Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 14(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668316

RESUMO

The neuroblastoma cell lines SH-SY5Y and Neuro2A are commonly utilized models in neurobiological research. DMEM supplemented with different nutrients and 5-10% Fetal Calf Serum (FCS) is typically used for culturing these cell lines. During special treatments, a reduced FCS content is often deployed to reduce cellular proliferation or the content of bioactive compounds. The impact of the reduction of FCS in culture media on the metabolic profile of SH-SY5Y and Neuro2A cells is currently unknown. Using an Amplex Red Assay, this study showed that the consumption of L-glutamine decreased after FCS reduction. Glucose and pyruvate consumption increased in both cell lines after the reduction of FCS. Thus, lactate production also increased with reduced FCS concentration. The reduction of FCS in the cell culture medium resulted in a reduced aerobic ATP production for SH-SY5Y cells and a complete shut down of aerobic ATP production for Neuro2A cells, measured using the Seahorse XF Real-Time ATP Rate Assay. Utilizing the Seahorse XF Glutamine Oxidation Stress Test, Neuro2A cells showed an increased utilization of L-glutamine oxidation after reduction of FCS. These results indicate that changes in FCS concentration in culture media have an impact on the different energy production strategies of SH-SY5Y and Neuro2A cells which must be considered when planning special treatments.

2.
Mol Ther Nucleic Acids ; 35(1): 102120, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38318212

RESUMO

Nerve/glial antigen (NG)2 is highly expressed in glioblastoma multiforme (GBM). However, the underlying mechanisms of its upregulated expression are largely unknown. In silico analyses reveal that the tumor-suppressive miR-29b targets NG2. We used GBM-based data from The Cancer Genome Atals databases to analyze the expression pattern of miR-29b and different target genes, including NG2. Moreover, we investigated the regulatory function of miR-29b on NG2 expression and NG2-related signaling pathways. We further studied upstream mechanisms affecting miR-29b-dependent NG2 expression. We found that miR-29b downregulates NG2 expression directly and indirectly via the transcription factor Sp1. Furthermore, we identified the NG2 coreceptor platelet-derived growth factor receptor (PDGFR)α as an additional miR-29b target. As shown by a panel of functional cell assays, a reduced miR-29b-dependent NG2 expression suppresses tumor cell proliferation and migration. Signaling pathway analyses revealed that this is associated with a decreased ERK1/2 activity. In addition, we found that the long noncoding RNA H19 and c-Myc act as upstream repressors of miR-29b in GBM cells, resulting in an increased NG2 expression. These findings indicate that the c-Myc/H19/miR-29b axis crucially regulates NG2 expression in GBM and, thus, represents a target for the development of future GBM therapies.

3.
Front Biosci (Landmark Ed) ; 29(1): 41, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38287808

RESUMO

BACKGROUND: The RNA-binding protein IGF2BP2/IMP2/VICKZ2/p62 is an oncofetal protein that is overexpressed in several cancer entities. Employing IMP2 knockout colorectal cancer cells, we could show the important role of IMP2 in several hallmarks of cancer. This study aimed to functionally characterize IMP2 in lung (A549, LLC1) and hepatocellular carcinoma (HepG2, Huh7) cell lines to assess its role as a potential target for these cancer entities. METHODS: IMP2 knockouts were generated by CRISPR/Cas9 and its variant approach prime editing; the editing efficiency of two single guide RNAs (sgRNAs) was verified via next-generation sequencing. We studied the effect of IMP2 knockout on cell proliferation, colony formation, and migration and employed small-molecule inhibitors of IMP2. RESULTS: Despite multiple attempts, it was not possible to generate IMP2 biallelic knockouts in A549 and Huh7 cells. Both sgRNAs showed good editing efficiency. However, edited cells lost their ability to proliferate. The attempt to generate an IMP2 biallelic knockout in LLC1 cells using CRISPR/Cas9 was successful. Monoallelic knockout cell lines of IMP2 showed a reduction in 2D cell proliferation and reduced migration. In 3D cultures, a change in morphology from compact spheroids to loose aggregates and a distinct reduction in the colony formation ability of the IMP2 knockouts was observed, an effect that was mimicked by previously identified IMP2 inhibitor compounds that also showed an inhibitory effect on colony formation. CONCLUSIONS: Our in vitro target validation supports that IMP2 is essential for tumor cell proliferation, migration, and colony formation in several cancer entities.


Assuntos
Antineoplásicos , Neoplasias Hepáticas , Proteínas de Ligação a RNA , Humanos , Edição de Genes , RNA Guia de Sistemas CRISPR-Cas , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética
4.
Epigenetics Chromatin ; 16(1): 30, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415213

RESUMO

Fatty liver disease or the accumulation of fat in the liver, has been reported to affect the global population. This comes with an increased risk for the development of fibrosis, cirrhosis, and hepatocellular carcinoma. Yet, little is known about the effects of a diet containing high fat and alcohol towards epigenetic aging, with respect to changes in transcriptional and epigenomic profiles. In this study, we took up a multi-omics approach and integrated gene expression, methylation signals, and chromatin signals to study the epigenomic effects of a high-fat and alcohol-containing diet on mouse hepatocytes. We identified four relevant gene network clusters that were associated with relevant pathways that promote steatosis. Using a machine learning approach, we predict specific transcription factors that might be responsible to modulate the functionally relevant clusters. Finally, we discover four additional CpG loci and validate aging-related differential CpG methylation. Differential CpG methylation linked to aging showed minimal overlap with altered methylation in steatosis.


Assuntos
Epigenômica , Hepatócitos , Camundongos , Animais , Hepatócitos/metabolismo , Fígado/metabolismo , Etanol , Epigênese Genética , Metilação de DNA
6.
Int J Pharm ; 621: 121794, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35525468

RESUMO

Pneumococcal infections represent a global health threat, which requires novel vaccine developments. Extracellular vesicles are secreted from most cells, including prokaryotes, and harbor virulence factors and antigens. Hence, bacterial membrane vesicles (MVs) may induce a protective immune response. For the first time, we formulate spray-dried gram-positive pneumococcal MVs-loaded vaccine microparticles using lactose/leucine as inert carriers to enhance their stability and delivery for pulmonary immunization. The optimized vaccine microparticles showed a mean particle size of 1-2 µm, corrugated surface, and nanocrystalline nature. Their aerodynamic diameter of 2.34 µm, average percentage emitted dose of 88.8%, and fine powder fraction 79.7%, demonstrated optimal flow properties for deep alveolar delivery using a next-generation impactor. Furthermore, confocal microscopy confirmed the successful encapsulation of pneumococcal MVs within the prepared microparticles. Human macrophage-like THP-1 cells displayed excellent viability, negligible cytotoxicity, and a rapid uptake around 60% of fluorescently labeled MVs after incubation with vaccine microparticles. Moreover, vaccine microparticles increased the release of pro-inflammatory cytokines tumor necrosis factor and interleukin-6 from primary human peripheral blood mononuclear cells. Vaccine microparticles exhibited excellent properties as promising vaccine candidates for pulmonary immunization and are optimal for further animal testing, scale-up and clinical translation.


Assuntos
Leucócitos Mononucleares , Streptococcus pneumoniae , Administração por Inalação , Animais , Imunização , Pulmão , Tamanho da Partícula , Pós/química
7.
Adv Healthc Mater ; 11(11): e2102117, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35112802

RESUMO

Nontuberculous mycobacterial infections rapidly emerge and demand potent medications to cope with resistance. In this context, targeted loco-regional delivery of aerosol medicines to the lungs is an advantage. However, sufficient antibiotic delivery requires engineered aerosols for optimized deposition. Here, the effect of bedaquiline-encapsulating fucosylated versus nonfucosylated liposomes on cellular uptake and delivery is investigated. Notably, this comparison includes critical parameters for pulmonary delivery, i.e., aerosol deposition and the noncellular barriers of pulmonary surfactant (PS) and mucus. Targeting increases liposomal uptake into THP-1 cells as well as peripheral blood monocyte- and lung-tissue derived macrophages. Aerosol deposition in the presence of PS, however, masks the effect of active targeting. PS alters antibiotic release that depends on the drug's hydrophobicity, while mucus reduces the mobility of nontargeted more than fucosylated liposomes. Dry-powder microparticles of spray-dried bedaquiline-loaded liposomes display a high fine particle fraction of >70%, as well as preserved liposomal integrity and targeting function. The antibiotic effect is maintained when deposited as powder aerosol on cultured Mycobacterium abscessus. When treating M. abscessus infected THP-1 cells, the fucosylated variant enabled enhanced bacterial killing, thus opening up a clear perspective for the improved treatment of nontuberculous mycobacterial infections.


Assuntos
Antibacterianos , Lipossomos , Administração por Inalação , Aerossóis , Antibacterianos/farmacologia , Inaladores de Pó Seco , Fucose , Pulmão , Macrófagos , Tamanho da Partícula , Pós
8.
Adv Healthc Mater ; 11(5): e2101151, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34724354

RESUMO

Streptococcus pneumoniae infections are a leading cause of death worldwide. Bacterial membrane vesicles (MVs) are promising vaccine candidates because of the antigenic components of their parent microorganisms. Pneumococcal MVs exhibit low toxicity towards several cell lines, but their clinical translation requires a high yield and strong immunogenic effects without compromising immune cell viability. MVs are isolated during either the stationary phase (24 h) or death phase (48 h), and their yields, immunogenicity and cytotoxicity in human primary macrophages and dendritic cells have been investigated. Death-phase vesicles showed higher yields than stationary-phase vesicles. Both vesicle types displayed acceptable compatibility with primary immune cells and several cell lines. Both vesicle types showed comparable uptake and enhanced release of the inflammatory cytokines, tumor necrosis factor and interleukin-6, from human primary immune cells. Proteomic analysis revealed similarities in vesicular immunogenic proteins such as pneumolysin, pneumococcal surface protein A, and IgA1 protease in both vesicle types, but stationary-phase MVs showed significantly lower autolysin levels than death-phase MVs. Although death-phase vesicles produced higher yields, they lacked superiority to stationary-phase vesicles as vaccine candidates owing to their similar antigenic protein cargo and comparable uptake into primary human immune cells.


Assuntos
Bactérias , Proteômica , Bactérias/metabolismo , Proteínas de Bactérias , Citocinas/metabolismo , Humanos , Imunomodulação , Macrófagos/metabolismo
9.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830364

RESUMO

Statins represent the most prescribed class of drugs for the treatment of hypercholesterolemia. Effects that go beyond lipid-lowering actions have been suggested to contribute to their beneficial pharmacological properties. Whether and how statins act on macrophages has been a matter of debate. In the present study, we aimed at characterizing the impact of statins on macrophage polarization and comparing these to the effects of bempedoic acid, a recently registered drug for the treatment of hypercholesterolemia, which has been suggested to have a similar beneficial profile but fewer side effects. Treatment of primary murine macrophages with two different statins, i.e., simvastatin and cerivastatin, impaired phagocytotic activity and, concurrently, enhanced pro-inflammatory responses upon short-term lipopolysaccharide challenge, as characterized by an induction of tumor necrosis factor (TNF), interleukin (IL) 1ß, and IL6. In contrast, no differences were observed under long-term inflammatory (M1) or anti-inflammatory (M2) conditions, and neither inducible NO synthase (iNOS) expression nor nitric oxide production was altered. Statin treatment led to extracellular-signal regulated kinase (ERK) activation, and the pro-inflammatory statin effects were abolished by ERK inhibition. Bempedoic acid only had a negligible impact on macrophage responses when compared with statins. Taken together, our data point toward an immunomodulatory effect of statins on macrophage polarization, which is absent upon bempedoic acid treatment.


Assuntos
Colesterol/genética , Ácidos Dicarboxílicos/farmacologia , Ácidos Graxos/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Animais , Anticolesterolemiantes/farmacologia , Células HEK293 , Humanos , Ativação de Macrófagos/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos
10.
EBioMedicine ; 72: 103578, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34571364

RESUMO

BACKGROUND: Based on reports on elevated cholesterol levels in cancer cells, strategies to lower cholesterol synthesis have been suggested as an antitumour strategy. However, cholesterol depletion has also been shown to induce tumour-promoting actions in tumour-associated macrophages (TAMs). METHODS: We performed lipidomic and transcriptomic analyses of human lung cancer material. To assess whether the TAM phenotype is shaped by secreted factors produced by tumour cells, primary human monocyte-derived macrophages were polarized towards a TAM-like phenotype using tumour cell-conditioned medium. FINDINGS: Lipidomic analysis of lung adenocarcinoma (n=29) and adjacent non-tumour tissues (n=22) revealed a significant accumulation of free cholesterol and cholesteryl esters within the tumour tissue. In contrast, cholesterol levels were reduced in TAMs isolated from lung adenocarcinoma tissues when compared with alveolar macrophages (AMs) obtained from adjacent non-tumour tissues. Bulk-RNA-Seq revealed that genes involved in cholesterol biosynthesis and metabolism were downregulated in TAMs, while cholesterol efflux transporters were upregulated. In vitro polarized TAM-like macrophages showed an attenuated lipogenic gene expression signature and exhibited lower cholesterol levels compared with non-polarized macrophages. A genome-wide comparison by bulk RNA-Seq confirmed a high similarity of ex vivo TAMs and in vitro TAM-like macrophages. Modulation of intracellular cholesterol levels by either starving, cholesterol depletion, or efflux transporter inhibition indicated that cholesterol distinctly shapes macrophage gene expression. INTERPRETATION: Our data show an opposite dysregulation of cholesterol homeostasis in tumour tissue vs. TAMs. Polarization of in vitro differentiated macrophages by tumour cell-conditioned medium recapitulates key features of ex vivo TAMs. FUNDING: Deutsche Forschungsgemeinschaft (DFG), Landesforschungsf €orderungsprogramm Saarland (LFPP).


Assuntos
Colesterol/genética , Homeostase/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Macrófagos Associados a Tumor/patologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Linhagem Celular Tumoral , Expressão Gênica/genética , Humanos , Microambiente Tumoral/genética
11.
Cancers (Basel) ; 12(5)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32438733

RESUMO

Natural products represent powerful tools searching for novel anticancer drugs. Thioholgamide A (thioA) is a ribosomally synthesized and post-translationally modified peptide, which has been identified as a product of Streptomyces sp. MUSC 136T. In this study, we provide a comprehensive biological profile of thioA, elucidating its effects on different hallmarks of cancer in tumor cells as well as in macrophages as crucial players of the tumor microenvironment. In 2D and 3D in vitro cell culture models thioA showed potent anti-proliferative activities in cancer cells at nanomolar concentrations. Anti-proliferative actions were confirmed in vivo in zebrafish embryos. Cytotoxicity was only induced at several-fold higher concentrations, as assessed by live-cell microscopy and biochemical analyses. ThioA exhibited a potent modulation of cell metabolism by inhibiting oxidative phosphorylation, as determined in a live-cell metabolic assay platform. The metabolic modulation caused a repolarization of in vitro differentiated and polarized tumor-promoting human monocyte-derived macrophages: ThioA-treated macrophages showed an altered morphology and a modulated expression of genes and surface markers. Taken together, the metabolic regulator thioA revealed low activities in non-tumorigenic cells and an interesting anti-cancer profile by orchestrating different hallmarks of cancer, both in tumor cells as well as in macrophages as part of the tumor microenvironment.

12.
Cancers (Basel) ; 11(11)2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717307

RESUMO

Hepatic lipid deposition and inflammation represent risk factors for hepatocellular carcinoma (HCC). The mRNA-binding protein tristetraprolin (TTP, gene name ZFP36) has been suggested as a tumor suppressor in several malignancies, but it increases insulin resistance. The aim of this study was to elucidate the role of TTP in hepatocarcinogenesis and HCC progression. Employing liver-specific TTP-knockout (lsTtp-KO) mice in the diethylnitrosamine (DEN) hepatocarcinogenesis model, we observed a significantly reduced tumor burden compared to wild-type animals. Upon short-term DEN treatment, modelling early inflammatory processes in hepatocarcinogenesis, lsTtp-KO mice exhibited a reduced monocyte/macrophage ratio as compared to wild-type mice. While short-term DEN strongly induced an abundance of saturated and poly-unsaturated hepatic fatty acids, lsTtp-KO mice did not show these changes. These findings suggested anti-carcinogenic actions of TTP deletion due to effects on inflammation and metabolism. Interestingly, though, investigating effects of TTP on different hallmarks of cancer suggested tumor-suppressing actions: TTP inhibited proliferation, attenuated migration, and slightly increased chemosensitivity. In line with a tumor-suppressing activity, we observed a reduced expression of several oncogenes in TTP-overexpressing cells. Accordingly, ZFP36 expression was downregulated in tumor tissues in three large human data sets. Taken together, this study suggests that hepatocytic TTP promotes hepatocarcinogenesis, while it shows tumor-suppressive actions during hepatic tumor progression.

13.
PLoS One ; 14(5): e0214756, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31095587

RESUMO

BACKGROUND & AIM: Primary hepatic angiosarcoma is a rare tumor with poor prognosis. The aim of this study was to generate a new angiosarcoma model to improve research on hepatic angiosarcoma. METHODS: Pigs sus scrofa were treated with different regimens of diethylnitrosamine (DENA). Tissues were analyzed by histology and immunohistochemistry. Serum parameters were determined. Angiosarcoma tissue was investigated for chromosomal aberrations by aCGH analysis. RESULTS: Animals of almost all different treatment regimens developed a multitude of variable liver lesions. Different tumor types such as granulation tissue type, cellular-like, hyalinization necrosis-like, angiosarcoma-like, dysplastic nodule-like, hepatocellular-like, glandular structure-like, and leiomyoma-like lesions were observed. Weekly treatment with 15 mg/kg for up to 52 weeks or a single shot of 200 mg/kg DENA led to the development of hepatic angiosarcomas. aCGH analysis of angiosarcoma tissue revealed increased alterations in tumors compared to non-tumorous tissue. Most of the chromosomal alterations were found on chromosomes 6, 7, 12, and 14. CONCLUSION: In this preliminary study treatment of sus scrofa with weekly injections of 15 mg/kg DENA results in a new model for primary hepatic angiosarcoma. This model may help to shed light on the pathomechanisms of primary hepatic angiosarcoma and might therefore open new treatment options.


Assuntos
Dietilnitrosamina/toxicidade , Hemangiossarcoma/patologia , Neoplasias Hepáticas/patologia , Animais , Biomarcadores Tumorais/sangue , Modelos Animais de Doenças , Hemangiossarcoma/induzido quimicamente , Hemangiossarcoma/diagnóstico por imagem , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/diagnóstico por imagem , Suínos , Tomografia Computadorizada por Raios X
15.
Front Immunol ; 9: 3111, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30723476

RESUMO

Activation of toll-like receptors (TLRs) plays a pivotal role in the host defense against bacteria and results in the activation of NF-κB-mediated transcription of proinflammatory mediators. Glucocorticoid-induced leucine zipper (GILZ) is an anti-inflammatory mediator, which inhibits NF-κB activity in macrophages. Thus, we aimed to investigate the regulation and role of GILZ expression in primary human and murine macrophages upon TLR activation. Treatment with TLR agonists, e.g., Pam3CSK4 (TLR1/2) or LPS (TLR4) rapidly decreased GILZ mRNA and protein levels. In consequence, GILZ downregulation led to enhanced induction of pro-inflammatory mediators, increased phagocytic activity, and a higher capacity to kill intracellular bacteria (Salmonella enterica serovar typhimurium), as shown in GILZ knockout macrophages. Treatment with the TLR3 ligand polyinosinic: polycytidylic acid [Poly(I:C)] did not affect GILZ mRNA levels, although GILZ protein expression was decreased. This effect was paralleled by sensitization toward TLR1/2- and TLR4-agonists. A bioinformatics approach implicated more than 250 miRNAs as potential GILZ regulators. Microarray analysis revealed that the expression of several potentially GILZ-targeting miRNAs was increased after Poly(I:C) treatment in primary human macrophages. We tested the ability of 11 of these miRNAs to target GILZ by luciferase reporter gene assays. Within this small set, four miRNAs (hsa-miR-34b*,-222,-320d,-484) were confirmed as GILZ regulators, suggesting that GILZ downregulation upon TLR3 activation is a consequence of the synergistic actions of multiple miRNAs. In summary, our data show that GILZ downregulation promotes macrophage activation. GILZ downregulation occurs both via MyD88-dependent and -independent mechanisms and can involve decreased mRNA or protein stability and an attenuated translation.


Assuntos
Macrófagos/imunologia , Infecções por Salmonella/imunologia , Receptores Toll-Like/metabolismo , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Linhagem Celular Tumoral , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Ativação de Macrófagos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Fagocitose/imunologia , Poli I-C/farmacologia , Cultura Primária de Células , Infecções por Salmonella/microbiologia , Salmonella typhimurium/imunologia , Receptores Toll-Like/agonistas , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Regulação para Cima/imunologia
16.
Eur J Pharm Biopharm ; 117: 1-13, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28323110

RESUMO

Macrophages have increasingly gained interest as a therapeutic target since they represent an integral component of the tumor microenvironment. In fact, M2 macrophage accumulation in solid tumors is associated with poor prognosis and therapy failure. Therefore, reprogramming M2 macrophages towards an M1 phenotype with anti-tumor activity by gene therapy represents a promising therapeutic approach. Herein, we describe recombinant Saccharomyces cerevisiae as a novel gene delivery vehicle for primary human macrophages. Opsonized S. cerevisiae was taken up efficiently by M2 macrophages and initiated the expression of pro-inflammatory cytokines. Recombinant yeast delivered functional nucleic acids to macrophages, especially when constitutively biosynthesized mRNA was used as cargo. Interestingly, expression of the protein encoded for by the delivered nucleic acid was higher in M2 cells when compared to M1 macrophages. Finally, the delivery of mRNA coding for the pro-inflammatory regulators MYD88 and TNF to M2 macrophages induced a prolonged upregulation of pro-inflammatory and cytotoxic cytokines in these cells, suggesting their successful re-education towards an anti-tumor M1 phenotype. Our results suggest the use of yeast-based gene delivery as a promising approach for the treatment of pathologic conditions that may benefit from the presence of M1-polarized macrophages, such as cancer.


Assuntos
Técnicas de Transferência de Genes , Tolerância Imunológica/fisiologia , Imunização/métodos , Macrófagos/fisiologia , RNA Mensageiro/administração & dosagem , Saccharomyces cerevisiae/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Células Hep G2 , Humanos , Leucócitos Mononucleares/fisiologia , Fenótipo , RNA Mensageiro/genética
17.
Immunobiology ; 222(6): 786-796, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28132721

RESUMO

Gut-derived bacterial endotoxins, such as lipopolysaccharide (LPS), contribute to the pathogenesis of steatosis and steatohepatitis by activating Kupffer cells, the resident liver macrophages. Exposure of macrophages to low doses of LPS causes hyporesponsiveness upon subsequent endotoxin challenge, a phenomenon termed endotoxin or LPS tolerance. In the present study, we aimed to examine whether LPS-induced lipid accumulation is affected by endotoxin tolerance. LPS pretreatment reduced the expression of proinflammatory mediators upon subsequent high-dose LPS treatment in murine livers. Total lipid and lipid class analysis indicated that LPS-induced lipid accumulation was not affected by endotoxin tolerance, although it was dependent on the presence of Kupffer cells. Analysis of the expression of lipogenic genes revealed that sterol regulatory element binding transcription factor 1 (Srebf1) and its target ELOVL fatty acid elongase 6 (Elovl6) were upregulated upon LPS administration in livers from LPS-tolerant and non-tolerant mice, whereas the expression of peroxisome proliferator activated receptor-α (Ppara), a key inducer of lipid degradation, was decreased. Neither Interleukin (IL)-6 expression nor the activation of its downstream effector signal transducer and activator of transcription (STAT) 3 were suppressed in liver tissues of LPS-tolerized mice. In vitro experiments confirmed that recombinant or macrophage-derived IL-6 was a potent activator of the lipogenic factor STAT3 in hepatocytes. Accordingly, IL-6 treatment led to increased lipid levels in this cell type. In summary, our data show that endotoxin tolerance does not influence LPS-induced hepatic lipid accumulation and suggest that IL-6 drives hepatic lipid storage.


Assuntos
Interleucina-6/metabolismo , Células de Kupffer/fisiologia , Fígado/imunologia , Macrófagos/imunologia , Choque Séptico/imunologia , Acetiltransferases/genética , Animais , Elongases de Ácidos Graxos , Células Hep G2 , Humanos , Tolerância Imunológica , Imunização , Metabolismo dos Lipídeos/genética , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR alfa/genética , Choque Séptico/prevenção & controle , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
18.
J Biol Chem ; 291(44): 22949-22960, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27629417

RESUMO

GILZ (glucocorticoid-induced leucine zipper) is inducible by glucocorticoids and plays a key role in their mode of action. GILZ attenuates inflammation mainly by inhibition of NF-κB and mitogen-activated protein kinase activation but does not seem to be involved in the severe side effects observed after glucocorticoid treatment. Therefore, GILZ might be a promising target for new therapeutic approaches. The present work focuses on the natural product curcumin, which has previously been reported to inhibit NF-κB. GILZ was inducible by curcumin in macrophage cell lines, primary human monocyte-derived macrophages, and murine bone marrow-derived macrophages. The up-regulation of GILZ was neither associated with glucocorticoid receptor activation nor with transcriptional induction or mRNA or protein stabilization but was a result of enhanced translation. Because the GILZ 3'-UTR contains AU-rich elements (AREs), we analyzed the role of the mRNA-binding protein HuR, which has been shown to promote the translation of ARE-containing mRNAs. Our results suggest that curcumin treatment induces HuR expression. An RNA immunoprecipitation assay confirmed that HuR can bind GILZ mRNA. In accordance, HuR overexpression led to increased GILZ protein levels but had no effect on GILZ mRNA expression. Our data employing siRNA in LPS-activated RAW264.7 macrophages show that curcumin facilitates its anti-inflammatory action by induction of GILZ in macrophages. Experiments with LPS-activated bone marrow-derived macrophages from wild-type and GILZ knock-out mice demonstrated that curcumin inhibits the activity of inflammatory regulators, such as NF-κB or ERK, and subsequent TNF-α production via GILZ. In summary, our data indicate that HuR-dependent GILZ induction contributes to the anti-inflammatory properties of curcumin.


Assuntos
Curcumina/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Extratos Vegetais/farmacologia , Fatores de Transcrição/genética , Animais , Linhagem Celular , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/imunologia , Fatores de Transcrição/imunologia
19.
Inflammation ; 39(5): 1690-703, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27422006

RESUMO

Macrophages are a heterogeneous and plastic cell population with two main phenotypes: pro-inflammatory classically activated macrophages (M1) and anti-inflammatory alternatively activated macrophages (M2). Saccharomyces cerevisiae is a promising vehicle for the delivery of vaccines. It is well established that S. cerevisiae is taken up by professional phagocytic cells. However, the response of human macrophages to S. cerevisiae is ill-defined. In this study, we characterized the interaction between S. cerevisiae and M1- or M2-like macrophages. M1-like macrophages had a higher yeast uptake capacity than M2-like macrophages, but both cell types internalized opsonized yeast to the same extent. The M1 surface markers HLAII and CD86 were upregulated after yeast uptake in M1- and M2-like macrophages. Moreover, mRNA expression levels of pro-inflammatory cytokines, such as TNF-α, IL-12, and IL-6, increased, whereas the expression of anti-inflammatory mediators did not change. These results demonstrate that S. cerevisiae can target both M1 and M2 macrophages, paralleled by skewing toward an M1 phenotype. Thus, the use of yeast-based delivery systems might be a promising approach for the treatment of pathologic conditions that would benefit from the presence of M1-polarized macrophages, such as cancer.


Assuntos
Macrófagos/citologia , Saccharomyces cerevisiae/imunologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Sistemas de Liberação de Medicamentos/métodos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/microbiologia , Fenótipo
20.
Oncotarget ; 6(36): 38446-57, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26498359

RESUMO

Induction of glucocorticoid-induced leucine zipper (GILZ) by glucocorticoids has been reported to be essential for their anti-inflammatory actions. At the same time, GILZ is actively downregulated under inflammatory conditions, resulting in an enhanced pro-inflammatory response. Two papers published in the recent past showed elevated GILZ expression in the late stage of an inflammation. Still, the manuscripts suggest seemingly contradictory roles of endogenous GILZ: one of them suggested compensatory actions by elevated corticosterone levels in GILZ knockout mice, while our own manuscript showed a distinct phenotype upon GILZ knockout in vivo. Herein, we discuss the role of GILZ in inflammation with a special focus on the influence of endogenous GILZ on macrophage responses and suggest a cell-type specific action of GILZ as an explanation for the conflicting results as presented in recent reports.


Assuntos
Zíper de Leucina/imunologia , Fatores de Transcrição/imunologia , Animais , Modelos Animais de Doenças , Glucocorticoides/imunologia , Glucocorticoides/farmacologia , Humanos , Inflamação/imunologia , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA