Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Transpl Int ; 37: 12468, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699175

RESUMO

Kidney organoids are an innovative tool in transplantation research. The aim of the present study was to investigate whether kidney organoids are susceptible for allo-immune attack and whether they can be used as a model to study allo-immunity in kidney transplantation. Human induced pluripotent stem cell-derived kidney organoids were co-cultured with human peripheral blood mononuclear cells (PBMC), which resulted in invasion of allogeneic T-cells around nephron structures and macrophages in the stromal cell compartment of the organoids. This process was associated with the induction of fibrosis. Subcutaneous implantation of kidney organoids in immune-deficient mice followed by adoptive transfer of human PBMC led to the invasion of diverse T-cell subsets. Single cell transcriptomic analysis revealed that stromal cells in the organoids upregulated expression of immune response genes upon immune cell invasion. Moreover, immune regulatory PD-L1 protein was elevated in epithelial cells while genes related to nephron differentiation and function were downregulated. This study characterized the interaction between immune cells and kidney organoids, which will advance the use of kidney organoids for transplantation research.


Assuntos
Transplante de Rim , Rim , Organoides , Humanos , Organoides/imunologia , Animais , Rim/imunologia , Camundongos , Técnicas de Cocultura , Leucócitos Mononucleares/imunologia , Células-Tronco Pluripotentes Induzidas/citologia , Linfócitos T/imunologia , Sistema Imunitário , Antígeno B7-H1/metabolismo , Macrófagos/imunologia
2.
Transplantation ; 108(7): 1551-1557, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557650

RESUMO

BACKGROUND: Machine perfusion is the preferred preservation method for deceased donor kidneys. Perfusate fluid, which contains a complex mixture of components, offers potential insight into the organ's viability and function. This study explored immune cell release, particularly tissue-resident lymphocytes (TRLs), during donor kidney machine perfusion and its correlation with injury markers. METHODS: Perfusate samples from hypothermic machine perfusion (HMP; n = 26) and normothermic machine perfusion (NMP; n = 16) of human donor kidneys were analyzed for TRLs using flow cytometry. Residency was defined by expressions of CD69, CD103, and CD49as. TRL release was quantified exclusively in NMP. Additionally, levels of cell-free DNA, neutrophil gelatinase-associated lipocalin, and soluble E-cadherin (sE-cadherin) were measured in NMP supernatants with quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS: Both HMP and NMP samples contained a heterogeneous population of TRLs, including CD4 + tissue-resident memory T cells, CD8 + tissue-resident memory T cells, tissue-resident natural killer cells, tissue-resident natural killer T cells, and helper-like innate lymphoid cells. Median TRL proportions among total CD45 + lymphocytes were 0.89% (NMP) and 0.84% (HMP). TRL quantities in NMP did not correlate with donor characteristics, perfusion parameters, posttransplant outcomes, or cell-free DNA and neutrophil gelatinase-associated lipocalin concentrations. However, CD103 + TRL release positively correlated with the release of sE-cadherin, the ligand for the CD103 integrin. CONCLUSIONS: Human donor kidneys release TRLs during both HMP and NMP. The release of CD103 + TRLs was associated with the loss of their ligand sE-cadherin but not with general transplant injury biomarkers.


Assuntos
Antígenos CD , Transplante de Rim , Rim , Lipocalina-2 , Preservação de Órgãos , Perfusão , Humanos , Transplante de Rim/métodos , Perfusão/métodos , Masculino , Pessoa de Meia-Idade , Feminino , Lipocalina-2/metabolismo , Lipocalina-2/análise , Adulto , Preservação de Órgãos/métodos , Antígenos CD/metabolismo , Rim/imunologia , Rim/irrigação sanguínea , Doadores de Tecidos , Linfócitos/imunologia , Linfócitos/metabolismo , Biomarcadores/metabolismo , Caderinas/metabolismo , Idoso , Cadeias alfa de Integrinas/metabolismo , Citometria de Fluxo , Lipocalinas/metabolismo , Hipotermia Induzida
3.
Biomaterials ; 306: 122471, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377846

RESUMO

Allogeneic stem-cell based regenerative medicine is a promising approach for bone defect repair. The use of chondrogenically differentiated human marrow stromal cells (MSCs) has been shown to lead to bone formation by endochondral ossification in immunodeficient pre-clinical models. However, an insight into the interactions between the allogeneic immune system and the human MSC-derived bone grafts has not been fully achieved yet. The choice of a potent source of MSCs isolated from pediatric donors with consistent differentiation and high proliferation abilities, as well as low immunogenicity, could increase the chance of success for bone allografts. In this study, we employed an immunodeficient animal model humanised with allogeneic immune cells to study the immune responses towards chondrogenically differentiated human pediatric MSCs (ch-pMSCs). We show that ch-differentiated pMSCs remained non-immunogenic to allogeneic CD4 and CD8 T cells in an in vitro co-culture model. After subcutaneous implantation in mice, ch-pMSC-derived grafts were able to initiate bone mineralisation in the presence of an allogeneic immune system for 3 weeks without the onset of immune responses. Re-exposing the splenocytes of the humanised animals to pMSCs did not trigger further T cell proliferation, suggesting an absence of secondary immune responses. Moreover, ch-pMSCs generated mature bone after 8 weeks of implantation that persisted for up to 6 more weeks in the presence of an allogeneic immune system. These data collectively show that human allogeneic chondrogenically differentiated pediatric MSCs might be a safe and potent option for bone defect repair in the tissue engineering and regenerative medicine setting.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Criança , Osteogênese , Medula Óssea , Células Estromais , Diferenciação Celular , Células da Medula Óssea , Células Cultivadas
4.
Stem Cells Dev ; 33(1-2): 27-42, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37950716

RESUMO

Allogeneic transplant organs are potentially highly immunogenic. The endothelial cells (ECs) located within the vascular system serve as the primary interface between the recipient's immune system and the donor organ, playing a key role in the alloimmune response. In this study, we investigated the potential use of recipient-derived ECs in a vein recellularization model. In this study, human iliac veins underwent complete decellularization using a Triton X-100 protocol. We demonstrated the feasibility of re-endothelializing acellular blood vessels using either human umbilical cord vein endothelial cell or human venous-derived ECs, with this re- endothelialization being sustainable for up to 28 days in vitro. The re-endothelialized veins exhibited the restoration of vascular barrier function, along with the restoration of innate immunoregulatory capabilities, evident through the facilitation of monocytic cell transmigration and their polarization toward a macrophage phenotype following transendothelial extravasation. Finally, we explored whether recellularization with EC of a different donor could prevent antibody-mediated rejection. We demonstrated that in chimeric vessels, allogeneic EC became a target of the humoral anti-donor response after activation of the classical immune complement pathway whereas autologous EC were spared, emphasizing their potential utility before transplantation. In conclusion, our study demonstrates that replacement of EC in transplants could reduce the immunological challenges associated with allogeneic grafts.


Assuntos
Quimerismo , Células Endoteliais , Humanos , Endotélio Vascular
5.
JCI Insight ; 8(21)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37751288

RESUMO

Tissue-resident lymphocytes (TRLs) are critical for local protection against viral pathogens in peripheral tissue. However, it is unclear if TRLs perform a similar role in transplanted organs under chronic immunosuppressed conditions. In this study, we aimed to characterize the TRL compartment in human kidney transplant nephrectomies and examine its potential role in antiviral immunity. The TRL compartment of kidney transplants contained diverse innate, innate-like, and adaptive TRL populations expressing the canonical residency markers CD69, CD103, and CD49a. Chimerism of donor and recipient cells was present in 43% of kidney transplants and occurred in all TRL subpopulations. Paired single-cell transcriptome and T cell receptor (TCR) sequencing showed that donor and recipient tissue-resident memory T (TRM) cells exhibit striking similarities in their transcriptomic profiles and share numerous TCR clonotypes predicted to target viral pathogens. Virus dextramer staining further confirmed that CD8 TRM cells of both donor and recipient origin express TCRs with specificities against common viruses, including CMV, EBV, BK polyomavirus, and influenza A. Overall, the study results demonstrate that a diverse population of TRLs resides in kidney transplants and offer compelling evidence that TRM cells of both donor and recipient origin reside within this TRL population and may contribute to local protection against viral pathogens.


Assuntos
Transplante de Rim , Vírus , Humanos , Memória Imunológica , Linfócitos T CD8-Positivos , Receptores de Antígenos de Linfócitos T
7.
Int Immunopharmacol ; 118: 110076, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37030123

RESUMO

Inflammatory bowel diseases (IBD), including ulcerative colitis, are chronic and idiopathic inflammations of the gastrointestinal tract. A disruption of the epithelial barrier and an imbalance between Th1 and Th2 subsets are associated with the onset and progression of these diseases. Mesenchymal stromal cells (MSC) are a promising therapy for IBD. However, cell-tracking studies have shown that intravenously infused MSC localize to the lungs and present short-term survival. To reduce practical complexities arising from living cells, we generated membrane particles (MP) from MSC membranes, which possess some of the immunomodulatory properties of MSC. This study investigated the effect of MSC-derived MP and conditioned media (CM) as cell-free therapies in the dextran sulfate sodium (DSS)-induced colitis model. Acute colitis was induced in C57BL/6 mice by oral administration of 2% DSS in drinking water ad libitum from days 0 to 7. Mice were treated with MP, CM, or living MSC on days 2 and 5. Our findings revealed that MP, CM, and living MSC ameliorated DSS-induced colitis by reducing colonic inflammation, the loss of colonic goblet cells, and intestinal mucosa permeability, preventing apoptosis of damaged colonic cells and balancing Th1 and Th2 activity. Therefore, MSC-derived MP have high therapeutic potential for treating IBD, overcoming the deficiencies of living MSC therapy, and opening novel frontiers in inflammatory diseases medicine.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Células-Tronco Mesenquimais , Animais , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Sulfato de Dextrana , Doenças Inflamatórias Intestinais/terapia , Colite/terapia , Colite/tratamento farmacológico , Colo , Inflamação , Meios de Cultivo Condicionados/farmacologia , Citocinas/uso terapêutico
8.
Cells ; 12(4)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36831227

RESUMO

The use of mesenchymal stromal cells (MSCs) for clinical application is intensively investigated for a variety of areas, such as bone repair, haematological and autoimmune diseases, and solid organ transplantation [...].


Assuntos
Doenças Autoimunes , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Transplante de Órgãos , Humanos
9.
Am J Transplant ; 22(12): 2723-2739, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35896477

RESUMO

The use of extended criteria donor grafts is a promising strategy to increase the number of organ transplantations and reduce waitlist mortality. However, these organs are often compromised and/or damaged, are more susceptible to preservation injury, and are at risk for developing post-transplant complications. Ex vivo organ perfusion is a novel technology to preserve donor organs while providing oxygen and nutrients at distinct perfusion temperatures. This preservation method allows to resuscitate grafts and optimize function with therapeutic interventions prior to solid organ transplantation. Stem cell-based therapies are increasingly explored for their ability to promote regeneration and reduce the inflammatory response associated with in vivo reperfusion. The aim of this review is to describe the current state of stem cell-based therapies during ex vivo organ perfusion for the kidney, liver, lung, and heart. We discuss different strategies, including type of cells, route of administration, mechanisms of action, efficacy, and safety. The progress made within lung transplantation justifies the initiation of clinical trials, whereas more research is likely required for the kidney, liver, and heart to progress into clinical application. We emphasize the need for standardization of methodology to increase comparability between future (clinical) studies.


Assuntos
Transplante de Órgãos , Traumatismo por Reperfusão , Humanos , Preservação de Órgãos/métodos , Perfusão/métodos , Circulação Extracorpórea , Células-Tronco
10.
Transplant Rev (Orlando) ; 36(4): 100714, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35853384

RESUMO

BACKGROUND: Kidney transplantation is the optimal treatment of end-stage renal disease. Extracellular vesicles (EVs) have tremendous therapeutic potential, but their role in modulating immune responses in kidney transplantation remains unclear. METHODS: We performed a systematic review and meta-analysis to investigate the therapeutic efficacy of EVs in preclinical kidney transplant models. Outcomes for meta-analysis were graft survival and renal function. Subgroup analysis was conducted between immune cell derived EVs (immune cell-EVs) and mesenchymal stromal cell derived EVs (MSC-EVs). RESULTS: Seven studies published from 2013 to 2021 were included. The overall effects showed that EVs had a positive role in prolonging allograft survival (standardized mean difference (SMD) = 2.00; 95% confidence interval (CI), 0.79 to 3.21; P < 0.01; I2 = 94%), reducing serum creatinine (SCr) (SMD = -2.19; 95%CI, -3.35 to -1.04; P < 0.01; I2 = 93%) and blood urea nitrogen (BUN) concentrations (SMD = -1.69; 95%CI, -2.98 to -0.40; P = 0.01; I2 = 94%). Subgroup analyses indicated that only immune cell-EVs significantly prolonged graft survival and improve renal function but not MSC-EVs. CONCLUSIONS: EVs are promising candidates to suppress allograft rejection and improve kidney transplant outcome. Immune cell-EVs showed their superiority over MSC-EVs in prolonging graft survival and improving renal function. For interpretation of the outcomes, additional studies are needed to validate these findings.


Assuntos
Vesículas Extracelulares , Transplante de Rim , Células-Tronco Mesenquimais , Humanos , Transplante de Rim/efeitos adversos , Vesículas Extracelulares/transplante , Células-Tronco Mesenquimais/fisiologia , Transplante Homólogo , Aloenxertos
11.
Cells ; 11(9)2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35563725

RESUMO

Mesenchymal stromal cells have been the subject of an expanding number of studies over the past decades. Today, over 75,000 publications are available that shine light on the biological properties and therapeutic effects of these versatile cells in numerous pre-clinical models and early-phase clinical trials. The massive number of papers makes it hard for researchers to comprehend the whole field, and furthermore, they give the impression that mesenchymal stromal cells are wonder cells that are curative for any condition. It is becoming increasingly difficult to dissect how and for what conditions mesenchymal stromal cells exhibit true and reproducible therapeutic effects. This article tries to address the question how to make sense of 75,000, and still counting, publications on mesenchymal stromal cells.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais
12.
Stem Cells ; 40(6): 577-591, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35524742

RESUMO

Induced pluripotent stem cell (iPSC)-derived kidney organoids are a potential tool for the regeneration of kidney tissue. They represent an early stage of nephrogenesis and have been shown to successfsully vascularize and mature further in vivo. However, there are concerns regarding the long-term safety and stability of iPSC derivatives. Specifically, the potential for tumorigenesis may impede the road to clinical application. To study safety and stability of kidney organoids, we analyzed their potential for malignant transformation in a teratoma assay and following long-term subcutaneous implantation in an immune-deficient mouse model. We did not detect fully functional residual iPSCs in the kidney organoids as analyzed by gene expression analysis, single-cell sequencing and immunohistochemistry. Accordingly, kidney organoids failed to form teratoma. Upon long-term subcutaneous implantation of whole organoids in immunodeficient IL2Ry-/-RAG2-/- mice, we observed tumor formation in 5 out of 103 implanted kidney organoids. These tumors were composed of WT1+CD56+ immature blastemal cells and showed histological resemblance with Wilms tumor. No genetic changes were identified that contributed to the occurrence of tumorigenic cells within the kidney organoids. However, assessment of epigenetic changes revealed a unique cluster of differentially methylated genes that were also present in undifferentiated iPSCs. We discovered that kidney organoids have the capacity to form tumors upon long-term implantation. The presence of epigenetic modifications combined with the lack of environmental cues may have caused an arrest in terminal differentiation. Our results indicate that the safe implementation of kidney organoids should exclude the presence of pro-tumorigenic methylation in kidney organoids.


Assuntos
Células-Tronco Pluripotentes Induzidas , Teratoma , Animais , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Rim/patologia , Camundongos , Organogênese , Organoides/metabolismo , Teratoma/patologia
13.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34884740

RESUMO

Extracellular vesicles (EV) derived from mesenchymal stromal cells (MSC) are a potential therapy for immunological and degenerative diseases. However, large-scale production of EV free from contamination by soluble proteins is a major challenge. The generation of particles from isolated membranes of MSC, membrane particles (MP), may be an alternative to EV. In the present study we generated MP from the membranes of lysed MSC after removal of the nuclei. The yield of MP per MSC was 1 × 105 times higher than EV derived from the same number of MSC. To compare the proteome of MP and EV, proteomic analysis of MP and EV was performed. MP contained over 20 times more proteins than EV. The proteins present in MP evidenced a multi-organelle origin of MP. The projected function of the proteins in EV and MP was very different. Whilst proteins in EV mainly play a role in extracellular matrix organization, proteins in MP were interconnected in diverse molecular pathways, including protein synthesis and degradation pathways and demonstrated enzymatic activity. Treatment of MSC with IFNγ led to a profound effect on the protein make up of EV and MP, demonstrating the possibility to modify the phenotype of EV and MP through modification of parent MSC. These results demonstrate that MP are an attractive alternative to EV for the development of potential therapies. Functional studies will have to demonstrate therapeutic efficacy of MP in preclinical disease models.


Assuntos
Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteoma , Membrana Celular/metabolismo , Humanos , Interferon gama , Proteômica
14.
Front Immunol ; 12: 715267, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659205

RESUMO

Tissue engineering approaches using progenitor cells such as mesenchymal stromal cells (MSCs) represent a promising strategy to regenerate bone. Previous work has demonstrated the potential of chondrogenically primed human MSCs to recapitulate the process of endochondral ossification and form mature bone in vivo, using immunodeficient xenogeneic models. To further the translation of such MSC-based approaches, additional investigation is required to understand the impact of interactions between human MSC constructs and host immune cells upon the success of MSC-mediated bone formation. Although human MSCs are considered hypoimmunogenic, the potential of chondrogenically primed human MSCs to induce immunogenic responses in vivo, as well as the efficacy of MSC-mediated ectopic bone formation in the presence of fully competent immune system, requires further elucidation. Therefore, the aim of this study was to investigate the capacity of chondrogenically primed human MSC constructs to persist and undergo the process of endochondral ossification in an immune competent xenogeneic model. Chondrogenically differentiated human MSC pellets were subcutaneously implanted to wild-type BALB/c mice and retrieved at 2 and 12 weeks post-implantation. The percentages of CD4+ and CD8+ T cells, B cells, and classical/non-classical monocyte subsets were not altered in the peripheral blood of mice that received chondrogenic MSC constructs compared to sham-operated controls at 2 weeks post-surgery. However, MSC-implanted mice had significantly higher levels of serum total IgG compared to sham-operated mice at this timepoint. Flow cytometric analysis of retrieved MSC constructs identified the presence of T cells and macrophages at 2 and 12 weeks post-implantation, with low levels of immune cell infiltration to implanted MSC constructs detected by CD45 and CD3 immunohistochemical staining. Despite the presence of immune cells in the tissue, MSC constructs persisted in vivo and were not degraded/resorbed. Furthermore, constructs became mineralised, with longitudinal micro-computed tomography imaging revealing an increase in mineralised tissue volume from 4 weeks post-implantation until the experimental endpoint at 12 weeks. These findings indicate that chondrogenically differentiated human MSC pellets can persist and undergo early stages of endochondral ossification following subcutaneous implantation in an immunocompetent xenogeneic model. This scaffold-free model may be further extrapolated to provide mechanistic insight to osteoimmunological processes regulating bone regeneration and homeostasis.


Assuntos
Calcificação Fisiológica , Diferenciação Celular , Condrogênese , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Biomarcadores , Regeneração Óssea , Diferenciação Celular/genética , Células Cultivadas , Condrogênese/genética , Humanos , Imunidade , Camundongos , Modelos Animais , Monócitos/imunologia , Monócitos/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Engenharia Tecidual , Microtomografia por Raio-X
15.
Int J Surg Protoc ; 25(1): 227-237, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34708171

RESUMO

INTRODUCTION: Ageing of the general population has led to an increase in the use of suboptimal kidneys from expanded criteria donation after brain death (ECD-DBD) and donation after circulatory death (DCD) donors. However, these kidneys have inferior graft outcomes and lower rates of immediate function. Normothermic machine perfusion (NMP) may improve outcomes of these suboptimal donor kidneys. Previous non-randomized studies have shown the safety of this technique and suggested its efficacy in improving the proportion of immediate functioning kidneys compared to static cold storage (SCS). However, its additional value to hypothermic machine perfusion (HMP), which has already been proved superior to SCS, has not yet been established. METHODS AND ANALYSIS: This single-center, open-label, randomized controlled trial aims to assess immediate kidney function after 120 minutes additional, end-ischemic NMP compared to HMP alone. Immediate kidney function is defined as no dialysis treatment in the first week after transplant. Eighty recipients on dialysis at the time of transplant who receive an ECD-DBD or DCD kidney graft are eligible for inclusion. In the NMP group, the donor kidney is taken of HMP upon arrival in the recipient hospital and thereafter put on NMP for 120 minutes at 37 degrees Celsius followed by transplantation. In the control group, donor kidneys stay on HMP until transplantation. The primary outcome is immediate kidney function. ETHICS AND DISSEMINATION: The protocol has been approved by the Medical Ethical Committee of Erasmus Medical Center (2020-0366). Results of this study will be submitted to peer-reviewed journals. REGISTRATION: registered in clinicaltrials.gov (NCT04882254). HIGHLIGHTS: This is the first RCT to compare additional NMP to HMP alone.Extensive sampling will offer in-depth analysis of kidney physiology during NMP.This RCT may help identify biomarkers to predict clinical outcomes during NMP.Biomarkers can help develop NMP as assessment tool for declined kidneys.

16.
Front Immunol ; 12: 651109, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790914

RESUMO

Mesenchymal stromal cells (MSC) are a promising therapy for inflammatory diseases. However, MSC are large and become trapped in the lungs after intravenous infusion, where they have a short survival time. To steer MSC immunoregulatory therapy beyond the lungs, we generated nm-sized particles from MSC membranes (membrane particles, MP), which have immunomodulatory properties, and investigated their internalization and mode of interaction in macrophages subtypes and human umbilical vein endothelial cells (HUVEC) under control and inflammatory conditions. We found that macrophages and HUVEC take up MP in a dose, time, and temperature-dependent manner. Specific inhibitors for endocytotic pathways revealed that MP internalization depends on heparan sulfate proteoglycan-, dynamin-, and clathrin-mediated endocytosis but does not involve caveolin-mediated endocytosis. MP uptake also involved the actin cytoskeleton and phosphoinositide 3-kinase, which are implicated in macropinocytosis and phagocytosis. Anti-inflammatory M2 macrophages take up more MP than pro-inflammatory M1 macrophages. In contrast, inflammatory conditions did not affect the MP uptake by HUVEC. Moreover, MP induced both anti- and pro-inflammatory responses in macrophages and HUVEC by affecting gene expression and cell surface proteins. Our findings on the mechanisms of uptake of MP under different conditions help the development of target-cell specific MP therapy to modulate immune responses.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Micropartículas Derivadas de Células/imunologia , Células-Tronco Mesenquimais/citologia , Micropartículas Derivadas de Células/transplante , Células Cultivadas , Relação Dose-Resposta Imunológica , Voluntários Saudáveis , Células Endoteliais da Veia Umbilical Humana , Humanos , Macrófagos/imunologia , Células-Tronco Mesenquimais/imunologia , Fagocitose/imunologia , Pinocitose/imunologia , Cultura Primária de Células , Gordura Subcutânea/citologia
17.
Front Immunol ; 12: 650522, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897698

RESUMO

Proinflammatory stimuli lead to endothelial injury, which results in pathologies such as cardiovascular diseases, autoimmune diseases, and contributes to alloimmune responses after organ transplantation. Both mesenchymal stromal cells (MSC) and the extracellular vesicles (EV) released by them are widely studied as regenerative therapy for the endothelium. However, for therapeutic application, the manipulation of living MSC and large-scale production of EV are major challenges. Membrane particles (MP) generated from MSC may be an alternative to the use of whole MSC or EV. MP are nanovesicles artificially generated from the membranes of MSC and possess some of the therapeutic properties of MSC. In the present study we investigated whether MP conserve the beneficial MSC effects on endothelial cell repair processes under inflammatory conditions. MP were generated by hypotonic shock and extrusion of MSC membranes. The average size of MP was 120 nm, and they showed a spherical shape. The effects of two ratios of MP (50,000; 100,000 MP per target cell) on human umbilical vein endothelial cells (HUVEC) were tested in a model of inflammation induced by TNFα. Confocal microscopy and flow cytometry showed that within 24 hours >90% of HUVEC had taken up MP. Moreover, MP ended up in the lysosomes of the HUVEC. In a co-culture system of monocytes and TNFα activated HUVEC, MP did not affect monocyte adherence to HUVEC, but reduced the transmigration of monocytes across the endothelial layer from 138 ± 61 monocytes per microscopic field in TNFα activated HUVEC to 61 ± 45 monocytes. TNFα stimulation induced a 2-fold increase in the permeability of the HUVEC monolayer measured by the translocation of FITC-dextran to the lower compartment of a transwell system. At a dose of 1:100,000 MP significantly decreased endothelial permeability (1.5-fold) respect to TNFα Stimulated HUVEC. Finally, MP enhanced the angiogenic potential of HUVEC in an in vitro Matrigel assay by stimulating the formation of angiogenic structures, such as percentage of covered area, total tube length, total branching points, total loops. In conclusion, MP show regenerative effects on endothelial cells, opening a new avenue for treatment of vascular diseases where inflammatory processes damage the endothelium.


Assuntos
Tecido Adiposo/citologia , Vesículas Extracelulares/imunologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Células-Tronco Mesenquimais/imunologia , Monócitos/imunologia , Adesão Celular/imunologia , Permeabilidade da Membrana Celular/imunologia , Células Cultivadas , Técnicas de Cocultura , Microscopia Crioeletrônica , DNA/genética , DNA/isolamento & purificação , Vesículas Extracelulares/genética , Vesículas Extracelulares/ultraestrutura , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Microscopia Eletrônica de Transmissão , Monócitos/citologia , Tamanho da Partícula , RNA/genética , RNA/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
PLoS One ; 16(3): e0248415, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33730089

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with limited treatment options in which the telomere shortening is a strong predictive factor of poor prognosis. Mesenchymal stromal cells (MSC) administration is probed in several experimental induced lung pathologies; however, MSC might stimulate fibrotic processes. A therapy that avoids MSC side effects of transformation would be an alternative to the use of living cells. Membranes particles (MP) are nanovesicles artificially generated from the membranes of MSC containing active enzymes involved in ECM regeneration. We aimed to investigate the anti-fibrotic role of MP derived from MSC in an in vitro model of pulmonary fibrosis. METHODS: Epithelial cells (A549) and lung fibroblasts, from IPF patients with different telomere length, were co-cultured with MP and TGF-ß for 48h and gene expression of major pro-fibrotic markers were analyzed. RESULTS: About 90% of both types of cells effectively took up MP without cytotoxic effects. MP decreased the expression of profibrotic proteins such as Col1A1, Fibronectin and PAI-1, in A549 cells. In fibroblasts culture, there was a different response in the inhibitory effect of MP on some pro-fibrotic markers when comparing fibroblast from normal telomere length patients (FN) versus short telomere length (FS), but both types showed an inhibition of Col1A1, Tenascin-c, PAI-1 and MMP-1 gene expression after MP treatment. CONCLUSIONS: MP conserve some of the properties attributed to the living MSC. This study shows that MP target lung cells, via which they may have a broad anti-fibrotic effect.


Assuntos
Micropartículas Derivadas de Células/transplante , Fibrose Pulmonar Idiopática/terapia , Células-Tronco Mesenquimais/citologia , Nanopartículas/uso terapêutico , Cultura Primária de Células/métodos , Células A549 , Adulto , Idoso , Técnicas de Cocultura , Feminino , Fibroblastos , Regulação da Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/patologia , Pulmão/citologia , Pulmão/patologia , Masculino , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Pessoa de Meia-Idade , Gordura Subcutânea/citologia , Encurtamento do Telômero
19.
Am J Transplant ; 21(7): 2348-2359, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33382194

RESUMO

Normothermic machine perfusion (NMP) of injured kidneys offers the opportunity for interventions to metabolically active organs prior to transplantation. Mesenchymal stromal cells (MSCs) can exert regenerative and anti-inflammatory effects in ischemia-reperfusion injury. The aims of this study were to evaluate the safety and feasibility of MSC treatment of kidneys during NMP using a porcine autotransplantation model, and examine potential MSC treatment-associated kidney improvements up to 14 days posttransplant. After 75 min of kidney warm ischemia, four experimental groups of n = 7 underwent 14 h of oxygenated hypothermic machine perfusion. In three groups this was followed by 240 min of NMP with infusion of vehicle, 10 million porcine, or 10 million human adipose-derived MSCs. All kidneys were autotransplanted after contralateral nephrectomy. MSC treatment did not affect perfusion hemodynamics during NMP or cause adverse effects at reperfusion, with 100% animal survival. MSCs did not affect plasma creatinine, glomerular filtration rate, neutrophil gelatinase-associated lipocalin concentrations or kidney damage assessed by histology during the 14 days, and MSCs retention was demonstrated in renal cortex. Infusing MSCs during ex vivo NMP of porcine kidneys was safe and feasible. Within the short posttransplant follow-up period, no beneficial effects of ex vivo MSC therapy could be demonstrated.


Assuntos
Células-Tronco Mesenquimais , Preservação de Órgãos , Animais , Humanos , Rim , Perfusão , Suínos , Transplante Autólogo
20.
Transpl Int ; 34(2): 233-244, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33207013

RESUMO

Cellular therapy is a promising tool for improving the outcome of organ transplantation. Various cell types with different immunoregulatory and regenerative properties may find application for specific transplant rejection or injury-related indications. The current era is crucial for the development of cellular therapies. Preclinical models have demonstrated the feasibility of efficacious cell therapy in transplantation, early clinical trials have shown safety of several of these therapies, and the first steps towards efficacy studies in humans have been made. In this review, we address the current state of the art of cellular therapies in clinical transplantation and discuss monitoring tools and endpoints for these studies.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Transplante de Órgãos , Terapia Baseada em Transplante de Células e Tecidos , Rejeição de Enxerto , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA