Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 5(3): 101443, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38428430

RESUMO

Follicular lymphoma (FL) is an indolent non-Hodgkin lymphoma of germinal center origin, which presents with significant biologic and clinical heterogeneity. Using RNA-seq on B cells sorted from 87 FL biopsies, combined with machine-learning approaches, we identify 3 transcriptional states that divide the biological ontology of FL B cells into inflamed, proliferative, and chromatin-modifying states, with relationship to prior GC B cell phenotypes. When integrated with whole-exome sequencing and immune profiling, we find that each state was associated with a combination of mutations in chromatin modifiers, copy-number alterations to TNFAIP3, and T follicular helper cells (Tfh) cell interactions, or primarily by a microenvironment rich in activated T cells. Altogether, these data define FL B cell transcriptional states across a large cohort of patients, contribute to our understanding of FL heterogeneity at the tumor cell level, and provide a foundation for guiding therapeutic intervention.


Assuntos
Linfoma de Células B , Linfoma Folicular , Humanos , Linfoma Folicular/genética , Linfoma Folicular/patologia , Microambiente Tumoral/genética , Linfoma de Células B/genética , Linfócitos B , Cromatina
2.
medRxiv ; 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37333387

RESUMO

PURPOSE: 60-70% of newly diagnosed diffuse large B-cell lymphoma (DLBCL) patients avoid events within 24 months of diagnosis (EFS24) and the remainder have poor outcomes. Recent genetic and molecular classification of DLBCL has advanced our knowledge of disease biology, yet were not designed to predict early events and guide anticipatory selection of novel therapies. To address this unmet need, we used an integrative multiomic approach to identify a signature at diagnosis that will identify DLBCL at high risk of early clinical failure. PATIENTS AND METHODS: Tumor biopsies from 444 newly diagnosed DLBCL were analyzed by WES and RNAseq. A combination of weighted gene correlation network analysis and differential gene expression analysis followed by integration with clinical and genomic data was used to identify a multiomic signature associated with high risk of early clinical failure. RESULTS: Current DLBCL classifiers are unable to discriminate cases who fail EFS24. We identified a high risk RNA signature that had a hazard ratio (HR, 18.46 [95% CI 6.51-52.31] P < .001) in a univariate model, which did not attenuate after adjustment for age, IPI and COO (HR, 20.8 [95% CI, 7.14-61.09] P < .001). Further analysis revealed the signature was associated with metabolic reprogramming and a depleted immune microenvironment. Finally, WES data was integrated into the signature and we found that inclusion of ARID1A mutations resulted in identification of 45% of cases with an early clinical failure which was validated in external DLBCL cohorts. CONCLUSION: This novel and integrative approach is the first to identify a signature at diagnosis that will identify DLBCL at high risk for early clinical failure and may have significant implications for design of therapeutic options.

3.
Hematol Oncol ; 41(4): 644-654, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37254453

RESUMO

Non-follicular low-grade B-cell lymphomas (LGBCL) are biologically diverse entities that share clinical and histologic features that make definitive pathologic categorization challenging. While most patients with LGBCL have an indolent course, some experience aggressive disease, highlighting additional heterogeneity across these subtypes. To investigate the potential for shared biology across subtypes, we performed RNA sequencing and applied machine learning approaches that identified five clusters of patients that grouped independently of subtype. One cluster was characterized by inferior outcome, upregulation of cell cycle genes, and increased tumor immune cell content. Integration of whole exome sequencing identified novel LGBCL mutations and enrichment of TNFAIP3 and BCL2 alterations in the poor survival cluster. Building on this, we further refined a transcriptomic signature associated with early clinical failure in two independent cohorts. Taken together, this study identifies unique clusters of LGBCL defined by novel gene expression signatures and immune profiles associated with outcome across diagnostic subtypes.


Assuntos
Linfoma de Células B , Humanos , Linfoma de Células B/patologia , Perfilação da Expressão Gênica , Transcriptoma
4.
J Pharmacol Exp Ther ; 372(3): 331-338, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31871305

RESUMO

Kinases form an attractive class of targets for small molecule inhibitors, but similarity among their adenosine triphosphate binding sites presents difficulties for developing selective drugs. Standard methods of evaluating selectivity of most reversibly bound drugs account for binding affinity but not the two-step process, affinity and inactivation, occurring during covalent inhibition. To illustrate this concept, we assessed the selectivity of Bruton's tyrosine kinase (BTK) over TEC kinases by two novel therapeutics: ibrutinib and acalabrutinib. The two-step process and time-dependent inhibition unique to covalent inhibitors were evaluated with two biochemical assays measuring enzymatic function and inhibition kinetics. The selectivity for BTK over TEC found in these biochemical analyses was 1-1.5 for ibrutinib and 3.0-4.2 for acalabrutinib. To further assess drug selectivity in a more physiologically relevant context, we developed cell-based occupancy assays that quantify the percentage of drug-inactivated kinases. Cellular selectivity of BTK over TEC was determined after MWCL-1 cells, and samples from patients with chronic lymphocytic leukemia (CLL) were treated for durations and concentrations based on human pharmacokinetics of each drug. In MWCL-1 cells, BTK/TEC selectivities measured at 0.5, 1, and 3 hours were 2.53, 1.05, and 1.51 for ibrutinib and 0.97, 1.13, and 2.56 for acalabrutinib, respectively. The equivalent selectivity measured in samples from patients with CLL were 1.31 ± 0.27 and 1.09 ± 0.11 for ibrutinib and acalabrutinib, respectively. Collectively, our data show that when properly accounting for time-dependent factors and relevant cellular context, ibrutinib and acalabrutinib demonstrate similar selectivity for BTK over TEC. SIGNIFICANCE STATEMENT: This study shows relative selectivity of covalent inhibitors toward different kinase targets should be assessed with both affinity and inactivation kinetics to accurately account for time-dependent effects of covalent binding and assessed in a cellular matrix to reproduce the physiologic context of target inhibition. This is illustrated with a case study of ibrutinib and acalabrutinib for which selectivity assessment with appropriate assays, as opposed to measuring binding affinity with KINOMEscan alone, corroborate emerging clinical data demonstrating similar safety profiles between the therapies.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Benzamidas/farmacologia , Modelos Biológicos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazinas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Adenina/análogos & derivados , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Concentração Inibidora 50 , Cinética , Piperidinas , Ligação Proteica
5.
Dalton Trans ; 44(5): 2456-68, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25559246

RESUMO

A series of ferrocenyl- and aryl-functionalised organosilane thiosemicarbazone compounds was obtained via a nucleophilic substitution reaction with an amine-terminated organosilane. The thiosemicarbazone (TSC) ligands were further reacted with either a ruthenium dimer [(η(6-i)PrC6H4Me)Ru(µ-Cl)Cl]2 or a rhodium dimer [(Cp*)Rh(µ-Cl)Cl]2 to yield a series of cationic mono- and binuclear complexes. The thiosemicarbazone ligands, as well as their metal complexes, were characterised using NMR and IR spectroscopy, and mass spectrometry. The molecular structure of the binuclear ruthenium(ii) complex was determined by single-crystal X-ray diffraction analysis. The thiosemicarbazones and their complexes were evaluated for their in vitro antiplasmodial activities against the chloroquine-sensitive (NF54) and chloroquine-resistant (Dd2) Plasmodium falciparum strains, displaying activities in the low micromolar range. Selected compounds were screened for potential ß-haematin inhibition activity, and it was found that two Rh(iii) complexes exhibited moderate to good inhibition. Furthermore, the compounds were screened for their antitrichomonal activities against the G3 Trichomonas vaginalis strain, revealing a higher percentage of growth inhibition for the ruthenium and rhodium complexes over their corresponding ligand.


Assuntos
Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Ródio/química , Rutênio/química , Silanos/química , Tiossemicarbazonas/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Antiparasitários/síntese química , Antiparasitários/química , Antiparasitários/farmacologia , Antiparasitários/toxicidade , Células CHO , Carbamatos/química , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Hemeproteínas/antagonistas & inibidores , Humanos , Interações Hidrofóbicas e Hidrofílicas , Compostos Organometálicos/síntese química , Compostos Organometálicos/toxicidade , Plasmodium falciparum/efeitos dos fármacos , Relação Estrutura-Atividade , Trichomonas vaginalis/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA