basis of small-angle X-ray scattering, the wild-type enzyme is a monomer in the presence of glucose and phosphate at protein concentrations up to 10 mg/mL, but in the presence of glucose 6-phosphate, is a dimer down to protein concentrations as low as 1 mg/mL. A mutant form of hexokinase I, specifically engineered by directed mutation to block dimerization, remains monomeric at high protein concentration under all conditions of ligation. This nondimerizing mutant exhibits wild-type activity, potent inhibition by glucose 6-phosphate, and phosphate reversal of product inhibition. Small-angle X-ray scattering data from the mutant hexokinase I in the presence of glucose/phosphate, glucose/glucose 6-phosphate, and glucose/ADP/Mg2+/AlF3 are consistent with a rodlike conformation for the monomer similar to that observed in crystal structures of the hexokinase I dimer. Hence, any mechanism for allosteric regulation of hexokinase I should maintain a global conformation of the polypeptide similar to that observed in crystallographic structures.


Assuntos
Hexoquinase/química , Hexoquinase/genética , Proteínas Recombinantes/síntese química , Proteínas Recombinantes/genética , Encéfalo , Dicroísmo Circular , Simulação por Computador , Escherichia coli/genética , Hexoquinase/isolamento & purificação , Hexoquinase/metabolismo , Humanos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espalhamento de Radiação , Soluções , Raios X
7.
J Biol Chem ; 274(25): 17505-10, 1999 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-10364182

RESUMO

Guanosine 5'-diphosphate 3'-diphosphate (ppGpp), a pleiotropic effector of the stringent response, potently inhibits adenylosuccinate synthetase from Escherichia coli as an allosteric effector and/or as a competitive inhibitor with respect to GTP. Crystals of the synthetase grown in the presence of IMP, hadacidin, NO3-, and Mg2+, then soaked with ppGpp, reveal electron density at the GTP pocket which is consistent with guanosine 5'-diphosphate 2':3'-cyclic monophosphate. Unlike ligand complexes of the synthetase involving IMP and GDP, the coordination of Mg2+ in this complex is octahedral with the side chain of Asp13 in the inner sphere of the cation. The cyclic phosphoryl group interacts directly with the side chain of Lys49 and indirectly through bridging water molecules with the side chains of Asn295 and Arg305. The synthetase either directly facilitates the formation of the cyclic nucleotide or scavenges trace amounts of the cyclic nucleotide from solution. Regardless of its mode of generation, the cyclic nucleotide binds far more tightly to the active site than does ppGpp. Conceivably, synthetase activity in vivo during the stringent response may be sensitive to the relative concentrations of several effectors, which together exercise precise control over the de novo synthesis of AMP.


Assuntos
Adenilossuccinato Sintase/química , Escherichia coli/enzimologia , Monofosfato de Adenosina/biossíntese , Sítios de Ligação , Cromatografia em Camada Fina , Inibidores Enzimáticos/química , Glicina/análogos & derivados , Glicina/química , Guanosina Tetrafosfato/química , Ligantes , Magnésio/química , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular
8.
J Mol Biol ; 282(2): 345-57, 1998 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-9735292

RESUMO

Hexokinase I, the pacemaker of glycolysis in brain tissue and red blood cells, is comprised of two similar domains fused into a single polypeptide chain. The C-terminal half of hexokinase I is catalytically active, whereas the N-terminal half is necessary for the relief of product inhibition by phosphate. A crystalline complex of recombinant human hexokinase I with glucose and phosphate (2.8 A resolution) reveals a single binding site for phosphate and glucose at the N-terminal half of the enzyme. Glucose and phosphate stabilize the N-terminal half in a closed conformation. Unexpectedly, glucose binds weakly to the C-terminal half of the enzyme and does not by itself stabilize a closed conformation. Evidently a stable, closed C-terminal half requires either ATP or glucose 6-phosphate along with glucose. The crystal structure here, in conjunction with other studies in crystallography and directed mutation, puts the phosphate regulatory site at the N-terminal half, the site of potent product inhibition at the C-terminal half, and a secondary site for the weak interaction of glucose 6-phosphate at the N-terminal half of the enzyme. The relevance of crystal structures of hexokinase I to the properties of monomeric hexokinase I and oligomers of hexokinase I bound to the surface of mitochondria is discussed.


Assuntos
Encéfalo/enzimologia , Glucose/química , Hexoquinase/química , Fosfatos/química , Conformação Proteica , Proteínas Recombinantes/química , Cristalografia por Raios X , Dimerização , Hexoquinase/genética , Humanos , Ligantes , Modelos Moleculares , Fosfatos/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo
9.
J Biol Chem ; 273(28): 17511-6, 1998 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-9651342

RESUMO

Asn64, Asp68, Lys71, Lys72, and Asp74 of porcine liver fructose-1, 6-bisphosphatase (FBPase) are conserved residues and part of a loop for which no electron density has been observed in crystal structures. Yet mutations of the above dramatically affect catalytic rates and/or AMP inhibition. The Asp74 --> Ala and Asp74 --> Asn mutant enzymes exhibited 50,000- and 2,000-fold reductions, respectively, in kcat relative to wild-type FBPase. The pH optimum for the catalytic activity of the Asp74 --> Glu, Asp68 --> Glu, Asn64 --> Gln, and Asn64 --> Ala mutant enzymes shifted from pH 7.0 (wild-type enzyme) to pH 8.5, whereas the Lys71 --> Ala mutant and Lys71,72 --> Met double mutant had optimum activity at pH 7.5. Mg2+ cooperativity, Km for fructose 1,6-bisphosphate, and Ki for fructose 2,6-bisphosphate were comparable for the mutant and wild-type enzymes. Nevertheless, for the Asp74 --> Glu, Asp68 --> Glu, Asn64 --> Gln, and Asn64 --> Ala mutants, the binding affinity for Mg2+ decreased by 40-125-fold relative to the wild-type enzyme. In addition, the Asp74 --> Glu and Asn64 --> Ala mutants exhibited no AMP cooperativity, and the kinetic mechanism of AMP inhibition with respect to Mg2+ was changed from competitive to noncompetitive. The double mutation Lys71,72 --> Met increased Ki for AMP by 175-fold and increased Mg2+ affinity by 2-fold relative to wild-type FBPase. The results reported here strongly suggest that loop 51-72 is important for catalytic activity and the mechanism of allosteric inhibition of FBPase by AMP.


Assuntos
Monofosfato de Adenosina/farmacologia , Frutose-Bifosfatase/metabolismo , Mutagênese Sítio-Dirigida , Regulação Alostérica , Substituição de Aminoácidos , Animais , Sequência de Bases , Catálise , Primers do DNA , Frutose-Bifosfatase/antagonistas & inibidores , Cinética , Suínos
10.
Structure ; 6(1): 39-50, 1998 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-9493266

RESUMO

BACKGROUND: Hexokinase I is the pacemaker of glycolysis in brain tissue. The type I isozyme exhibits unique regulatory properties in that physiological levels of phosphate relieve potent inhibition by the product, glucose-6-phosphate (Gluc-6-P). The 100 kDa polypeptide chain of hexokinase I consists of a C-terminal (catalytic) domain and an N-terminal (regulatory) domain. Structures of ligated hexokinase I should provide a basis for understanding mechanisms of catalysis and regulation at an atomic level. RESULTS: The complex of human hexokinase I with glucose and Gluc-6-P (determined to 2.8 A resolution) is a dimer with twofold molecular symmetry. The N- and C-terminal domains of one monomer interact with the C- and N-terminal domains, respectively, of the symmetry-related monomer. The two domains of a monomer are connected by a single alpha helix and each have the fold of yeast hexokinase. Salt links between a possible cation-binding loop of the N-terminal domain and a loop of the C-terminal domain may be important to regulation. Each domain binds single glucose and Gluc-6-P molecules in proximity to each other. The 6-phosphoryl group of bound Gluc-6-P at the C-terminal domain occupies the putative binding site for ATP, whereas the 6-phosphoryl group at the N-terminal domain may overlap the binding site for phosphate. CONCLUSIONS: The binding synergism of glucose and Gluc-6-P probably arises out of the mutual stabilization of a common (glucose-bound) conformation of hexokinase I. Conformational changes in the N-terminal domain in response to glucose, phosphate, and/or Gluc-6-P may influence the binding of ATP to the C-terminal domain.


Assuntos
Encéfalo/enzimologia , Glucose-6-Fosfato/química , Glucose/química , Hexoquinase/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Proteínas Fúngicas/química , Glicerol Quinase/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Alinhamento de Sequência
11.
J Biol Chem ; 273(2): 700-4, 1998 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-9422720

RESUMO

Mutants of hexokinase I (Arg539 --> Lys, Thr661 --> Ala, Thr661 --> Val, Gly534 --> Ala, Gly679 --> Ala, and Gly862 --> Ala), located putatively in the vicinity of the ATP binding pocket, were constructed, purified to homogeneity, and studied by circular dichroism (CD) spectroscopy, fluorescence spectroscopy, and initial velocity kinetics. The wild-type and mutant enzymes have similar secondary structures on the basis of CD spectroscopy. The mutation Gly679 --> Ala had little effect on the kinetic properties of the enzyme. Compared with the wild-type enzyme, however, the Gly534 --> Ala mutant exhibited a 4000-fold decrease in kcat and the Gly862 --> Ala mutant showed an 11-fold increase in Km for ATP. Glucose 6-phosphate inhibition of the three glycine mutants is comparable to that of the wild-type enzyme. Inorganic phosphate is, however, less effective in relieving glucose 6-phosphate inhibition of the Gly862 --> Ala mutant, relative to the wild-type enzyme and entirely ineffective in relieving inhibition of the Gly534 --> Ala mutant. Although the fluorescence emission spectra showed some difference for the Gly862 --> Ala mutant relative to that of the wild-type enzyme, indicating an environmental alteration around tryptophan residues, no change was observed for the Gly534 --> Ala and Gly679 --> Ala mutants. Gly862 --> Ala and Gly534 --> Ala are the first instances of single residue mutations in hexokinase I that affect the binding affinity of ATP and abolish phosphate-induced relief of glucose 6-phosphate inhibition, respectively.


Assuntos
Trifosfato de Adenosina/metabolismo , Encéfalo/enzimologia , Glicina/metabolismo , Hexoquinase/metabolismo , Sítios de Ligação , Dicroísmo Circular , Hexoquinase/antagonistas & inibidores , Hexoquinase/química , Humanos , Cinética , Fosfatos/farmacologia , Espectrometria de Fluorescência
12.
J Biol Chem ; 272(42): 26295-9, 1997 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-9334199

RESUMO

The significance of subunit interface residues Arg49 and Lys50 in the function of porcine liver fructose-1,6-bisphosphatase was explored by site-directed mutagenesis, initial rate kinetics, and circular dichroism spectroscopy. The Lys50 --> Met mutant had kinetic properties similar to the wild-type enzyme but was more thermostable. Mutants Arg49 --> Leu, Arg49 --> Asp, Arg49 --> Cys were less thermostable than the wild-type enzyme yet exhibited wild-type values for kcat and Km. The Ki for the competitive inhibitor fructose 2,6-bisphosphate increased 3- and 5-fold in Arg49 --> Leu and Arg49 --> Asp, respectively. The Ka for Mg2+ increased 4-8-fold for the Arg49 mutants, with no alteration in the cooperativity of Mg2+ binding. Position 49 mutants had 4-10-fold lower AMP affinity. Most significantly, the mechanism of AMP inhibition with respect to fructose 1,6-bisphosphate changed from noncompetitive (wild-type enzyme) to competitive (Arg49 --> Leu and Arg49 --> Asp mutants) and to uncompetitive (Arg49 --> Cys mutant). In addition, AMP cooperativity was absent in the Arg49 mutants. The R and T-state circular dichroism spectra of the position 49 mutants were identical and superimposable on only the R-state spectrum of the wild-type enzyme. Changes from noncompetitive to competitive inhibition by AMP can be accommodated within the framework of a steady-state Random Bi Bi mechanism. The appearance of uncompetitive inhibition, however, suggests that a more complex mechanism may be necessary to account for the kinetic properties of the enzyme.


Assuntos
Monofosfato de Adenosina/antagonistas & inibidores , Monofosfato de Adenosina/metabolismo , Arginina/metabolismo , Frutose-Bifosfatase/metabolismo , Arginina/genética , Dicroísmo Circular , Frutose-Bifosfatase/genética , Cinética , Mutagênese , Temperatura
13.
J Biol Chem ; 271(52): 33301-7, 1996 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-8969189

RESUMO

The significance of interactions between AMP domains in recombinant porcine fructose-1,6-bisphosphatase (FBPase) is explored by site-directed mutagenesis and kinetic characterization of homogeneous preparations of mutant enzymes. Mutations of Lys42, Ile190, and Gly191 do not perturb the circular dichroism spectra, but have significant effects on ligand binding and mechanisms of cooperativity. The Km for fructose 1,6-bisphosphate and the Ki for the competitive inhibitor, fructose 2,6-bisphosphate, decreased by as much as 4- and 8-fold, respectively, in the Q32L, K42E, K42T, I190T, and G191A mutants relative to the wild-type enzyme. Q32L, unlike the other four mutants, exhibited a 1.7-fold increase in Kcat. Mg2+ binding is sigmoidal for the five mutants as well as for the wild-type enzyme, but the Mg2+ affinities were decreased (3-22-fold) in mutant FBPases. With the exception of Q32L (8-fold increase), the 50% inhibiting concentrations of AMP for K42E, K42T, I190T, and G191A were increased over 2,000-fold (>10 mM) relative to the wild-type enzyme. Most importantly, a loss of AMP cooperativity was found with K42E, K42T, I190T, and G191A. In addition, the mechanism of AMP inhibition with respect to Mg2+ was changed from competitive to noncompetitive for K42T, I190T, and G191A FBPases. Structural modeling and kinetic studies suggest that Lys42, Ile190, and Gly191 are located at the pivot point of intersubunit conformational changes that energetically couple the Mg2+-binding site to the AMP domain of FBPase.


Assuntos
Frutose-Bifosfatase/metabolismo , Monofosfato de Adenosina/metabolismo , Animais , Frutose-Bifosfatase/química , Magnésio/metabolismo , Modelos Moleculares , Conformação Proteica , Estrutura Secundária de Proteína , Suínos
14.
Proc Natl Acad Sci U S A ; 93(18): 9431-6, 1996 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-8790347

RESUMO

(+)-Hydantocidin, a recently discovered natural spironucleoside with potent herbicidal activity, is shown to be a proherbicide that, after phosphorylation at the 5' position, inhibits adenylosuccinate synthetase, an enzyme involved in de novo purine synthesis. The mode of binding of hydantocidin 5'-monophosphate to the target enzyme was analyzed by determining the crystal structure of the enzyme-inhibitor complex at 2.6-A resolution. It was found that adenylosuccinate synthetase binds the phosphorylated compound in the same fashion as it does adenosine 5'-monophosphate, the natural feedback regulator of this enzyme. This work provides the first crystal structure of a herbicide-target complex reported to date.


Assuntos
Adenilossuccinato Sintase/metabolismo , Herbicidas/metabolismo , Hidantoínas/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Células Cultivadas , Cristalografia por Raios X , DNA Complementar/análise , Escherichia coli , Retroalimentação , Herbicidas/química , Hidantoínas/química , Dados de Sequência Molecular , Fenótipo , Plantas , Conformação Proteica , Homologia de Sequência de Aminoácidos
15.
J Mol Biol ; 254(3): 431-46, 1995 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-7490761

RESUMO

Crystal structures of unligated adenylosuccinate synthetase from Escherichia coli in space groups P2(1) and P2(1)2(1)2(1) have been refined to R-factors of 0.199 and 0.206 against data to 2.0 and 2.5 A, respectively. Bond lengths and angles deviate from expected values by 0.011 A and 1.7 degrees for the P2(1) crystal form and by 0.015 A and 1.7 degrees for the P2(1)2(1)2(1) crystal form. The fold of the polypeptide chain is dominated by a central beta-sheet, which is composed of nine parallel strands and a tenth antiparallel strand. Extending off from this central beta-sheet are four subdomains. The four subdomains contribute loops of residues that are disordered or have high thermal parameters. At least three of these loops (residues 42 to 52, 120 to 131 and 298 to 304) contribute essential residues to the putative active site of the synthetase. In the absence of ligands, much of the active site of the synthetase exists in an ill-defined conformational state. Two, nearly independent regions contribute residues to the interface between polypeptide chains of the synthetase dimer. A pair of helices (H4 and H5) interact with their symmetry-equivalent mates by way of residues that are not conserved amongst the known sequences of the synthetase. The second interface region involves conserved residues belonging to structural elements that connect strands of the central beta-sheet. Residues putatively involved in the binding of IMP lie at or near the interface between polypeptide chains of the dimer. Of the four sequence elements putatively common to all GTP hydrolases, the synthetase has only the guanine recognition element and a glycine-rich loop (P-loop). Although the base recognition element is essentially identical with those of the p21 ras and G alpha proteins, the P-loop of the synthetase is extended in size relative to the P-loops of other GTP hydrolases. The P-loop has two acid residues (Asp13 and Glu14), which are found in the P-loops of only the synthetase family. Glu14 may be involved in the stabilization of the enlarged P-loop of the synthetase, whereas Asp13 may play a role in catalysis and in the coordination of Mg2+. The structural elements of the p21 ras and G alpha proteins responsible for binding Mg2+ are either absent from the synthetase or unavailable for the coordination of metal cations.


Assuntos
Adenilossuccinato Sintase/química , Escherichia coli/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Sequência Consenso , Cristalografia por Raios X , Engenharia Genética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína
16.
J Mol Biol ; 238(4): 575-91, 1994 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-8176747

RESUMO

The refined crystal structures of a proteolytic fragment of glucoamylase from Aspergillus awamori var. X100 have been determined at pH 6 and 4 to a resolution of 2.2 A and 2.4 A, respectively. The models include the equivalent of residues 1 to 471 of glucoamylase from Aspergillus niger and a complete interpretation of the solvent structure. The R-factors of the pH 6 and 4 structures are 0.14 and 0.12, respectively, with root-mean-square deviations of 0.014 A and 0.012 A from expected bondlengths. The enzyme has the general shape of a doughnut. The "hole" of the doughnut consists of a barrier of hydrophobic residues at the center, which separates two water-filled voids, one of which serves as the active site. Three clusters of water molecules extend laterally from the active site. One of the lateral clusters connects the deepest recess of the active site to the surface of the enzyme. The most significant difference in the pH 4 and 6 structures is the thermal parameter of water 500, the putative nucleophile in the hydrolysis of maltooligosaccharides. Water 500 is associated more tightly with the enzyme at pH 4 (the pH of optimum catalysis) than at pH 6. In contrast to water 500, Glu179, the putative catalytic acid of glucoamylase, retains the same conformation in both structures and is in an environment that would favor the ionized, rather than the acid form of the side-chain. Glycosyl chains of 5 and 8 sugar residues are linked to Asparagines 171 and 395, respectively. The conformations of the two glycosyl chains are similar, being superimposable on each other with a root-mean-square discrepancy of 1.9 A. The N-glycosyl chains hydrogen bond to the surface of the protein through their terminal sugars, but otherwise do not interact strongly with the enzyme. The structures have ten serine/threonine residues, to each of which is linked a single mannose sugar. The structure of the ten O-glycosylated residues taken together suggests a well-defined conformation for proteins that have extensive O-glycosylation of their polypeptide chain.


Assuntos
Aspergillus/enzimologia , Glucana 1,4-alfa-Glucosidase/química , Conformação Proteica , Sítios de Ligação , Configuração de Carboidratos , Sequência de Carboidratos , Cristalização , Cristalografia por Raios X , Glucana 1,4-alfa-Glucosidase/isolamento & purificação , Glicosilação , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Secundária de Proteína , Água/química
17.
J Biol Chem ; 268(34): 25334-42, 1993 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-8244965

RESUMO

The structure of the P2(1) crystal form of adenylosuccinate synthetase from Escherichia coli has been determined to a resolution of 2.8 A. The refined model for the enzyme gives an R factor of 0.20 and a root-mean-square deviation from expected bond lengths and angles of 0.016 A and 2.27 degrees, respectively. The dominant structural element of each monomer of the homodimer is a central beta-sheet of 10 strands. The first nine strands of the sheet are mutually parallel with right-handed crossover connections between the strands. The 10th strand is antiparallel with respect to the first nine strands. In addition, the enzyme has two antiparallel beta-sheets, comprised of two strands and three strands each, 11 alpha-helices and two short 3/10-helices. The overall fold of the polypeptide chain has not been observed heretofore in any other protein structure. Residues tentatively assigned to the active site of the enzyme on the basis of chemical modification and directed mutation cluster in two separate regions. Gly12, Gly15, Gly17, Lys18, Ile19, and Lys331 lie at one end of a crevice that measures 12 A by 30 A by 12 A deep. Lys140 and Arg147 are not part of this crevice, but instead lie at the interface between monomers of the dimer. Lys140 makes a salt link with Asp231 of a monomer related by molecular symmetry and Arg147 binds to the carbonyl of the same Asp231. Superposition of the p21 ras protein (Pai, E. F., Kabsch, W., Krengel, U., Holmes, K., John, J., and Wittinghofer, A. (1989) Nature 341, 209-214) onto the synthetase reveals significant correspondences between side chains of the two proteins. Residues which interact with GTP in the p21ras protein have structurally equivalent residues in the synthetase. The GTP molecule, when transformed to the coordinate frame of the synthetase, falls into the crevice defined by studies in directed mutation. We suggest that the similarities in the GTP-binding domains of the synthetase and the p21ras protein are an example of convergent evolution of two distinct families of GTP-binding proteins.


Assuntos
Adenilossuccinato Sintase/química , Escherichia coli/enzimologia , Guanosina Trifosfato/metabolismo , Estrutura Secundária de Proteína , Adenilossuccinato Sintase/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalização , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas p21(ras)/química , Difração de Raios X
18.
Biochemistry ; 25(18): 5018-27, 1986 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-3768328

RESUMO

Extensive conformational heterogeneity is reported in highly refined crystallographic models for the proteins crambin, erabutoxin, myohemerythrin, and lamprey hemoglobin. From 6% to 13% of the amino acid side chains of these four proteins are seen in multiple, discrete conformations. Most common are flexible side chains on the molecular surface, but structural heterogeneity occasionally extends to buried side chains or to the polypeptide backbone. A few instances of sequence heterogeneity are also very clear. Numerous solvent sites are multiplets, and at high resolution, multiple, mutually exclusive solvent networks are observed. The proteins have been studied with X-ray diffraction data extending to spacings of from 0.945 to 2.0 A. The extensive heterogeneity observed here provides detailed, accurate structures for conformational substates of these molecules and sets a lower bound on the number of substates accessible to each protein molecule in solution. Electron density is missing or very weak for only a few side chains in these protein crystals, revealing a strong preference for discrete over continuous conformational perturbations. The results at very high resolution further suggest that even rather small conformational fluctuations produce discrete substates and that unresolved conformers are accommodated in increased atomic thermal parameters.


Assuntos
Conformação Proteica , Proteínas , Cristalização , Modelos Moleculares , Difração de Raios X/métodos
19.
J Mol Biol ; 184(1): 147-64, 1985 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-4032476

RESUMO

A molecular model for the protein and ambient solvent of the complex of cyanide with methemoglobin V from the sea lamprey Petromyzon marinus yields an R-factor of 0.142 against X-ray diffraction data to 2.0 A resolution. The root-mean-square discrepancies from ideal bond length and angle are, respectively, 0.014 A and 1.5 degrees. Atoms that belong to planar groups deviate by 0.012 A from planes determined by a least-squares procedure. The average standard deviation for chiral volumes, peptide torsion angle and torsion angles of side-chains are 0.150 A3, 2.0 degrees and 19.4 degrees, respectively. The root-mean-square variation in the thermal parameters of bonded atoms of the polypeptide backbone is 1.21 A2; the variation in thermal parameters for side-chain atoms is 2.13 A2. The model includes multiple conformations for 11 side-chains of the 149 amino acid residues of the protein. We identify 231 locations as sites of water molecules in full or partial occupancy. The sum of occupancy factors for these sites is approximately 154, representing 28% of the 550 molecules of water within the crystallographic asymmetric unit. The environment of the heme in the cyanide complex of lamprey methemoglobin resembles the deoxy state of the mammalian tetramer. In particular, the bond between atom NE2 of the proximal histidine and the Fe lies 5.1 degrees from the normal of the heme plane. In deoxy- and carbonmonoxyhemoglobins, the deviations from the normal to the heme plane are 7 to 8 degrees and 1 degree, respectively. Furthermore, the inequality in the distance of atom CD2 of the proximal histidine from the pyrrole nitrogen of ring-C of the heme (distance = 3.29 A) and CE1 from the pyrrole nitrogen of ring-A (distance = 3.06 A) is characteristic of deoxyhemoglobin, not carbonmonoxyhemoglobin, where these distances are equal. Finally, a hydrogen bond exists between carbonyl 111 and the hydroxyl of tyrosine 149. The corresponding hydrogen link in the mammalian tetramer is central to the T to R state transition and is present in deoxyhemoglobin but absent in carbonmonoxyhemoglobin. We suggest that the low affinity of oxygen for lamprey hemoglobin may be a consequence of these T-state geometries.


Assuntos
Peixes , Hemoglobinas , Lampreias , Modelos Moleculares , Sequência de Aminoácidos , Animais , Cristalografia , Ligação de Hidrogênio , Conformação Proteica
20.
Proc Natl Acad Sci U S A ; 79(23): 7171-4, 1982 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-6760190

RESUMO

We report the results of crystallographic difference maps at 3.0-A resolution of complexes of metal-nucleoside triphosphates with aspartate carbamoyltransferase (carbamoylphosphate:L-aspartate carbamoyltransferase, EC 2.1.3.2) from Escherichia coli. The complexes Gd3+-ATP, Al3+-ATP, and Gd3+-CTP bind to the allosteric effector domain of the enzyme in nearly the same orientation as the metal-free nucleotides. The result is consistent with kinetic observations of nearly identical allosteric efficacy of ATP and CTP and their complexes with cations. The effector Gd3+-GTP, however, binds in a distinctly different conformation and location than does 8-bromoguanosine 5'-triphosphate, reported in a separate investigation [Honzatko, R. B. & Lipscomb, W.N. (1982) J. Mol. Biol. 160, 265-286]. The difference in the binding modes of Gd3+-GTP and the bromo derivative suggests a possible mechanism for the relief of allosteric inhibition of GTP due to metal cations. We observe no binding of metal-nucleoside triphosphates in the region of the phosphate crevice of aspartate carbamoyltransferase, consistent with the reduced ability of metal nucleotides to compete with carbamoyl phosphate for the active site. However, a single Gd3+ ion binds in the region of the active site as evidenced by strong density. The binding of cations near the active site probably causes the inhibition of catalysis observed in kinetics experiments reported earlier [Honzatko, R.B., Lauritzen, A.M. & Lipscomb, W.N. (1981) Proc. Natl. Acad. Sci. USA 78, 898-902].


Assuntos
Aspartato Carbamoiltransferase/metabolismo , Trifosfato de Adenosina , Regulação Alostérica , Sítios de Ligação , Cristalografia , Citidina Trifosfato , Escherichia coli/enzimologia , Gadolínio , Guanosina Trifosfato , Metais , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA