Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 17182, 2024 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060289

RESUMO

Despite therapeutic advancements, cervical cancer caused by high-risk subtypes of the human papillomavirus (HPV) remains a leading cause of cancer-related deaths among women worldwide. This study aimed to discover potential drug candidates from the Asian medicinal plant Andrographis paniculata, demonstrating efficacy against the E6 protein of high-risk HPV-16 subtype through an in-silico computational approach. The 3D structures of 32 compounds (selected from 42) derived from A. paniculata, exhibiting higher binding affinity, were obtained from the PubChem database. These structures underwent subsequent analysis and screening based on criteria including binding energy, molecular docking, drug likeness and toxicity prediction using computational techniques. Considering the spectrometry, pharmacokinetic properties, docking results, drug likeliness, and toxicological effects, five compounds-stigmasterol, 1H-Indole-3-carboxylic acid, 5-methoxy-, methyl ester (AP7), andrographolide, apigenin and wogonin-were selected as the potential inhibitors against the E6 protein of HPV-16. We also performed 200 ns molecular dynamics simulations of the compounds to analyze their stability and interactions as protein-ligand complexes using imiquimod (CID-57469) as a control. Screened compounds showed favorable characteristics, including stable root mean square deviation values, minimal root mean square fluctuations and consistent radius of gyration values. Intermolecular interactions, such as hydrogen bonds and hydrophobic contacts, were sustained throughout the simulations. The compounds displayed potential affinity, as indicated by negative binding free energy values. Overall, findings of this study suggest that the selected compounds have the potential to act as inhibitors against the E6 protein of HPV-16, offering promising prospects for the treatment and management of CC.


Assuntos
Andrographis , Papillomavirus Humano 16 , Simulação de Acoplamento Molecular , Proteínas Oncogênicas Virais , Neoplasias do Colo do Útero , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/virologia , Humanos , Feminino , Proteínas Oncogênicas Virais/metabolismo , Proteínas Oncogênicas Virais/química , Andrographis/química , Papillomavirus Humano 16/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Simulação por Computador , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Simulação de Dinâmica Molecular , Infecções por Papillomavirus/tratamento farmacológico , Infecções por Papillomavirus/virologia , Diterpenos/farmacologia , Diterpenos/química , Ligação Proteica
2.
Front Pharmacol ; 14: 1090717, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36825152

RESUMO

Introduction: Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has had a disastrous effect worldwide during the previous three years due to widespread infections with SARS-CoV-2 and its emerging variations. More than 674 million confirmed cases and over 6.7 million deaths have been attributed to successive waves of SARS-CoV-2 infections as of 29th January 2023. Similar to other RNA viruses, SARS-CoV-2 is more susceptible to genetic evolution and spontaneous mutations over time, resulting in the continual emergence of variants with distinct characteristics. Spontaneous mutations of SARS-CoV-2 variants increase its transmissibility, virulence, and disease severity and diminish the efficacy of therapeutics and vaccines, resulting in vaccine-breakthrough infections and re-infection, leading to high mortality and morbidity rates. Materials and methods: In this study, we evaluated 10,531 whole genome sequences of all reported variants globally through a computational approach to assess the spread and emergence of the mutations in the SARS-CoV-2 genome. The available data sources of NextCladeCLI 2.3.0 (https://clades.nextstrain.org/) and NextStrain (https://nextstrain.org/) were searched for tracking SARS-CoV-2 mutations, analysed using the PROVEAN, Polyphen-2, and Predict SNP mutational analysis tools and validated by Machine Learning models. Result: Compared to the Wuhan-Hu-1 reference strain NC 045512.2, genome-wide annotations showed 16,954 mutations in the SARS-CoV-2 genome. We determined that the Omicron variant had 6,307 mutations (retrieved sequence:1947), including 67.8% unique mutations, more than any other variant evaluated in this study. The spike protein of the Omicron variant harboured 876 mutations, including 443 deleterious mutations. Among these deleterious mutations, 187 were common and 256 were unique non-synonymous mutations. In contrast, after analysing 1,884 sequences of the Delta variant, we discovered 4,468 mutations, of which 66% were unique, and not previously reported in other variants. Mutations affecting spike proteins are mostly found in RBD regions for Omicron, whereas most of the Delta variant mutations drawn to focus on amino acid regions ranging from 911 to 924 in the context of epitope prediction (B cell & T cell) and mutational stability impact analysis protruding that Omicron is more transmissible. Discussion: The pathogenesis of the Omicron variant could be prevented if the deleterious and persistent unique immunosuppressive mutations can be targeted for vaccination or small-molecule inhibitor designing. Thus, our findings will help researchers monitor and track the continuously evolving nature of SARS-CoV-2 strains, the associated genetic variants, and their implications for developing effective control and prophylaxis strategies.

3.
Gene Rep ; 22: 100997, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33319124

RESUMO

The ongoing mutations in the structural proteins of SARS-CoV-2 are the major impediment for prevention and control of the COVID-19 disease. Presently we focused on evolution of the envelope (E) protein, one of the most enigmatic and less studied protein among the four structural proteins (S, E, M and N) associated with multitude of immunopathological functions of SARS-CoV-2. In the present study, we comprehensively analyzed 81,818 high quality E protein sequences of SARS-CoV-2 globally available in the GISAID database as of 20 August 2020. Compared to Wuhan reference strain, our mutational analysis explored only 1.2 % (982/81818) mutant strains undergoing a total of 115 unique amino acid (aa) substitutions in the E protein, highlighting the fact that most (98.8 %) of the E protein of SARS-CoV-2 strains are highly conserved. Moreover, we found 58.77 % (134 of 228) nucleotides (nt) positions of SARS-CoV-2 E gene encountering a total of 176 unique nt-level mutations globally, which may affect the efficacy of real time RT-PCR-based molecular detection of COVID-19. Importantly, higher aa variations observed in the C-terminal domain (CTD) of the E protein, particularly at Ser55-Phe56, Arg69 and the C-terminal end (DLLV: 72-75) may alter the binding of SARS-CoV-2 Envelope protein to tight junction-associated PALS1 and thus could play a key role in COVID-19 pathogenesis. Furthermore, this study revealed the V25A mutation in the transmembrane domain which is a key factor for the homopentameric conformation of E protein. Our analysis also observed a triple cysteine motif harboring mutation (L39M, A41S, A41V, C43F, C43R, C43S, C44Y, N45R) which may hinder the binding of E protein with spike glycoprotein. These results therefore suggest the continuous monitoring of the structural proteins including the envelope protein of SARS-CoV-2 since the number of genome sequences from across the world are continuously increasing.

4.
Sci Rep ; 10(1): 14004, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32814791

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a novel evolutionary divergent RNA virus, is responsible for the present devastating COVID-19 pandemic. To explore the genomic signatures, we comprehensively analyzed 2,492 complete and/or near-complete genome sequences of SARS-CoV-2 strains reported from across the globe to the GISAID database up to 30 March 2020. Genome-wide annotations revealed 1,516 nucleotide-level variations at different positions throughout the entire genome of SARS-CoV-2. Moreover, nucleotide (nt) deletion analysis found twelve deletion sites throughout the genome other than previously reported deletions at coding sequence of the ORF8 (open reading frame), spike, and ORF7a proteins, specifically in polyprotein ORF1ab (n = 9), ORF10 (n = 1), and 3´-UTR (n = 2). Evidence from the systematic gene-level mutational and protein profile analyses revealed a large number of amino acid (aa) substitutions (n = 744), demonstrating the viral proteins heterogeneous. Notably, residues of receptor-binding domain (RBD) showing crucial interactions with angiotensin-converting enzyme 2 (ACE2) and cross-reacting neutralizing antibody were found to be conserved among the analyzed virus strains, except for replacement of lysine with arginine at 378th position of the cryptic epitope of a Shanghai isolate, hCoV-19/Shanghai/SH0007/2020 (EPI_ISL_416320). Furthermore, our results of the preliminary epidemiological data on SARS-CoV-2 infections revealed that frequency of aa mutations were relatively higher in the SARS-CoV-2 genome sequences of Europe (43.07%) followed by Asia (38.09%), and North America (29.64%) while case fatality rates remained higher in the European temperate countries, such as Italy, Spain, Netherlands, France, England and Belgium. Thus, the present method of genome annotation employed at this early pandemic stage could be a promising tool for monitoring and tracking the continuously evolving pandemic situation, the associated genetic variants, and their implications for the development of effective control and prophylaxis strategies.


Assuntos
Betacoronavirus/classificação , Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Heterogeneidade Genética , Genoma Viral/genética , Estudo de Associação Genômica Ampla/métodos , Saúde Global , Pneumonia Viral/epidemiologia , Sequência de Aminoácidos/genética , Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes/imunologia , Pareamento Incorreto de Bases , Sequência de Bases/genética , COVID-19 , Clima , Infecções por Coronavirus/virologia , Humanos , Fases de Leitura Aberta/genética , Pandemias , Peptidil Dipeptidase A/metabolismo , Filogenia , Pneumonia Viral/virologia , Domínios Proteicos/genética , Domínios Proteicos/imunologia , SARS-CoV-2 , Deleção de Sequência , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA