Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuro Oncol ; 24(1): 78-87, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34214170

RESUMO

BACKGROUND: Gliomas comprise the most common type of primary brain tumor, are highly invasive, and often fatal. IDH-mutated gliomas are particularly challenging to image and there is currently no clinically accepted method for identifying the extent of tumor burden in these neoplasms. This uncertainty poses a challenge to clinicians who must balance the need to treat the tumor while sparing healthy brain from iatrogenic damage. The purpose of this study was to investigate the feasibility of using resting-state blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to detect glioma-related asynchrony in vascular dynamics for distinguishing tumor from healthy brain. METHODS: Twenty-four stereotactically localized biopsies were obtained during open surgical resection from ten treatment-naïve patients with IDH-mutated gliomas who received standard-of-care preoperative imaging as well as echo-planar resting-state BOLD fMRI. Signal intensity for BOLD asynchrony and standard-of-care imaging was compared to cell counts of total cellularity (H&E), tumor density (IDH1 & Sox2), cellular proliferation (Ki67), and neuronal density (NeuN), for each corresponding sample. RESULTS: BOLD asynchrony was directly related to total cellularity (H&E, P = 4 × 10-5), tumor density (IDH1, P = 4 × 10-5; Sox2, P = 3 × 10-5), cellular proliferation (Ki67, P = .002), and inversely related to neuronal density (NeuN, P = 1 × 10-4). CONCLUSIONS: Asynchrony in vascular dynamics, as measured by resting-state BOLD fMRI, correlates with tumor burden and provides a radiographic delineation of tumor boundaries in IDH-mutated gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Glioma/diagnóstico por imagem , Glioma/genética , Humanos , Isocitrato Desidrogenase/genética , Imageamento por Ressonância Magnética , Mutação , Saturação de Oxigênio , Carga Tumoral
2.
Radiology ; 287(3): 965-972, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29369751

RESUMO

Purpose To determine the effect that R132H mutation status of diffuse glioma has on extent of vascular dysregulation and extent of residual blood oxygen level-dependent (BOLD) abnormality after surgical resection. Materials and Methods This study was an institutional review board-approved retrospective analysis of an institutional database of patients, and informed consent was waived. From 2010 to 2017, 39 treatment-naïve patients with diffuse glioma underwent preoperative echo-planar imaging and BOLD functional magnetic resonance imaging. BOLD vascular dysregulation maps were made by identifying voxels with time series similar to tumor and dissimilar to healthy brain. The spatial overlap between tumor and vascular dysregulation was characterized by using the Dice coefficient, and areas of BOLD abnormality outside the tumor margins were quantified as BOLD-only fraction (BOF). Linear regression was used to assess effects of R132H status on the Dice coefficient, BOF, and residual BOLD abnormality after surgical resection. Results When compared with R132H wild-type (R132H-) gliomas, R132H-mutated (R132H+) gliomas showed greater spatial overlap between BOLD abnormality and tumor (mean Dice coefficient, 0.659 ± 0.02 [standard error] for R132H+ and 0.327 ± 0.04 for R132H-; P < .001), less BOLD abnormality beyond the tumor margin (mean BOF, 0.255 ± 0.03 for R132H+ and 0.728 ± 0.04 for R132H-; P < .001), and less postoperative BOLD abnormality (residual fraction, 0.046 ± 0.0047 for R132H+ and 0.397 ± 0.045 for R132H-; P < .001). Receiver operating characteristic curve analysis showed high sensitivity and specificity in the discrimination of R132H+ tumors from R132H- tumors with calculation of both Dice coefficient and BOF (area under the receiver operating characteristic curve, 0.967 and 0.977, respectively). Conclusion R132H mutation status is an important variable affecting the extent of tumor-associated vascular dysregulation and the residual vascular dysregulation after surgical resection. © RSNA, 2018 Online supplemental material is available for this article.


Assuntos
Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/diagnóstico por imagem , Imagem Ecoplanar/métodos , Glioma/irrigação sanguínea , Glioma/diagnóstico por imagem , Isocitrato Desidrogenase/genética , Biomarcadores Tumorais , Neoplasias Encefálicas/genética , Meios de Contraste , Feminino , Glioma/genética , Humanos , Aumento da Imagem , Masculino , Meglumina/análogos & derivados , Pessoa de Meia-Idade , Mutação/genética , Compostos Organometálicos , Estudos Retrospectivos
3.
AJR Am J Roentgenol ; 206(5): 1073-81, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27007449

RESUMO

OBJECTIVE: Glioblastoma is an invasive primary brain malignancy that typically infiltrates the surrounding tissue with malignant cells. It disrupts cerebral blood flow through a variety of biomechanical and biochemical mechanisms. Thus, neuroimaging focused on identifying regions of vascular dysregulation may reveal a marker of tumor spread. The purpose of this study was to use blood oxygenation level-dependent (BOLD) functional MRI (fMRI) to compare the temporal dynamics of the enhancing portion of a tumor with those of brain regions without apparent tumors. MATERIALS AND METHODS: Patients with pathologically proven glioblastoma underwent preoperative resting-state BOLD fMRI, T1-weighted contrast-enhanced MRI, and FLAIR MRI. The contralesional control hemisphere, contrast-enhancing tumor, and peritu-moral edema were segmented by use of structural images and were used to extract the time series of these respective regions. The parameter estimates (beta values) for the two regressors and resulting z-statistic images were used as a metric to compare the similarity of the tumor dynamics to those of other brain regions. RESULTS: The time course of the contrast-enhancing tumor was significantly different from that of the rest of the brain (p < 0.05). Similarly, the control signal intensity was significantly different from the tumor signal intensity (p < 0.05). Notably, the temporal dynamics in the peritumoral edema, which did not contain enhancing tumor, were most similar to the those of enhancing tumor than to those of control regions. CONCLUSION: The findings show that the disruption in vascular regulation induced by a glioblastoma can be detected with BOLD fMRI and that the spatial distribution of these disruptions is localized to the immediate vicinity of the tumor and peritumoral edema.


Assuntos
Neoplasias Encefálicas/fisiopatologia , Transtornos Cerebrovasculares/fisiopatologia , Glioblastoma/fisiopatologia , Adulto , Idoso , Encéfalo , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/diagnóstico , Circulação Cerebrovascular/fisiologia , Transtornos Cerebrovasculares/sangue , Transtornos Cerebrovasculares/diagnóstico , Meios de Contraste , Edema/sangue , Edema/fisiopatologia , Feminino , Glioblastoma/sangue , Glioblastoma/diagnóstico , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA