Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Org Lett ; 25(39): 7230-7235, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37751441

RESUMO

We report a method that enables the fast incorporation of carbon isotopes into the ipso carbon of phenols. Our approach relies on the synthesis of a 1,5-dibromo-1,4-pentadiene precursor, which upon lithium-halogen exchange followed by treatment with carbonate esters results in a formal [5 + 1] cyclization to form the phenol product. Using this strategy, we have prepared 12 1-13C-labeled phenols, show proof-of-concept for the labeling of phenols with carbon-14, and demonstrate phenol synthesis directly from cyclotron-produced [11C]CO2.

2.
Neurosci Biobehav Rev ; 153: 105373, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37634556

RESUMO

In aerobic glycolysis, oxygen is abundant, and yet cells metabolize glucose without using it, decreasing their ATP per glucose yield by 15-fold. During task-based stimulation, aerobic glycolysis occurs in localized brain regions, presenting a puzzle: why produce ATP inefficiently when, all else being equal, evolution should favor the efficient use of metabolic resources? The answer is that all else is not equal. We propose that a tradeoff exists between efficient ATP production and the efficiency with which ATP is spent to transmit information. Aerobic glycolysis, despite yielding little ATP per glucose, may support neuronal signaling in thin (< 0.5 µm), information-efficient axons. We call this the efficiency tradeoff hypothesis. This tradeoff has potential implications for interpretations of task-related BOLD "activation" observed in fMRI. We hypothesize that BOLD "activation" may index local increases in aerobic glycolysis, which support signaling in thin axons carrying "bottom-up" information, or "prediction error"-i.e., the BIAPEM (BOLD increases approximate prediction error metabolism) hypothesis. Finally, we explore implications of our hypotheses for human brain evolution, social behavior, and mental disorders.


Assuntos
Trifosfato de Adenosina , Glicólise , Humanos , Glicólise/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Glucose/metabolismo , Neuroimagem
3.
ACS Chem Neurosci ; 13(24): 3661-3667, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36472927

RESUMO

Voltage-gated sodium channels (Navs) play a crucial electrical signaling role in neurons. Nav-isoforms present in peripheral sensory neurons and dorsal root ganglia of the spinal cord are critically involved in pain perception and transmission. While these isoforms, particularly Nav1.7, are implicated in neuropathic pain disorders, changes in the functional state and expression levels of these channels have not been extensively studied in vivo. Radiocaine, a fluorine-18 radiotracer based on the local anesthetic lidocaine, a non-selective Nav blocker, has previously been used for cardiac Nav1.5 imaging using positron-emission tomography (PET). In the present study, we used Radiocaine to visualize changes in neuronal Nav expression after neuropathic injury. In rats that underwent unilateral spinal nerve ligation, PET/MR imaging demonstrated significantly higher uptake of Radiocaine into the injured sciatic nerve, as compared to the uninjured sciatic nerve, for up to 32 days post-surgery. Radiocaine, due to its high translational potential, may serve as a novel diagnostic tool for neuropathic pain conditions using PET imaging.


Assuntos
Neuralgia , Canais de Sódio Disparados por Voltagem , Ratos , Animais , Ratos Sprague-Dawley , Nervos Espinhais/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Neuralgia/diagnóstico por imagem , Neuralgia/metabolismo , Gânglios Espinais/metabolismo , Células Receptoras Sensoriais/metabolismo
4.
Brain ; 145(3): 1098-1110, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-34528069

RESUMO

We recently showed that patients with different chronic pain conditions (such as chronic low back pain, fibromyalgia, migraine and Gulf War illness) demonstrated elevated brain and/or spinal cord levels of the glial marker 18-kDa translocator protein (TSPO), which suggests that neuroinflammation might be a pervasive phenomenon observable across multiple aetiologically heterogeneous pain disorders. Interestingly, the spatial distribution of this neuroinflammatory signal appears to exhibit a degree of disease specificity (e.g. with respect to the involvement of the primary somatosensory cortex), suggesting that different pain conditions may exhibit distinct 'neuroinflammatory signatures'. To explore this hypothesis further, we tested whether neuroinflammatory signal can characterize putative aetiological subtypes of chronic low back pain patients based on clinical presentation. Specifically, we explored neuroinflammation in patients whose chronic low back pain either did or did not radiate to the leg (i.e. 'radicular' versus 'axial' back pain). Fifty-four patients with chronic low back pain, 26 with axial back pain [43.7 ± 16.6 years old (mean ± SD)] and 28 with radicular back pain (48.3 ± 13.2 years old), underwent PET/MRI with 11C-PBR28, a second-generation radioligand for TSPO. 11C-PBR28 signal was quantified using standardized uptake values ratio (validated against volume of distribution ratio; n = 23). Functional MRI data were collected simultaneously to the 11C-PBR28 data (i) to functionally localize the primary somatosensory cortex back and leg subregions; and (ii) to perform functional connectivity analyses (in order to investigate possible neurophysiological correlations of the neuroinflammatory signal). PET and functional MRI measures were compared across groups, cross-correlated with one another and with the severity of 'fibromyalgianess' (i.e. the degree of pain centralization, or 'nociplastic pain'). Furthermore, statistical mediation models were used to explore possible causal relationships between these three variables. For the primary somatosensory cortex representation of back/leg, 11C-PBR28 PET signal and functional connectivity to the thalamus were: (i) higher in radicular compared to axial back pain patients; (ii) positively correlated with each other; (iii) positively correlated with fibromyalgianess scores, across groups; and finally (iv) fibromyalgianess mediated the association between 11C-PBR28 PET signal and primary somatosensory cortex-thalamus connectivity across groups. Our findings support the existence of 'neuroinflammatory signatures' that are accompanied by neurophysiological changes and correlate with clinical presentation (in particular, with the degree of nociplastic pain) in chronic pain patients. These signatures may contribute to the subtyping of distinct pain syndromes and also provide information about interindividual variability in neuroimmune brain signals, within diagnostic groups, that could eventually serve as targets for mechanism-based precision medicine approaches.


Assuntos
Dor Crônica , Dor Lombar , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Dor Crônica/diagnóstico por imagem , Humanos , Dor Lombar/diagnóstico por imagem , Dor Lombar/metabolismo , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/metabolismo
5.
ACS Chem Neurosci ; 12(18): 3410-3417, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34469110

RESUMO

Adenosine receptor (AR) radiotracers for positron emission tomography (PET) have provided knowledge on the in vivo biodistribution of ARs in the central nervous system (CNS), which is of therapeutic interest for various neuropsychiatric disorders. Additionally, radioligands that can image changes in endogenous adenosine levels in different physiological and pathological conditions are still lacking. The binding of known antagonist adenosine A1 receptor (A1R) radiotracer, [11C]MDPX, failed to be inhibited by elevated endogenous adenosine in a rodent PET study. Since most of the known AR PET radiotracers were antagonists, we propose that an A1R agonist radioligand may possess higher sensitivity to measure changes in endogenous adenosine concentration. Herein, we report our latest findings toward the development of a full agonist adenosine A1 radioligand for PET. Based on a 3,5-dicyanopyridine template, 16 new derivatives were designed and synthesized to optimize both binding affinity and functional activity, resulting in two full agonists (compounds 27 and 29) with single-digit nanomolar affinities and good subtype selectivity (A1/A2A selectivity of ∼1000-fold for compound 27 and 29-fold for compound 29). Rapid O-[11C]methylation provided [11C]27 and [11C]29 in high radiochemical yields and radiochemical purity. However, subsequent brain PET imaging in rodents showed poor brain permeability for both radioligands. An in vivo PET study using knockout mice for MDR 1a/a, BCRP, and MRP1 indicated that these compounds might be substrates for brain efflux pumps. In addition, in silico evaluation using multiparameter optimization identified high molecular weight and high polar surface area as the main molecular descriptors responsible for low brain penetration. These results will provide further insight toward development of full agonist adenosine A1 radioligands and also highly potent CNS A1AR drugs.


Assuntos
Proteínas de Neoplasias , Agonistas do Receptor Purinérgico P1 , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Adenosina , Animais , Camundongos , Tomografia por Emissão de Pósitrons , Distribuição Tecidual
6.
Neuroimage Clin ; 27: 102346, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32712451

RESUMO

Major surgery is associated with a systemic inflammatory cascade that is thought, in some cases, to contribute to transient and/or sustained cognitive decline, possibly through neuroinflammatory mechanisms. However, the relationship between surgery, peripheral and central nervous system inflammation, and post-operative cognitive outcomes remains unclear in humans, primarily owing to limitations of in vivo biomarkers of neuroinflammation which vary in sensitivity, specificity, validity, and reliability. In the present study, [11C]PBR28 positron emission tomography, cerebrospinal fluid (CSF), and blood plasma biomarkers of inflammation were assessed pre-operatively and 1-month post-operatively in a cohort of patients (N = 36; 30 females; ≥70 years old) undergoing major orthopedic surgery under spinal anesthesia. Delirium incidence and severity were evaluated daily during hospitalization. Whole-brain voxel-wise and regions-of-interest analyses were performed to determine the magnitude and spatial extent of changes in [11C]PBR28 uptake following surgery. Results demonstrated that, compared with pre-operative baseline, [11C]PBR28 binding in the brain was globally downregulated at 1 month following major orthopedic surgery, possibly suggesting downregulation of the immune system of the brain. No significant relationship was identified between post-operative delirium and [11C]PBR28 binding, possibly due to a small number (n = 6) of delirium cases in the sample. Additionally, no significant relationships were identified between [11C]PBR28 binding and CSF/plasma biomarkers of inflammation. Collectively, these results contribute to the literature by demonstrating in a sizeable sample the effect of major surgery on neuroimmune activation and preliminary evidence identifying no apparent associations between [11C]PBR28 binding and fluid inflammatory markers or post-operative delirium.


Assuntos
Delírio , Tomografia Computadorizada por Raios X , Idoso , Delírio/etiologia , Feminino , Humanos , Inflamação , Tomografia por Emissão de Pósitrons , Reprodutibilidade dos Testes
7.
Cancers (Basel) ; 12(7)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708733

RESUMO

Pediatric ependymoma (EPN) is a highly aggressive tumor of the central nervous system that remains incurable in 40% of cases. In children, the majority of cases develop in the posterior fossa and can be classified into two distinct molecular entities: EPN posterior fossa A (PF-EPN-A) and EPN posterior fossa B (PF-EPN-B). Patients with PF-EPN-A have poor outcome and are in demand of new therapies. In general, PF-EPN-A tumors show a balanced chromosome copy number profile and have no recurrent somatic nucleotide variants. However, these tumors present abundant epigenetic deregulations, thereby suggesting that epigenetic therapies could provide new opportunities for PF-EPN-A patients. In vitro epigenetic drug screening of 11 compounds showed that histone deacetylase inhibitors (HDACi) had the highest anti-proliferative activity in two PF-EPN-A patient-derived cell lines. Further screening of 5 new brain-penetrating HDACi showed that CN133 induced apoptosis in vitro, reduced tumor growth in vivo and significantly extended the survival of mice with orthotopically-implanted EPN tumors by modulation of the unfolded protein response, PI3K/Akt/mTOR signaling, and apoptotic pathways among others. In summary, our results provide solid preclinical evidence for the use of CN133 as a new therapeutic agent against PF-EPN-A tumors.

8.
J Med Chem ; 63(1): 295-308, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31793776

RESUMO

Inhibition of histone deacetylase 6 (HDAC6) has emerged as a promising therapeutic strategy for the treatment of cancer, chemotherapy-induced peripheral neuropathy, and neurodegenerative disease. The recent X-ray crystal structure determination of HDAC6 enables an understanding of structural features directing affinity and selectivity in the active site. Here, we present the X-ray crystal structures of five HDAC6-inhibitor complexes that illuminate key molecular features of the inhibitor linker and capping groups that facilitate and differentiate binding to HDAC6. In particular, aromatic and heteroaromatic linkers nestle within an aromatic cleft defined by F583 and F643, and different aromatic linkers direct the capping group toward shallow pockets defined by the L1 loop, the L2 loop, or somewhere in between these pockets. These results expand our understanding of factors contributing to the selective inhibition of HDAC6, particularly regarding interactions that can be targeted in the region of the L2 pocket.


Assuntos
Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/metabolismo , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/metabolismo , Animais , Domínio Catalítico , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Interações Hidrofóbicas e Hidrofílicas , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/química , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Peixe-Zebra
9.
Clin Cancer Res ; 26(1): 206-212, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31558474

RESUMO

PURPOSE: Targeting tumor blood vessels is an attractive therapy in glioblastoma (GBM), but the mechanism of action of these agents and how they modulate delivery of concomitant chemotherapy are not clear in humans. We sought to elucidate how bevacizumab modulates tumor vasculature and the impact those vascular changes have on drug delivery in patients with recurrent GBM. EXPERIMENTAL DESIGN: Temozolomide was labeled with [11C], and serial PET-MRI scans were performed in patients with recurrent GBM treated with bevacizumab and daily temozolomide. PET-MRI scans were performed prior to the first bevacizumab dose, 1 day after the first dose, and prior to the third dose of bevacizumab. We calculated tumor volume, vascular permeability (K trans), perfusion (cerebral blood flow), and the standardized uptake values (SUV) of [11C] temozolomide within the tumor. RESULTS: Twelve patients were enrolled, resulting in 23 evaluable scans. Within the entire contrast-enhancing tumor volume, both temozolomide uptake and vascular permeability decreased after initiation of bevacizumab in most patients, whereas change in perfusion was more variable. In subregions of the tumor where permeability was low and the blood-brain barrier not compromised, increased perfusion correlated with increased temozolomide uptake. CONCLUSIONS: Bevacizumab led to a decrease in permeability and concomitant delivery of temozolomide. However, in subregions of the tumor where permeability was low, increased perfusion improved delivery of temozolomide, suggesting that perfusion may modulate the delivery of chemotherapy in certain settings. These results support exploring whether lower doses of bevacizumab improve perfusion and concomitant drug delivery.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Permeabilidade Capilar/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Adulto , Idoso , Bevacizumab/administração & dosagem , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Quimioterapia do Câncer por Perfusão Regional , Feminino , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Tomografia por Emissão de Pósitrons/métodos , Prognóstico , Temozolomida/administração & dosagem
10.
Neurooncol Adv ; 2(1): vdaa157, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392506

RESUMO

BACKGROUND: Hypoxia is a driver of treatment resistance in glioblastoma. Antiangiogenic agents may transiently normalize blood vessels and decrease hypoxia before excessive pruning of vessels increases hypoxia. The time window of normalization is dose and time dependent. We sought to determine how VEGF blockade with bevacizumab modulates tumor vasculature and the impact that those vascular changes have on hypoxia in recurrent glioblastoma patients. METHODS: We measured tumor volume, vascular permeability (Ktrans), perfusion parameters (cerebral blood flow/volume, vessel caliber, and mean transit time), and regions of hypoxia in patients with recurrent glioblastoma before and after treatment with bevacizumab alone or with lomustine using [18F]FMISO PET-MRI. We also examined serial changes in plasma biomarkers of angiogenesis and inflammation. RESULTS: Eleven patients were studied. The magnitude of global tumor hypoxia was variable across these 11 patients prior to treatment and it did not significantly change after bevacizumab. The hypoxic regions had an inefficient vasculature characterized by elevated cerebral blood flow/volume and increased vessel caliber. In a subset of patients, there were tumor subregions with decreased mean transit times and a decrease in hypoxia, suggesting heterogeneous improvement in vascular efficiency. Bevacizumab significantly changed known pharmacodynamic biomarkers such as plasma VEGF and PlGF. CONCLUSIONS: The vascular signature in hypoxic tumor regions indicates a disorganized vasculature which, in most tumors, does not significantly change after bevacizumab treatment. While some tumor regions showed improved vascular efficiency following treatment, bevacizumab did not globally alter hypoxia or normalize tumor vasculature in glioblastoma.

11.
Brain Behav Immun ; 75: 72-83, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30223011

RESUMO

Fibromyalgia (FM) is a poorly understood chronic condition characterized by widespread musculoskeletal pain, fatigue, and cognitive difficulties. While mounting evidence suggests a role for neuroinflammation, no study has directly provided evidence of brain glial activation in FM. In this study, we conducted a Positron Emission Tomography (PET) study using [11C]PBR28, which binds to the translocator protein (TSPO), a protein upregulated in activated microglia and astrocytes. To enhance statistical power and generalizability, we combined datasets collected independently at two separate institutions (Massachusetts General Hospital [MGH] and Karolinska Institutet [KI]). In an attempt to disentangle the contributions of different glial cell types to FM, a smaller sample was scanned at KI with [11C]-L-deprenyl-D2 PET, thought to primarily reflect astrocytic (but not microglial) signal. Thirty-one FM patients and 27 healthy controls (HC) were examined using [11C]PBR28 PET. 11 FM patients and 11 HC were scanned using [11C]-L-deprenyl-D2 PET. Standardized uptake values normalized by occipital cortex signal (SUVR) and distribution volume (VT) were computed from the [11C]PBR28 data. [11C]-L-deprenyl-D2 was quantified using λ k3. PET imaging metrics were compared across groups, and when differing across groups, against clinical variables. Compared to HC, FM patients demonstrated widespread cortical elevations, and no decreases, in [11C]PBR28 VT and SUVR, most pronounced in the medial and lateral walls of the frontal and parietal lobes. No regions showed significant group differences in [11C]-L-deprenyl-D2 signal, including those demonstrating elevated [11C]PBR28 signal in patients (p's ≥ 0.53, uncorrected). The elevations in [11C]PBR28 VT and SUVR were correlated both spatially (i.e., were observed in overlapping regions) and, in several areas, also in terms of magnitude. In exploratory, uncorrected analyses, higher subjective ratings of fatigue in FM patients were associated with higher [11C]PBR28 SUVR in the anterior and posterior middle cingulate cortices (p's < 0.03). SUVR was not significantly associated with any other clinical variable. Our work provides the first in vivo evidence supporting a role for glial activation in FM pathophysiology. Given that the elevations in [11C]PBR28 signal were not also accompanied by increased [11C]-L-deprenyl-D2 signal, our data suggests that microglia, but not astrocytes, may be driving the TSPO elevation in these regions. Although [11C]-L-deprenyl-D2 signal was not found to be increased in FM patients, larger studies are needed to further assess the role of possible astrocytic contributions in FM. Overall, our data support glial modulation as a potential therapeutic strategy for FM.


Assuntos
Fibromialgia/diagnóstico por imagem , Fibromialgia/metabolismo , Neuroglia/metabolismo , Acetamidas/metabolismo , Adulto , Astrócitos/metabolismo , Encéfalo/metabolismo , Radioisótopos de Carbono/metabolismo , Feminino , Fibromialgia/fisiopatologia , Humanos , Masculino , Microglia/metabolismo , Pessoa de Meia-Idade , Neuroglia/fisiologia , Neuroimunomodulação/fisiologia , Dor/metabolismo , Dor/fisiopatologia , Tomografia por Emissão de Pósitrons/métodos , Piridinas/metabolismo , Receptores de GABA/metabolismo
12.
J Nucl Med ; 59(10): 1538-1543, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29853654

RESUMO

Tremendous efforts are currently dedicated to the development of novel therapies targeting the androgen receptor (AR), the major driver of prostate cancer disease and its progression to castration resistance. The ability to noninvasively interrogate AR expression over time in murine models of prostate cancer would permit longitudinal preclinical analysis of novel compounds that could not otherwise be accomplished ex vivo. Although PET imaging with 16ß-18F-fluoro-5α-dihydrotestosterone (18F-FDHT) has successfully quantified AR levels clinically, no rodent model of 18F-FDHT imaging has been reported so far. One difference between humans and rodents is the absence in the latter of the sex hormone-binding globulin (SHBG), a glycoprotein that binds to testosterone in the bloodstream, Here, we explore the role of SHBG in developing a working model of rodent AR imaging. Methods: Three human prostate cancer cell lines and xenografts (LNCaP, 22Rv1, and PC3) were used to examine the uptake of free 18F-FDHT and SHBG-bound 18F-FDHT. Both ligands were examined for stability and competitive binding to AR over time in vitro before in vivo studies. PET/CT imaging was used to dynamically measure the uptake of both tracers over 4 h, whereas specificity was determined by competitive binding with the AR antagonist enzalutamide. Results: AR levels correlated with the uptake of both 18F-FDHT and SHBG-18F-FDHT in prostate cancer cell lines. Interestingly, whereas both free and SHBG-bound 18F-FDHT had a similar cellular accumulation at 1 and 2.5 h, SHBG-18F-FDHT accumulated at significantly higher levels after 4 h-evidence that receptor-mediated uptake of SHBG accounted for later time-point differences. This observation was also seen in 22Rv1 tumor-bearing mice, in which SHBG-18F-FDHT exhibited a significantly increased uptake (average tumor-to-background ratio [TBR], 1.62 ± 0.62) in comparison to unbound 18F-FDHT (TBR, 0.81 ± 0.08) at 4 h. Furthermore, the specificity of the SHBG-18F-FDHT accumulation at 4 h was demonstrated by a reduced tumor uptake after AR blockade with enzalutamide (TBR, 1.07 ± 0.13). Conclusion: Prebinding of 18F-FDHT to SHBG allows accurate and quantitative PET imaging of AR levels in murine models of prostate cancer. This procedure may permit the use of PET imaging to study the longitudinal effects of AR-targeting therapies, accelerating novel-drug development.


Assuntos
Transformação Celular Neoplásica , Di-Hidrotestosterona/análogos & derivados , Radioisótopos de Flúor , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Globulina de Ligação a Hormônio Sexual/metabolismo , Animais , Transporte Biológico , Linhagem Celular Tumoral , Di-Hidrotestosterona/metabolismo , Humanos , Masculino , Camundongos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata/diagnóstico por imagem , Ligação Proteica
13.
ACS Cent Sci ; 3(9): 1006-1014, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28979942

RESUMO

Histone deacetylase 6 (HDAC6) function and dysregulation have been implicated in the etiology of certain cancers and more recently in central nervous system (CNS) disorders including Rett syndrome, Alzheimer's and Parkinson's diseases, and major depressive disorder. HDAC6-selective inhibitors have therapeutic potential, but in the CNS drug space the development of highly brain penetrant HDAC inhibitors has been a persistent challenge. Moreover, no tool exists to directly characterize HDAC6 and its related biology in the living human brain. Here, we report a highly brain penetrant HDAC6 inhibitor, Bavarostat, that exhibits excellent HDAC6 selectivity (>80-fold over all other Zn-containing HDAC paralogues), modulates tubulin acetylation selectively over histone acetylation, and has excellent brain penetrance. We further demonstrate that Bavarostat can be radiolabeled with 18F by deoxyfluorination through in situ formation of a ruthenium π-complex of the corresponding phenol precursor: the only method currently suitable for synthesis of [18F]Bavarostat. Finally, by using [18F]Bavarostat in a series of rodent and nonhuman primate imaging experiments, we demonstrate its utility for mapping HDAC6 in the living brain, which sets the stage for first-in-human neurochemical imaging of this important target.

14.
J Am Chem Soc ; 139(21): 7152-7155, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28502164

RESUMO

A practical procedure for 11CN-labeling of unprotected peptides has been developed. The method was shown to be highly chemoselective for cysteine over other potentially nucleophilic residues, and the radiolabeled products were synthesized and purified in less than 15 min. Appropriate for biomedical applications, the method could be used on an extremely small scale (20 nmol) with a high radiochemical yield. The success of the protocol stems from the use of a Pd-reagent based on a dihaloarene, which enables direct "nucleophile-nucleophile" coupling of the peptide and [11C]cyanide by temporal separation of nucleophile addition.


Assuntos
Cianetos/química , Marcação por Isótopo , Paládio/química , Peptídeos/química , Radioisótopos de Carbono , Estrutura Molecular , Peptídeos/síntese química
15.
Neuropharmacology ; 119: 170-181, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28363773

RESUMO

Amylin is an important gut-brain axis hormone. Since amylin and amyloid-ß peptide (Aß) share similar ß sheet secondary structure despite not having the same primary sequences, we hypothesized that the accumulation of Aß in the brains of subjects with Alzheimer's disease (AD) might compete with amylin for binding to the amylin receptor (AmR). If true, adding exogenous amylin type peptides would compete with Aß and reduce the AD pathological cascade, improving cognition. Here we report that a 10-week course of peripheral treatment with human amylin significantly reduced multiple different markers associated with AD pathology, including reducing levels of phospho-tau, insoluble tau, two inflammatory markers (Iba1 and CD68), as well as cerebral Aß. Amylin treatment also led to improvements in learning and memory in two AD mouse models. Mechanistic studies showed that an amylin receptor antagonist successfully antagonized some protective effects of amylin in vivo, suggesting that the protective effects of amylin require interaction with its cognate receptor. Comparison of signaling cascades emanating from AmR suggest that amylin electively suppresses activation of the CDK5 pathway by Aß. Treatment with amylin significantly reduced CDK5 signaling in a receptor dependent manner, dramatically decreasing the levels of p25, the active form of CDK5 with a corresponding reduction in tau phosphorylation. This is the first report documenting the ability of amylin treatment to reduce tauopathy and inflammation in animal models of AD. The data suggest that the clinical analog of amylin, pramlintide, might exhibit utility as a therapeutic agent for AD and other neurodegenerative diseases.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Ligantes , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Mutação/genética , Fragmentos de Peptídeos/uso terapêutico , Presenilina-1/genética , Presenilina-1/metabolismo , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/antagonistas & inibidores , Memória Espacial/efeitos dos fármacos , Proteínas tau/genética , Proteínas tau/metabolismo
16.
ACS Chem Neurosci ; 8(1): 17-21, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-27806195

RESUMO

The bromodomain and extraterminal domain (BET) inhibitors have been extensively studied for tumor treatment in the past few years. Recently, BET-containing proteins have been reported to play a key role in brain functions, such as learning and memory. BET proteins have also been shown to be a potential therapeutic target for substance abuse disorders. Development of a molecular probe for noninvasive imaging will elucidate the distribution and functional roles of BET in the living subject and accelerate medical research and drug discovery in this domain. Herein, we describe the synthesis and pilot imaging of a novel BET imaging agent, [11C]MS417. Our imaging results demonstrate that this probe has moderate brain uptake, good specificity, good selectivity, and appropriate kinetics and distribution. [11C]MS417 is an ideal lead compound for further optimization of clinical BET PET radiotracer tools and MS417 could be used as a blood-brain-barrier-penetrant compound for preclinical research.


Assuntos
Encéfalo/diagnóstico por imagem , Proteínas Nucleares/antagonistas & inibidores , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Fatores de Transcrição/antagonistas & inibidores , Animais , Azepinas/síntese química , Azepinas/química , Azepinas/farmacocinética , Encéfalo/efeitos dos fármacos , Proteínas de Ciclo Celular , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Proteínas Nucleares/metabolismo , Papio , Tomografia por Emissão de Pósitrons/métodos , Ligação Proteica/efeitos dos fármacos , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Sprague-Dawley , Tomógrafos Computadorizados , Fatores de Transcrição/metabolismo , Triazóis/síntese química , Triazóis/química , Triazóis/farmacocinética
17.
ACS Chem Neurosci ; 8(3): 662-668, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-27959513

RESUMO

Postmortem brain studies support dysregulated expression of the histone deacetylase enzymes, HDAC1 and HDAC2, as a central feature in diseases including schizophrenia, bipolar disorder, and depression. Our objective was to investigate HDAC expression in a large postmortem sample set representing healthy and disease brains. We used >700 well-characterized samples from patients diagnosed with schizophrenia (n = 175), major depressive disorder (n = 135), and bipolar disorder (n = 61) to measure HDAC1 and HDAC2 transcript levels by quantitative real-time PCR in dorsolateral prefrontal cortex (DLPFC) and caudate compared to control samples. HDAC expression was calculated relative to the geometric mean of ß-2-microglobulin, ß-glucuronidase, and ß-actin. In adult-age DLPFC, HDAC2 was decreased by 34% in schizophrenia samples compared to controls (p < 10-4). HDAC2 was significantly upregulated in major depressive disorder samples by 17% versus controls (p = 0.002). Neither smoking history nor therapeutic drugs impacted HDAC2 levels and no HDAC1 patient-control differences were observed. In caudate, HDAC levels were unchanged between patient and control groups. In control DLPFC, age fetal week 14 to 97 years (n = 326), both HDAC1 and HDAC2 levels sharply declined around birth and stabilized thereafter. Using by far the largest postmortem sample set on this topic, our major finding (decreased HDAC2 transcript) showed notable specificity in disease (schizophrenia but not major depressive disorder), HDAC subtype (HDAC2 but not HDAC1) and brain region (DLPFC but not caudate). These differences shape understanding of regional components of neural circuitry in the diseased brain and set a benchmark to quantify HDAC density and distribution using in vivo neuroimaging tools.


Assuntos
Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Córtex Pré-Frontal/metabolismo , Esquizofrenia/patologia , Regulação para Cima/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise de Variância , Transtorno Bipolar/metabolismo , Transtorno Bipolar/patologia , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/patologia , Diagnóstico , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Humanos , Pessoa de Meia-Idade , Transtornos Psicóticos/metabolismo , Transtornos Psicóticos/patologia , RNA Mensageiro/metabolismo , Esquizofrenia/metabolismo , Adulto Jovem
18.
J Biol Chem ; 291(47): 24756-24767, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27634040

RESUMO

Lysine demethylation of proteins such as histones is catalyzed by several classes of enzymes, including the FAD-dependent amine oxidases KDM1A/B. The KDM1 family is homologous to the mitochondrial monoamine oxidases MAO-A/B and produces hydrogen peroxide in the nucleus as a byproduct of demethylation. Here, we show KDM1A is highly thiol-reactive in vitro and in cellular models. Enzyme activity is potently and reversibly inhibited by the drug disulfiram and by hydrogen peroxide. Hydrogen peroxide produced by KDM1A catalysis reduces thiol labeling and inactivates demethylase activity over time. MALDI-TOF mass spectrometry indicates that hydrogen peroxide blocks labeling of cysteine 600, which we propose forms an intramolecular disulfide with cysteine 618 to negatively regulate the catalytic activity of KDM1A. This activity-dependent regulation is unique among histone-modifying enzymes but consistent with redox sensitivity of epigenetic regulators.


Assuntos
Histona Desmetilases/química , Cisteína/química , Cisteína/metabolismo , Dissulfetos/química , Dissulfiram/química , Células HeLa , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Peróxido de Hidrogênio/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Compostos de Sulfidrila/química
19.
Organometallics ; 35(7): 1008-1014, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-27087736

RESUMO

Translation of new 18F-fluorination reactions to produce radiotracers for human positron emission tomography (PET) imaging is rare because the chemistry must have useful scope and the process for 18F-labeled tracer production must be robust and simple to execute. The application of transition metal mediators has enabled impactful 18F-fluorination methods, but to date none of these reactions have been applied to produce a human-injectable PET tracer. In this article we present chemistry and process innovations that culminate in the first production from [18F]fluoride of human doses of [18F]5-fluorouracil, a PET tracer for cancer imaging in humans. The first preparation of nickel σ-aryl complexes by transmetalation from arylboronic acids or esters was developed and enabled the synthesis of the [18F]5-fluorouracil precursor. Routine production of >10 mCi doses of [18F]5-fluorouracil was accomplished with a new instrument for azeotrope-free [18F]fluoride concentration in a process that leverages the tolerance of water in nickel-mediated 18F-fluorination.

20.
Semin Nucl Med ; 46(1): 20-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26687854

RESUMO

PET has deep roots in neuroscience stemming from its first application in brain tumor and brain metabolism imaging. PET emerged over the past few decades and continues to play a prominent role in the study of neurochemistry in the living human brain. Over time, neurochemical imaging with PET has been expanded to address a host of research questions related to, among many others, protein density, drug occupancy, and endogenous neurochemical release. Each of these imaging modes has distinct design and analysis considerations that are critical for enabling quantitative measurements. The number of considerations required for a neurochemical PET study can make it unapproachable. This article aims to orient those interested in neurochemical PET imaging to three of the common imaging modes and to provide some perspective on needs that exist for expansion of neurochemical PET imaging.


Assuntos
Neuroquímica/métodos , Tomografia por Emissão de Pósitrons/métodos , Animais , Humanos , Neurotransmissores/metabolismo , Proteínas/metabolismo , Traçadores Radioativos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA