Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16741, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798459

RESUMO

Pathological conditions in cochlea, such as ototoxicity, acoustic trauma, and age-related cochlear degeneration, induce cell death in the organ of Corti and degeneration of the spiral ganglion neurons (SGNs). Although macrophages play an essential role after cochlear injury, its role in the SGNs is limitedly understood. We analyzed the status of macrophage activation and neuronal damage in the spiral ganglion after kanamycin-induced unilateral hearing loss in mice. The number of ionized calcium-binding adapter molecule 1 (Iba1)-positive macrophages increased 3 days after unilateral kanamycin injection. Macrophages showed larger cell bodies, suggesting activation status. Interestingly, the number of activating transcription factor 3 (ATF3)-positive-neurons, an indicator of early neuronal damage, also increased at the same timing. In the later stages, the number of macrophages decreased, and the cell bodies became smaller, although the number of neuronal deaths increased. To understand their role in neuronal damage, macrophages were depleted via intraperitoneal injection of clodronate liposome 24 h after kanamycin injection. Macrophage depletion decreased the number of ATF3-positive neurons at day 3 and neuronal death at day 28 in the spiral ganglion following kanamycin injection. Our results suggest that suppression of inflammation by clodronate at early timing can protect spiral ganglion damage following cochlear insult.


Assuntos
Perda Auditiva Unilateral , Gânglio Espiral da Cóclea , Camundongos , Animais , Gânglio Espiral da Cóclea/metabolismo , Canamicina/toxicidade , Perda Auditiva Unilateral/patologia , Ácido Clodrônico/metabolismo , Células Ciliadas Auditivas/metabolismo , Cóclea , Neurônios , Macrófagos
2.
EMBO J ; 42(15): e111247, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37357972

RESUMO

Social behavior is essential for health, survival, and reproduction of animals; however, the role of astrocytes in social behavior remains largely unknown. The transmembrane protein CD38, which acts both as a receptor and ADP-ribosyl cyclase to produce cyclic ADP-ribose (cADPR) regulates social behaviors by promoting oxytocin release from hypothalamic neurons. CD38 is also abundantly expressed in astrocytes in the postnatal brain and is important for astroglial development. Here, we demonstrate that the astroglial-expressed CD38 plays an important role in social behavior during development. Selective deletion of CD38 in postnatal astrocytes, but not in adult astrocytes, impairs social memory without any other behavioral abnormalities. Morphological analysis shows that depletion of astroglial CD38 in the postnatal brain interferes with synapse formation in the medial prefrontal cortex (mPFC) and hippocampus. Moreover, astroglial CD38 expression promotes synaptogenesis of excitatory neurons by increasing the level of extracellular SPARCL1 (also known as Hevin), a synaptogenic protein. The release of SPARCL1 from astrocytes is regulated by CD38/cADPR/calcium signaling. These data demonstrate a novel developmental role of astrocytes in neural circuit formation and regulation of social behavior in adults.


Assuntos
Antígenos CD , ADP-Ribose Cíclica , Animais , ADP-Ribosil Ciclase 1/genética , Antígenos CD/metabolismo , ADP-Ribose Cíclica/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Astrócitos/metabolismo , Sinapses/metabolismo
3.
Stroke ; 54(6): 1645-1655, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37154061

RESUMO

BACKGROUND: Although early brain injury (EBI) is recognized as a critical step following subarachnoid hemorrhage (SAH), its pathophysiology and underlying mechanisms remain poorly understood. Herein, we investigated the role of cerebral circulation in the acute phase using patient data and a mouse SAH model and evaluated its regulation via the sympathetic nervous system. METHODS: The cerebral circulation time and neurological outcomes in the human body were retrospectively examined in 34 SAH cases with ruptured anterior circulation aneurysms and 85 cases with unruptured anterior circulation cerebral aneurysms at Kanazawa University Hospital from January 2016 to December 2021. In a mouse study, a SAH model was created via endovascular perforation, and India-ink angiography was performed over time. Additionally, bilateral superior cervical ganglionectomy was performed immediately before surgery, and neurological scores and brain water content were evaluated after SAH. RESULTS: Cerebral circulation time was prolonged in the acute phase of SAH compared with that in the unruptured cerebral aneurysm group, especially in those with electrocardiographic changes. Furthermore, it was more prolonged in the poor prognosis group (modified Rankin Scale scores 3-6) than in the good prognosis group (modified Rankin Scale scores 0-2) at discharge. In mice, cerebral perfusion was significantly reduced at 1 and 3 hours after SAH and recovered at 6 hours. superior cervical ganglionectomy improved cerebral perfusion without altering the diameter of the middle cerebral artery at 1 hour and improved neurological outcomes at 48 hours after SAH. Consistently, brain edema, quantified by brain water content, was improved by superior cervical ganglionectomy 24 hours after SAH. CONCLUSIONS: Sympathetic hyperactivity may play a critical role in the development of EBI by impairing cerebral microcirculation and edema in the acute phase following SAH.


Assuntos
Lesões Encefálicas , Aneurisma Intracraniano , Hemorragia Subaracnóidea , Humanos , Camundongos , Animais , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/diagnóstico por imagem , Hemorragia Subaracnóidea/cirurgia , Microcirculação , Estudos Retrospectivos
4.
Brain Topogr ; 35(2): 232-240, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34755238

RESUMO

The anterior commissure, which connects bilateral temporal lobes and olfactive areas, remains elusive in many aspects of its structure and functional role. To comparatively describe anatomical details of the anterior commissure using cadaveric fiber dissection (FD) and diffusion spectrum imaging (DSI) thus refining our knowledge of the tract and exploring its clinical relevance in glioma migration. Twelve normal postmortem hemispheres were treated with Klingler's method and subjected to FD with medial, inferior, and lateral approaches. The FD findings were correlated with DSI tractography results. To illustrate the clinical relevance, two patients with recurrent temporal high-grade glioma are described. Our FD and DSI tractography of the anterior commissure disclosed a new anatomical paradigm. The FD confirmed that the anterior limb (absent sometimes and variable) and the lateral/temporal extension include the rostral portion and caudal portion, respectively, of the anterior commissure fibers. The shape of the lateral/temporal extension predominantly resembles an 'H'. The DSI tractography findings corresponded to these FD results. According to the FD, the Virchow-Robin space is continuous with the subarachnoid space and very close to the anterior commissure. The two clinical cases presented severe disturbances of consciousness and behavior despite good local tumor control. Subsequent magnetic resonance images showed new lesions infiltrating the contralateral temporal lobes. FD combined with DSI provided anatomical details facilitating a better understanding of the anterior commissure. Glioma migration routes to the contralateral temporal lobe included the anterior commissure, Virchow-Robin space, and subarachnoid space and were clinically relevant.


Assuntos
Glioma , Substância Branca , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão/métodos , Glioma/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Vias Neurais , Substância Branca/diagnóstico por imagem
5.
Biochem Biophys Res Commun ; 555: 74-80, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33813279

RESUMO

The engagement of the receptor for advanced glycation end-products (receptor for AGEs, RAGE) with diverse ligands could elicit chronic vascular inflammation, such as atherosclerosis. Binding of cytoplasmic tail RAGE (ctRAGE) to diaphanous-related formin 1 (Diaph1) is known to yield RAGE intracellular signal transduction and subsequent cellular responses. However, the effectiveness of an inhibitor of the ctRAGE/Diaph1 interaction in attenuating the development of atherosclerosis is unclear. In this study, using macrophages from Ager+/+ and Ager-/- mice, we validated the effects of an inhibitor on AGEs-RAGE-induced foam cell formation. The inhibitor significantly suppressed AGEs-RAGE-evoked Rac1 activity, cell invasion, and uptake of oxidized low-density lipoprotein, as well as AGEs-induced NF-κB activation and upregulation of proinflammatory gene expression. Moreover, expression of Il-10, an anti-inflammatory gene, was restored by this antagonist. These findings suggest that the RAGE-Diaph1 inhibitor could be a potential therapeutic drug against RAGE-related diseases, such as chronic inflammation and atherosclerosis.


Assuntos
Células Espumosas/metabolismo , Macrófagos Peritoneais/patologia , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Expressão Gênica , Inflamação/genética , Inflamação/patologia , Lipoproteínas LDL/metabolismo , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Neuropeptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Receptor para Produtos Finais de Glicação Avançada/genética , Transdução de Sinais/efeitos dos fármacos , Proteínas rac1 de Ligação ao GTP/metabolismo
6.
J Neurochem ; 158(2): 311-327, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33871064

RESUMO

Neuroinflammation is initiated by activation of the brain's innate immune system in response to an inflammatory challenge. Insufficient control of neuroinflammation leads to enhanced or prolonged pathology in various neurological conditions including multiple sclerosis and Alzheimer's disease. Nicotinamide adenine dinucleotide (NAD+ ) plays critical roles in cellular energy metabolism and calcium homeostasis. Our previous study demonstrated that deletion of CD38, which consumes NAD+ , suppressed cuprizone-induced demyelination, neuroinflammation, and glial activation. However, it is still unknown whether CD38 directly affects neuroinflammation through regulating brain NAD+ level. In this study, we investigated the effect of CD38 deletion and inhibition and supplementation of NAD+ on lipopolysaccharide (LPS)-induced neuroinflammation in mice. Intracerebroventricular injection of LPS significantly increased CD38 expression especially in the hippocampus. Deletion of CD38 decreased LPS-induced inflammatory responses and glial activation. Pre-administration of apigenin, a flavonoid with CD38 inhibitory activity, or nicotinamide riboside (NR), an NAD+ precursor, increased NAD+ level, and significantly suppressed induction of cytokines and chemokines, glial activation and subsequent neurodegeneration after LPS administration. In cell culture, LPS-induced inflammatory responses were suppressed by treatment of primary astrocytes or microglia with apigenin, NAD+ , NR or 78c, the latter a specific CD38 inhibitor. Finally, all these compounds suppressed NF-κB signaling pathway in microglia. These results suggest that CD38-mediated neuroinflammation is linked to NAD+ consumption and that boosting NAD+ by CD38 inhibition and NR supplementation directly suppress neuroinflammation in the brain.


Assuntos
ADP-Ribosil Ciclase 1/antagonistas & inibidores , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Inflamação/induzido quimicamente , Inflamação/patologia , Lipopolissacarídeos , Glicoproteínas de Membrana/antagonistas & inibidores , Microglia/efeitos dos fármacos , Microglia/patologia , NAD/metabolismo , Niacinamida/análogos & derivados , Compostos de Piridínio/farmacologia , Animais , Apigenina/farmacologia , Quimiocinas/metabolismo , Citocinas/metabolismo , Deleção de Genes , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Injeções Intraventriculares , Lipopolissacarídeos/administração & dosagem , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , NAD/farmacologia , NF-kappa B/genética , Degeneração Neural , Niacinamida/farmacologia
7.
Sci Rep ; 10(1): 17795, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082370

RESUMO

Following facial nerve axotomy, nerve function is not fully restored even after reconstruction. This may be attributed to axon degeneration/neuronal death and sustained neuroinflammation. CD38 is an enzyme that catalyses the hydrolysis of nicotinamide adenine dinucleotide (NAD+) and is a candidate molecule for regulating neurodegeneration and neuroinflammation. In this study, we analyzed the effect of CD38 deletion and NAD+ supplementation on neuronal death and glial activation in the facial nucleus in the brain stem, and on axon degeneration and immune cell infiltration in the distal portion of the facial nerve after axotomy in mice. Compared with wild-type mice, CD38 knockout (KO) mice showed reduced microglial activation in the facial nucleus, whereas the levels of neuronal death were not significantly different. In contrast, the axon degeneration and demyelination were delayed, and macrophage accumulation was reduced in the facial nerve of CD38 KO mice after axotomy. Supplementation of NAD+ with nicotinamide riboside slowed the axon degeneration and demyelination, although it did not alter the level of macrophage infiltration after axotomy. These results suggest that CD38 deletion and supplementation of NAD+ may protect transected axon cell-autonomously after facial nerve axotomy.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Axônios/fisiologia , Axotomia/métodos , Doenças do Nervo Facial/metabolismo , Nervo Facial/patologia , NAD/metabolismo , ADP-Ribosil Ciclase 1/genética , Animais , Contagem de Células , Células Cultivadas , Suplementos Nutricionais , Modelos Animais de Doenças , Doenças do Nervo Facial/genética , Doenças do Nervo Facial/terapia , Humanos , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Degeneração Neural
8.
J Clin Neurosci ; 77: 55-61, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32409218

RESUMO

It is commonly known that brain metastases usually have clear boundaries in magnetic resonance imaging. However, little is known regarding the trajectory of white matter fibers around the tumors, especially using the fiber dissection technique. Here, we focused on the anatomical interaction between white matter fibers and the tumor, using the fiber dissection in a postmortem brain with metastatic tumor and compared the findings with those of diffusion tensor imaging (DTI) tractography. One postmortem human brain hemisphere with metastatic adenocarcinoma in the Broca's area was dissected using fiber dissection following the Klingler's method. In order to compare the in vitro and in vivo results, additional brains from 15 patients with metastatic adenocarcinomas, the volumes of which were comparable to that of the adenocarcinoma in the brain used for fiber dissection, were analyzed using DTI tractographic reconstruction. Morphological findings of white matter bundles running around the tumor were compared between the two techniques. In the fiber dissection technique, the superior longitudinal fascicle, arcuate fascicle, and frontal aslant tract could be dissected, and the white matter bundles were curved and retracted to avoid the tumor. In all the cases analyzed, white matter fibers or streamlines surrounding the tumor avoided the lesion. Using the fiber dissection technique, this is the first direct evidence to elucidate the anatomy of white matter fibers affected by a metastatic brain. This suggests that brain metastatic adenocarcinoma is an intra-axial neoplasm with extra-axial white matter structures.


Assuntos
Adenocarcinoma/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Microdissecção/métodos , Fibras Nervosas Mielinizadas , Substância Branca/diagnóstico por imagem , Adenocarcinoma/patologia , Adenocarcinoma/cirurgia , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/cirurgia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Dissecação/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Nervosas Mielinizadas/patologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/patologia , Vias Neurais/cirurgia , Substância Branca/patologia , Substância Branca/cirurgia
9.
Neuroimage Clin ; 25: 102192, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32014826

RESUMO

The presence of the superior fronto-occipital fascicle (SFOF) has been reported in the Rhesus monkey; however, it is a subject of controversy in humans. The aim of this study is to identify the SFOF using both in vitro and in vivo anatomo-functional analyses. This study consisted of two approaches. First, one acallosal brain and 12 normal postmortem hemispheres (five left and seven right sides) were dissected under a microscope using Klingler's fiber dissection technique. We focused on the medial subcallosal area superior to the Muratoff bundle, which has been indicated as a principal target area of the SFOF in previous studies. Second, 90 patients underwent awake craniotomy for gliomas with direct electrical stimulations. Functional examinations for visual, ataxic, and cognitive tasks were performed and 453 positive mapping sites were investigated by voxel-based morphometry analysis to establish the functions of the SFOF. The corticostriatal fibers, or the Muratoff bundle, and thalamic peduncle fibers joined in the area of the caudate nucleus, making thalamic peduncle/ corticostriatal bundles, which ran antero-posteriorly in the anterior subcallosal area and radiated from the caudate superior margin in the posterior subcallosal area. However, no SFOF fiber bundle crossed perpendicular to the thalamic peduncle/ corticostriatal bundles in the posterior subcallosal area. In the acallosal hemispheres, Probst bundles were confirmed and the subcallosal areas did not show a specific organization different from the normal brain. Hence, we could not detect a long and continuous association fascicle connecting the frontal lobe and occipital or parietal lobe in the target areas. Furthermore, in the in vivo functional mappings of awake surgery and voxel-based morphometry analysis, eight positive points on the SFOF were selected from the total 453 positive points, but their functions were not related with visual processing and spatial awareness, as has been reported in previous studies. In conclusion, in the present study we attempted to investigate the existence of the SFOF using an anatomical and functional approach. According to our results, the SFOF may not exist in the human brain.


Assuntos
Mapeamento Encefálico , Neoplasias Encefálicas/cirurgia , Craniotomia , Imagem de Tensor de Difusão , Glioma/cirurgia , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Substância Branca/anatomia & histologia , Substância Branca/fisiologia , Adolescente , Adulto , Idoso , Autopsia , Mapeamento Encefálico/métodos , Imagem de Tensor de Difusão/métodos , Feminino , Lobo Frontal/anatomia & histologia , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Vias Neurais/patologia , Lobo Occipital/anatomia & histologia , Lobo Occipital/diagnóstico por imagem , Lobo Occipital/fisiologia , Vigília/fisiologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Adulto Jovem
10.
Cells ; 9(1)2019 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-31881755

RESUMO

Recent studies provide evidence to support that cluster of differentiation 38 (CD38) and CD157 meaningfully act in the brain as neuroregulators. They primarily affect social behaviors. Social behaviors are impaired in Cd38 and Cd157 knockout mice. Single-nucleotide polymorphisms of the CD38 and CD157/BST1 genes are associated with multiple neurological and psychiatric conditions, including autism spectrum disorder, Parkinson's disease, and schizophrenia. In addition, both antigens are related to infectious and immunoregulational processes. The most important clues to demonstrate how these molecules play a role in the brain are oxytocin (OT) and the OT system. OT is axo-dendritically secreted into the brain from OT-containing neurons and causes activation of OT receptors mainly on hypothalamic neurons. Here, we overview the CD38/CD157-dependent OT release mechanism as the initiation step for social behavior. The receptor for advanced glycation end-products (RAGE) is a newly identified molecule as an OT binding protein and serves as a transporter of OT to the brain, crossing over the blood-brain barrier, resulting in the regulation of brain OT levels. We point out new roles of CD38 and CD157 during neuronal development and aging in relation to nicotinamide adenine dinucleotide+ levels in embryonic and adult nervous systems. Finally, we discuss how CD38, CD157, and RAGE are crucial for social recognition and behavior in daily life.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , ADP-Ribosil Ciclase/metabolismo , Antígenos CD/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Comportamento Social , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Biomarcadores , Encéfalo/metabolismo , Sinalização do Cálcio , Ativação Enzimática , Proteínas Ligadas por GPI/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Estudos de Associação Genética , Humanos , Imuno-Histoquímica , Camundongos Knockout , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Ocitocina , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/genética , Receptor para Produtos Finais de Glicação Avançada/genética , Canais de Cátion TRPM/metabolismo
11.
Front Cell Neurosci ; 13: 258, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244614

RESUMO

CD38 is an enzyme that catalyzes the synthesis of cyclic adenosine diphosphate-ribose from nicotinamide adenine dinucleotide (NAD+). We recently reported that this molecule regulates the maturation and differentiation of glial cells such as astrocytes and oligodendrocytes (OLs) in the developing brain. To analyze its role in the demyelinating situation, we employed cuprizone (CPZ)-induced demyelination model in mice, which is characterized by oligodendrocyte-specific apoptosis, followed by the strong glial activation, demyelination, and repopulation of OLs. By using this model, we found that CD38 was upregulated in both astrocytes and microglia after CPZ administration. Experiments using wild-type and CD38 knockout (KO) mice, together with those using cultured glial cells, revealed that CD38 deficiency did not affect the initial decrease of the number of OLs, while it attenuated CPZ-induced demyelination, and neurodegeneration. Importantly, the clearance of the degraded myelin and oligodendrocyte repopulation were also reduced in CD38 KO mice. Further experiments revealed that these observations were associated with reduced levels of glial activation and inflammatory responses including phagocytosis, most likely through the enhanced level of NAD+ in CD38-deleted condition. Our results suggest that CD38 and NAD+ in the glial cells play a critical role in the demyelination and subsequent oligodendrocyte remodeling through the modulation of glial activity and neuroinflammation.

12.
Nat Commun ; 10(1): 2091, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064994

RESUMO

Caspase-1 activated in inflammasomes triggers a programmed necrosis called pyroptosis, which is mediated by gasdermin D (GSDMD). However, GSDMD-deficient cells are still susceptible to caspase-1-mediated cell death. Therefore, here, we investigate the mechanism of caspase-1-initiated cell death in GSDMD-deficient cells. Inflammasome stimuli induce apoptosis accompanied by caspase-3 activation in GSDMD-deficient macrophages, which largely relies on caspase-1. Chemical dimerization of caspase-1 induces pyroptosis in GSDMD-sufficient cells, but apoptosis in GSDMD-deficient cells. Caspase-1-induced apoptosis involves the Bid-caspase-9-caspase-3 axis, which can be followed by GSDME-dependent secondary necrosis/pyroptosis. However, Bid ablation does not completely abolish the cell death, suggesting the existence of an additional mechanism. Furthermore, cortical neurons and mast cells exhibit little or low GSDMD expression and undergo apoptosis after oxygen glucose deprivation and nigericin stimulation, respectively, in a caspase-1- and Bid-dependent manner. This study clarifies the molecular mechanism and biological roles of caspase-1-induced apoptosis in GSDMD-low/null cell types.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Caspase 1/fisiologia , Inflamassomos/imunologia , Piroptose/imunologia , Receptores de Estrogênio/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Córtex Cerebral/citologia , Embrião de Mamíferos , Técnicas de Inativação de Genes , Peptídeos e Proteínas de Sinalização Intracelular , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Nigericina/farmacologia , Proteínas de Ligação a Fosfato , Cultura Primária de Células , Piroptose/efeitos dos fármacos , Células RAW 264.7 , Salmonella typhimurium/imunologia
13.
Neurosci Lett ; 703: 119-124, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-30885634

RESUMO

Methamphetamine (METH) is a powerful stimulant drug of abuse, with potent addictive and neurotoxic properties. In this study, the effects of low-dose METH administration prior to high-dose METH administration on movement and neural activity in rats were examined. Rats were administered low-dose (1 mg/kg/day) METH or saline for 5 consecutive days (m5 and s5, respectively), followed by high-dose (10 mg/kg) METH on day 6 (m5M and s5M, respectively). An accelerometer was used to evaluate the frequency of movement when rats were placed in a cage for 30 min. The expression of c-fos, a neuronal activity marker, in the striatum was analyzed using immunohistochemistry. Striatal protein expression of neuronal markers, including vesicular glutamate transporter 2 (VGLUT2), glutamate decarboxylase 67 (GAD67), tyrosine hydroxylase (TH), tryptophan hydroxylase 2 (TPH2), and the glial marker, glial fibrillary acidic protein (GFAP), was analyzed by western blot. Accelerometer counts and the numbers of c-fos-positive cells in the striatum were significantly higher in the m5M than in the s5, m5, and s5M groups. The expression levels of VGLUT2 and GAD67, but not those of TH, TPH2, or GFAP, were significantly higher in the m5M than in the s5M group. These results suggest that pre-administration of low-dose METH prior to high-dose METH administration in rats may alter excitatory and inhibitory neurons in the striatum, thereby affecting movement and neural activity in rats.


Assuntos
Corpo Estriado/efeitos dos fármacos , Metanfetamina/administração & dosagem , Movimento/efeitos dos fármacos , Animais , Estimulantes do Sistema Nervoso Central , Corpo Estriado/citologia , Corpo Estriado/fisiologia , Relação Dose-Resposta a Droga , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato Descarboxilase/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Wistar , Triptofano Hidroxilase/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
14.
Commun Biol ; 2: 76, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30820471

RESUMO

Oxytocin sets the stage for childbirth by initiating uterine contractions, lactation and maternal bonding behaviours. Mice lacking secreted oxcytocin (Oxt -/-, Cd38 -/-) or its receptor (Oxtr -/-) fail to nurture. Normal maternal behaviour is restored by peripheral oxcytocin replacement in Oxt -/- and Cd38 -/-, but not Oxtr -/- mice, implying that circulating oxcytocin crosses the blood-brain barrier. Exogenous oxcytocin also has behavioural effects in humans. However, circulating polypeptides are typically excluded from the brain. We show that oxcytocin is transported into the brain by receptor for advanced glycation end-products (RAGE) on brain capillary endothelial cells. The increases in oxcytocin in the brain which follow exogenous administration are lost in Ager -/- male mice lacking RAGE, and behaviours characteristic to abnormalities in oxcytocin signalling are recapitulated in Ager -/- mice, including deficits in maternal bonding and hyperactivity. Our findings show that RAGE-mediated transport is critical to the behavioural actions of oxcytocin associated with parenting and social bonding.


Assuntos
Encéfalo/metabolismo , Comportamento Materno/fisiologia , Apego ao Objeto , Ocitocina/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Células Endoteliais/metabolismo , Feminino , Humanos , Masculino , Comportamento Materno/psicologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptor para Produtos Finais de Glicação Avançada/sangue , Receptor para Produtos Finais de Glicação Avançada/genética , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo
15.
Glia ; 66(7): 1432-1446, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29476556

RESUMO

Disruption of the blood-brain barrier (BBB) following cerebral ischemia is closely related to the infiltration of peripheral cells into the brain, progression of lesion formation, and clinical exacerbation. However, the mechanism that regulates BBB integrity, especially after permanent ischemia, remains unclear. Here, we present evidence that astrocytic N-myc downstream-regulated gene 2 (NDRG2), a differentiation- and stress-associated molecule, may function as a modulator of BBB permeability following ischemic stroke, using a mouse model of permanent cerebral ischemia. Immunohistological analysis showed that the expression of NDRG2 increases dominantly in astrocytes following permanent middle cerebral artery occlusion (MCAO). Genetic deletion of Ndrg2 exhibited enhanced levels of infarct volume and accumulation of immune cells into the ipsilateral brain hemisphere following ischemia. Extravasation of serum proteins including fibrinogen and immunoglobulin, after MCAO, was enhanced at the ischemic core and perivascular region of the peri-infarct area in the ipsilateral cortex of Ndrg2-deficient mice. Furthermore, the expression of matrix metalloproteinases (MMPs) after MCAO markedly increased in Ndrg2-/- mice. In culture, expression and secretion of MMP-3 was increased in Ndrg2-/- astrocytes, and this increase was reversed by adenovirus-mediated re-expression of NDRG2. These findings suggest that NDRG2, expressed in astrocytes, may play a critical role in the regulation of BBB permeability and immune cell infiltration through the modulation of MMP expression following cerebral ischemia.


Assuntos
Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/metabolismo , Permeabilidade Capilar/fisiologia , Proteínas/metabolismo , Acidente Vascular Cerebral/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Barreira Hematoencefálica/patologia , Isquemia Encefálica/patologia , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Modelos Animais de Doenças , Masculino , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas/genética , Acidente Vascular Cerebral/patologia
16.
Neurochem Int ; 119: 126-131, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-28390951

RESUMO

Microglial activation has been suggested to play important roles in various neurodegenerative diseases by phagocytosis and producing various factors such as nitric oxide (NO), proinflammatory cytokines. Excessive production of NO, as a consequence of increased inducible nitric oxide synthase (iNOS) in microglia, contributes to the neurodegeneration. During a search for compounds that regulate endoplasmic reticulum (ER) stress, a dibenzoylmethane derivative, 2,2'-dimethoxydibenzoylmethane (DBM 14-26) was identified as a novel neuroprotective agent (Takano et al., Am. J. Physiol. Cell Physiol. 293, C1884-1894, 2007). We previously reported in cultured astrocytes that DBM 14-26 protected hydrogen peroxide-induced cell death and inhibited lipopolysaccharide (LPS)-induced NO production (Takano et al., J. Neurosci. Res. 89, 955-965, 2011). In the present study, we assessed the effects of DBM 14-26 on microglia using the mouse cell line BV-2 and found that DBM 14-26 inhibited LPS-induced iNOS expression and NO production also in microglia. DBM 14-26 also suppressed LPS-induced IL-1ß expression. Conditioned medium of BV-2 cells stimulated by LPS significantly decreased cell viability of neuron (human neuroblastoma SH-SY5Y cells) compared with the absence of LPS. Conditioned medium of BV-2 cells stimulated by LPS in the presence of DBM 14-26 did not significantly decreased cell viability of neuron. These results indicate that microglial activation by LPS causes neuronal cell death and DBM 14-26 protect neuron through the inhibition of microglial activation. Functional regulation of microglia by DBM 14-26 could be a therapeutic candidate for the treatment of neurodegenerative diseases.


Assuntos
Astrócitos/efeitos dos fármacos , Chalconas/farmacologia , Microglia/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Linhagem Celular , Citocinas/metabolismo , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
J Cell Physiol ; 233(2): 1671-1684, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28681934

RESUMO

3,4-dihydroxybenzalacetone (DBL) and Caffeic acid phenethyl ester (CAPE) are both catechol-containing phenylpropanoid derivatives with diverse bioactivities. In the present study, we analyzed the ability of these compounds to activate the unfolded protein response (UPR) and the oxidative stress response. When human SH-SY5Y neuroblastoma cells were treated with DBL or CAPE, the expression of endoplasmic reticulum (ER) stress-related genes such as HSPA5, HYOU1, DDIT3, and SEC61b increased to a larger extent in response to CAPE treatment, while that of antioxidant genes such as HMOX1, GCLM, and NQO1 increased to a larger extent in response to DBL treatment. DNA microarray analysis confirmed the strong link of these compounds to ER stress. Regarding the mechanism, activation of the UPR by these compounds was associated with enhanced levels of oxidized proteins in the ER, and N-acetyl cysteine (NAC), which provides anti-oxidative effects, suppressed the induction of the UPR-target genes. Furthermore, both compounds enhanced the expression of LC3-II, a marker of autophagy, and 4-Phenylbutyric acid (4-PBA), a chemical chaperone that reduces ER stress, suppressed it. Finally, pretreatment of cells with DBL, CAPE or low doses of ER stressors protected cells against a neurotoxin 6-hydroxydopamine (6-OHDA) in an autophagy-dependent manner. These results suggest that DBL and CAPE induce oxidized protein-mediated ER stress and autophagy that may have a preconditioning effect in SH-SY5Y cells.


Assuntos
Autofagia/efeitos dos fármacos , Ácidos Cafeicos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Álcool Feniletílico/análogos & derivados , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Chaperona BiP do Retículo Endoplasmático , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Oxidopamina/toxicidade , Álcool Feniletílico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Resposta a Proteínas não Dobradas/efeitos dos fármacos
18.
J Neural Transm (Vienna) ; 125(1): 17-24, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28025713

RESUMO

The role of cyclic ADP-ribose (cADPR) as a second messenger and modulator of the mTOR pathway downstream of dopamine (DA) receptors and/or CD38 was re-examined in the mouse. ADP-ribosyl activity was low in the membranes of neonates, but DA stimulated it via both D1- and D2-like receptors. ADP-ribosyl cyclase activity increased significantly during development in association with increased expression of CD38. The cADPR binding proteins, FKBP12 and FKBP12.6, were expressed in the adult mouse striatum. The ratio of phosphorylated to non-phosphorylated S6 kinase (S6K) in whole mouse striatum homogenates decreased after incubation of adult mouse striatum with extracellular cADPR for 5 min. This effect of cADPR was much weaker in MPTP-treated Parkinson's disease model mice. The inhibitory effects of cADPR and rapamycin were identical. These data suggest that cADPR is an endogenous inhibitor of the mTOR signaling pathway downstream of DA receptors in the mouse striatum and that cADPR plays a certain role in the brain in psychiatric and neurodegenerative diseases.


Assuntos
Corpo Estriado/metabolismo , ADP-Ribose Cíclica/metabolismo , Receptores Dopaminérgicos/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Dopamina/farmacologia , Agonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos ICR , Transdução de Sinais/efeitos dos fármacos
19.
Glia ; 65(6): 974-989, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28295574

RESUMO

Glial development is critical for the function of the central nervous system. CD38 is a multifunctional molecule with ADP-ribosyl cyclase activity. While critical roles of CD38 in the adult brain such as oxytocin release and social behavior have been reported, those in the developing brain remain largely unknown. Here we demonstrate that deletion of Cd38 leads to impaired development of astrocytes and oligodendrocytes in mice. CD38 is highly expressed in the developing brains between postnatal day 14 (P14) and day 28 (P28). In situ hybridization and FACS analysis revealed that CD38 is expressed predominantly in astrocytes in these periods. Analyses of the cortex of Cd38 knockout (Cd38-/- ) mice revealed delayed development of astrocytes and subsequently delayed differentiation of oligodendrocytes (OLs) at postnatal stages. In vitro experiments using primary OL cultures, mixed glial cultures, and astrocytic conditioned medium showed that astrocytic CD38 regulates the development of astrocytes in a cell-autonomous manner and the differentiation of OLs in a non-cell-autonomous manner. Further experiments revealed that connexin43 (Cx43) in astrocytes plays a promotive role for CD38-mediated OL differentiation. Finally, increased levels of NAD+ , caused by CD38 deficiency, are likely to be responsible for the suppression of astrocytic Cx43 expression and OL differentiation. Our data indicate that CD38 is a positive regulator of astrocyte and OL development.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , ADP-Ribosil Ciclase/metabolismo , Astrócitos/metabolismo , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Glicoproteínas de Membrana/metabolismo , Oligodendroglia/metabolismo , ADP-Ribosil Ciclase/genética , ADP-Ribosil Ciclase 1/genética , Animais , Astrócitos/citologia , Encéfalo/citologia , Diferenciação Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Conexina 43/metabolismo , Feminino , Masculino , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos ICR , Camundongos Knockout , NAD/metabolismo , Oligodendroglia/citologia , Ratos Wistar
20.
Neurochem Int ; 92: 67-74, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26724566

RESUMO

Excessive amount of L-glutamate in the brain causes neuronal damage in various pathological conditions including epilepsy and stroke. We previously reported that the 150-kDa oxygen-regulated protein (ORP150), a molecular chaperone in the endoplasmic reticulum (ER), inhibited the L-glutamate-induced neuronal death, at least partly, by improving Ca(2+) homeostasis in the ER. In the present study, we analyzed the role of activating transcription factor 6α (ATF6α), an upstream transcriptional factor critical for the operation of the ER, using mouse intrahippocampal kainate (KA) injection model. Expression of Hspa5, which encodes the molecular chaperone 78 kDa glucose-regulated protein (GRP78), increased after KA injection in the wild type (WT) mice. Comparative analysis using WT and Atf6α(-/-) mice revealed that KA induced pronounced neuronal death in the CA3 region of Atf6α(-/-) mice. The enhanced neuronal death in Atf6α(-/-) mice was associated with reduced expression of molecular chaperones in the ER and significant induction of c-fos in the hippocampal neurons. Furthermore, an injection of dantrolene, an inhibitor of ryanodine receptor, partially rescued these effects in Atf6α(-/-) mice after KA injection. Our results suggest that ATF6α plays an important role in neuronal survival after KA-induced excitotoxicity through the regulation of Ca(2+) response and neuronal activity.


Assuntos
Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Agonistas de Aminoácidos Excitatórios/toxicidade , Ácido Caínico/toxicidade , Neurônios/efeitos dos fármacos , Animais , Região CA3 Hipocampal/patologia , Sinalização do Cálcio/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Dantroleno/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-fos/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA