Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 22(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34884645

RESUMO

BACKGROUND: Ventilator-induced lung injury (VILI) frequently worsens acute respiratory distress syndrome (ARDS) severity. Human mesenchymal stem/stromal cells (MSCs) offer considerable therapeutic promise, but the key impediments of clinical translation stem from limitations due to cell source and availability, and concerns regarding the loss of efficacy following cryopreservation. These experiments compared the efficacy of umbilical-cord-derived MSCs (UC-MSCs), a readily available and homogenous tissue source, to the previously more widely utilised bone-marrow-derived MSCs (BM-MSCs). We assessed their capacity to limit inflammation, resolve injury and enhance repair in relevant lung mechanical stretch models, and the impact of cryopreservation on therapeutic efficacy. METHODS: In series 1, confluent alveolar epithelial layers were subjected to cyclic mechanical stretch (22% equibiaxial strain) and wound injury, and the potential of the secretome from BM- and UC-derived MSCs to attenuate epithelial inflammation and cell death, and enhance wound repair was determined. In series 2, anesthetized rats underwent VILI, and later received, in a randomised manner, 1 × 107 MSCs/kg intravenously, that were: (i) fresh BM-MSCs, (ii) fresh UC-MSCs or (iii) cryopreserved UC-MSCs. Control animals received a vehicle (PBS). The extent of the resolution of inflammation and injury, and repair was measured at 24 h. RESULTS: Conditioned medium from BM-MSCs and UC-MSCs comparably decreased stretch-induced pulmonary epithelial inflammation and cell death. BM-MSCs and UC-MSCs comparably enhanced wound resolution. In animals subjected to VILI, both fresh BM-MSCs and UC-MSCs enhanced injury resolution and repair, while cryopreserved UC-MSCs comparably retained their efficacy. CONCLUSIONS: Cryopreserved UC-MSCs can reduce stretch-induced inflammation and cell death, enhance wound resolution, and enhance injury resolution and repair following VILI. Cryopreserved UC-MSCs represent a more abundant, cost-efficient, less variable and equally efficacious source of therapeutic MSC product.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Cordão Umbilical/citologia , Lesão Pulmonar Induzida por Ventilação Mecânica/terapia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Criopreservação/métodos , Meios de Cultivo Condicionados , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/terapia , Cordão Umbilical/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
2.
Curr Opin Crit Care ; 27(1): 20-28, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278121

RESUMO

PURPOSE OF REVIEW: Advances in our understanding of the pathophysiology and biology of ARDS has identified a number of promising cellular and pharmacological therapies. These emerging therapeutics can modulate the immune response, reduce epithelial injury, target endothelial and vascular dysfunction, have anticoagulant effects, and enhance ARDS resolution. RECENT FINDINGS: Mesenchymal stromal cell therapy shows promise in earlier phase clinical testing, whereas a number of issues regarding clinical translation, such as donor and effect variability, are currently being optimized to enable larger scale clinical trials. Furthermore, a number of promising mesenchymal stromal cell therapy clinical studies for COVID-19-induced ARDS are underway. Recent studies provide support for several emerging ARDS pharmacotherapies, including steroids, statins, vitamins, anticoagulants, interferons, and carbon monoxide. The history of unsuccessful clinical trials of potential therapies highlights the challenges to successful translation for this heterogeneous clinical syndrome. Given this, attention has focused on the potential to identify biologically homogenous subtypes within ARDS, to enable us to target more specific therapies, i.e. 'precision medicines'. SUMMARY: Mesenchymal stromal cells, steroids, statins, vitamins, anticoagulants, interferons and carbon monoxide have therapeutic promise for ARDS. Identifying ARDS sub-populations most likely to benefit from targeted therapies may facilitate future advances.


Assuntos
COVID-19 , Inibidores de Hidroximetilglutaril-CoA Redutases , Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório , COVID-19/complicações , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/tratamento farmacológico , SARS-CoV-2
3.
Int J Mol Sci ; 21(21)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158246

RESUMO

Mesenchymal stromal cells (MSCs) have a multimodal, immunomodulatory mechanism of action and are now in clinical trials for single organ and systemic sepsis. However, a number of practicalities around source, homogeneity and therapeutic window remain to be determined. Here, we utilised conditioned medium from CD362+-sorted umbilical cord-human MSCs (UC-hMSCs) for a series of in vitro anti-inflammatory assays and the cryopreserved MSCs themselves in a severe (Series 1) or moderate (Series 2+3) caecal ligation and puncture (CLP) rodent model. Surviving animals were assessed at 48 h post injury induction. MSCs improved human lung, colonic and kidney epithelial cell survival following cytokine activation. In severe systemic sepsis, MSCs administered at 30 min enhanced survival (Series 1), and reduced organ bacterial load. In moderate systemic sepsis (Series 2), MSCs were ineffective when delivered immediately or 24 h later. Of importance, MSCs delivered 4 h post induction of moderate sepsis (Series 3) were effective, improving serum lactate, enhancing bacterial clearance from tissues, reducing pro-inflammatory cytokine concentrations and increasing antimicrobial peptides in serum. While demonstrating benefit and immunomodulation in systemic sepsis, therapeutic efficacy may be limited to a specific point of disease onset, and repeat dosing, MSC enhancement or other contingencies may be necessary.


Assuntos
Ceco/microbiologia , Coinfecção/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Sepse/terapia , Animais , Antígenos CD/metabolismo , Ceco/patologia , Ceco/cirurgia , Células Cultivadas , Coinfecção/complicações , Coinfecção/etiologia , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Modelos Animais de Doenças , Humanos , Ligadura/efeitos adversos , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Punções/efeitos adversos , Ratos , Ratos Sprague-Dawley , Sepse/etiologia , Sepse/microbiologia , Cordão Umbilical/citologia , Cordão Umbilical/metabolismo
4.
Intensive Care Med ; 46(12): 2265-2283, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32654006

RESUMO

ARDS, first described in 1967, is the commonest form of acute severe hypoxemic respiratory failure. Despite considerable advances in our knowledge regarding the pathophysiology of ARDS, insights into the biologic mechanisms of lung injury and repair, and advances in supportive care, particularly ventilatory management, there remains no effective pharmacological therapy for this syndrome. Hospital mortality at 40% remains unacceptably high underlining the need to continue to develop and test therapies for this devastating clinical condition. The purpose of the review is to critically appraise the current status of promising emerging pharmacological therapies for patients with ARDS and potential impact of these and other emerging therapies for COVID-19-induced ARDS. We focus on drugs that: (1) modulate the immune response, both via pleiotropic mechanisms and via specific pathway blockade effects, (2) modify epithelial and channel function, (3) target endothelial and vascular dysfunction, (4) have anticoagulant effects, and (5) enhance ARDS resolution. We also critically assess drugs that demonstrate potential in emerging reports from clinical studies in patients with COVID-19-induced ARDS. Several therapies show promise in earlier and later phase clinical testing, while a growing pipeline of therapies is in preclinical testing. The history of unsuccessful clinical trials of promising therapies underlines the challenges to successful translation. Given this, attention has been focused on the potential to identify biologically homogenous subtypes within ARDS, to enable us to target more specific therapies 'precision medicines.' It is hoped that the substantial number of studies globally investigating potential therapies for COVID-19 will lead to the rapid identification of effective therapies to reduce the mortality and morbidity of this devastating form of ARDS.


Assuntos
Tratamento Farmacológico da COVID-19 , Tratamento Farmacológico/tendências , Síndrome do Desconforto Respiratório/tratamento farmacológico , Antioxidantes/uso terapêutico , Ácido Ascórbico/uso terapêutico , Citrulina/uso terapêutico , Glicoproteínas/uso terapêutico , Humanos , Células-Tronco Mesenquimais , Pandemias , Peptídeos Cíclicos/uso terapêutico , Piridonas/uso terapêutico , Pirimidinas/uso terapêutico , Receptores Tipo I de Fatores de Necrose Tumoral/antagonistas & inibidores , Receptores Tipo I de Fatores de Necrose Tumoral/uso terapêutico , Esteroides/uso terapêutico , Inibidores da Tripsina/uso terapêutico
5.
Stem Cell Res Ther ; 11(1): 116, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32169108

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) demonstrate considerable promise for acute respiratory distress syndrome (ARDS) and sepsis. However, standard approaches to MSC isolation generate highly heterogeneous cell populations, while bone marrow (BM) constitutes a limited and difficult to access MSC source. Furthermore, a range of cell manufacturing considerations and clinical setting practicalities remain to be explored. METHODS: Adult male rats were subject to E. coli-induced pneumonia and administered CD362+ umbilical cord (UC)-hMSCs using a variety of cell production and clinical relevance considerations. In series 1, animals were instilled with E. coli and randomized to receive heterogeneous BM or UC-hMSCs or CD362+ UC-hMSCs. Subsequent series examined the impact of concomitant antibiotic therapy, MSC therapeutic cryopreservation (cryopreserved vs fresh CD362+ UC-hMSCs), impact of cell passage on efficacy (passages 3 vs 5 vs 7 vs 10), and delay of administration of cell therapy (0 h vs 6 h post-injury vs 6 h + 12 h) following E. coli installation. RESULTS: CD362+ UC-hMSCs were as effective as heterogonous MSCs in reducing E. coli-induced acute lung injury, improving oxygenation, decreasing bacterial load, reducing histologic injury, and ameliorating inflammatory marker levels. Cryopreserved CD362+ UC-hMSCs recapitulated this efficacy, attenuating E. coli-induced injury, but therapeutic relevance did not extend beyond passage 3 for all indices. CD362+ UC-hMSCs maintained efficacy in the presence of antibiotic therapy and rescued the animal from E. coli injury when delivered at 6 h + 12 h, following E. coli instillation. CONCLUSIONS: These translational studies demonstrated the efficacy of CD362+ UC-hMSCs, where they decreased the severity of E. coli-induced pneumonia, maintained efficacy following cryopreservation, were more effective at early passage, were effective in the presence of antibiotic therapy, and could continue to provide benefit at later time points following E. coli injury.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Pneumonia Bacteriana , Animais , Antibacterianos/farmacologia , Criopreservação , Escherichia coli , Masculino , Ratos , Cordão Umbilical
6.
Anesthesiology ; 129(3): 502-516, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29979191

RESUMO

WHAT WE ALREADY KNOW ABOUT THIS TOPIC: WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Human mesenchymal stromal cells demonstrate promise for acute respiratory distress syndrome, but current studies use highly heterogenous cell populations. We hypothesized that a syndecan 2 (CD362)-expressing human mesenchymal stromal cell subpopulation would attenuate Escherichia coli-induced lung injury and enhance resolution after ventilator-induced lung injury. METHODS: In vitro studies determined whether CD362 human mesenchymal stromal cells could modulate pulmonary epithelial inflammation, wound healing, and macrophage phagocytosis. Two in vivo rodent studies determined whether CD362 human mesenchymal stromal cells attenuated Escherichia coli-induced lung injury (n = 10/group) and enhanced resolution of ventilation-induced injury (n = 10/group). RESULTS: CD362 human mesenchymal stromal cells attenuated cytokine-induced epithelial nuclear factor kappa B activation, increased epithelial wound closure, and increased macrophage phagocytosis in vitro. CD362 human mesenchymal stromal cells attenuated Escherichia coli-induced injury in rodents, improving arterial oxygenation (mean ± SD, 83 ± 9 vs. 60 ± 8 mmHg, P < 0.05), improving lung compliance (mean ± SD: 0.66 ± 0.08 vs. 0.53 ± 0.09 ml · cm H2O, P < 0.05), reducing bacterial load (median [interquartile range], 1,895 [100-3,300] vs. 8,195 [4,260-8,690] colony-forming units, P < 0.05), and decreasing structural injury compared with vehicle. CD362 human mesenchymal stromal cells were more effective than CD362 human mesenchymal stromal cells and comparable to heterogenous human mesenchymal stromal cells. CD362 human mesenchymal stromal cells enhanced resolution after ventilator-induced lung injury in rodents, restoring arterial oxygenation (mean ± SD: 113 ± 11 vs. 89 ± 11 mmHg, P < 0.05) and lung static compliance (mean ± SD: 0.74 ± 0.07 vs. 0.45 ± 0.07 ml · cm H2O, P < 0.05), resolving lung inflammation, and restoring histologic structure compared with vehicle. CD362 human mesenchymal stromal cells efficacy was at least comparable to heterogenous human mesenchymal stromal cells. CONCLUSIONS: A CD362 human mesenchymal stromal cell population decreased Escherichia coli-induced pneumonia severity and enhanced recovery after ventilator-induced lung injury.


Assuntos
Lesão Pulmonar Aguda/terapia , Infecções por Escherichia coli/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Sindecana-2/biossíntese , Lesão Pulmonar Induzida por Ventilação Mecânica/terapia , Células A549 , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/microbiologia , Animais , Medula Óssea/metabolismo , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Ratos , Ratos Sprague-Dawley , Células U937 , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/microbiologia
7.
Crit Care Med ; 44(4): e207-17, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26584194

RESUMO

OBJECTIVE: Diverse effects of hypercapnic acidosis are mediated via inhibition of nuclear factor-κB, a pivotal transcription factor, in the setting of injury, inflammation, and repair, but the underlying mechanisms of action of hypercapnic acidosis on this pathway is unclear. We aim to examine the effect of hypercapnic acidosis on the nuclear factor-κB pathway in the setting of Escherichia coli-induced lung injury and characterize the underlying mechanisms in subsequent in vitro studies. DESIGN: In vivo animal study and subsequent in vitro studies. SETTING: University Research Laboratory. SUBJECTS: Adult male Sprague-Dawley rats and pulmonary epithelial cells. INTERVENTIONS: Following pulmonary IκBα-SuperRepressor transgene overexpression or sham and intratracheal E. coli inoculation, rats underwent 4 hours of mechanical ventilation under normocapnia or hypercapnic acidosis, and nuclear factor-κB activation, animal survival, lung injury, and cytokine profile were assessed. Subsequent in vitro studies examined the effect of hypercapnic acidosis on specific nuclear factor-κB canonical pathway kinases via overexpression of these components and in vitro kinase activity assays. The effect of hypercapnic acidosis on the p50/p65 nuclear factor-κB heterodimer was then assessed. MEASUREMENTS AND MAIN RESULTS: Hypercapnic acidosis and IκBα-SuperRepressor transgene overexpression reduced E. coli-induced lung inflammation and injury, decreased nuclear factor-κB activity, and increased animal survival. Hypercapnic acidosis inhibited canonical nuclear factor-κB signaling via reduced phosphorylative activation, reducing IκB kinase-ß activation and intrinsic activity, thereby decreasing IκBα degradation, and subsequent nuclear factor-κB translocation. Hypercapnic acidosis also directly reduced DNA binding of the nuclear factor-κB p65 subunit, although this effect was less marked. CONCLUSIONS: Hypercapnic acidosis reduced E. coli inflammation and lung injury in vivo and reduced nuclear factor-κB activation predominantly by inhibiting the activation and intrinsic activity of IκB kinase-ß.


Assuntos
Acidose Respiratória/metabolismo , Hipercapnia/metabolismo , Proteínas I-kappa B/metabolismo , NF-kappa B/metabolismo , Animais , Escherichia coli , Quinase I-kappa B/metabolismo , Lesão Pulmonar/metabolismo , Masculino , Inibidor de NF-kappaB alfa , NF-kappa B/genética , Ratos , Ratos Sprague-Dawley , Respiração Artificial , Síndrome do Desconforto Respiratório/metabolismo , Sepse , Transdução de Sinais
9.
Curr Opin Crit Care ; 22(1): 14-20, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26645555

RESUMO

PURPOSE OF REVIEW: Acute respiratory distress syndrome (ARDS) is a devastating disease process with a 40% mortality rate, and for which there is no therapy. Stem cells are an exciting potential therapy for ARDS, and are currently the subject of intensive ongoing research efforts. We review data concerning the therapeutic promise of cell-based therapies for ARDS. RECENT FINDINGS: Recent experimental studies suggest that cell-based therapies, particularly mesenchymal stem/stromal cells (MSCs), endothelial progenitor cells, and embryonic or induced pluripotent stem cells all offer considerable promise for ARDS. Of these cell types, mesenchymal stromal cells offer the greatest potential for allogeneic therapy, given the large body of preclinical data supporting their use, and the advanced state of our understanding of their diverse mechanisms of action. Although other stem cells such as EPCs also have therapeutic potential, greater barriers exist, particularly the requirement for autologous EPC therapy. Other stem cells, such as ESCs and iPSCs, are at an earlier stage in the translational process, but offer the hope of directly replacing injured lung tissue. Ultimately, lung-derived stem cells may offer the greatest hope for lung diseases, given their homeostatic role in replacing and repairing damaged native lung tissues.MSCs are currently in early phase clinical trials, the results of which will be of critical importance to subsequent translational efforts for MSCs in ARDS. A number of translational challenges exist, including minimizing variability in cell batches, developing standard tests for cell potency, and producing large amounts of clinical-grade cells for use in patients. SUMMARY: Cell-based therapies, particularly MSCs, offer considerable promise for the treatment of ARDS. Overcoming translational challenges will be important to fully realizing their therapeutic potential for ARDS.


Assuntos
Lesão Pulmonar Aguda/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Síndrome do Desconforto Respiratório/terapia , Lesão Pulmonar Aguda/diagnóstico , Lesão Pulmonar Aguda/mortalidade , Animais , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Rejeição de Enxerto , Sobrevivência de Enxerto , Humanos , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Prognóstico , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/mortalidade , Medição de Risco , Índice de Gravidade de Doença , Análise de Sobrevida , Resultado do Tratamento
10.
Thorax ; 70(7): 625-35, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25986435

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) demonstrate considerable promise in preclinical acute respiratory distress syndrome models. We wished to determine the efficacy and mechanisms of action of human MSCs (hMSCs) in the setting of acute lung injury induced by prolonged Escherichia coli pneumonia in the rat. METHODS: Adult male Sprague Dawley rats underwent intratracheal instillation of E. coli bacteria in all experiments. In Series 1, animals were randomised to intravenous administration of: (1) vehicle (phosphate buffered saline (PBS), 300 µL); (2) 1×10(7) fibroblasts/kg; (3) 1×10(7) hMSCs/kg or (4) 2×10(7) hMSCs/kg. Series 2 determined the lowest effective hMSC dose. Series 3 compared the efficacy of intratracheal versus intravenous hMSC administration, while Series 4 examined the efficacy of cryopreserved hMSC. Series 5 examined the efficacy of the hMSC secretome. Parallel in vitro experiments further assessed the potential for hMSCs to secrete LL-37 and modulate macrophage phagocytosis. RESULTS: hMSC therapy reduced the severity of rodent E. coli pneumonia, improving survival, decreasing lung injury, reducing lung bacterial load and suppressing inflammation. Doses as low as 5×10(6) hMSCs/kg were effective. Intratracheal hMSC therapy was as effective as intravenous hMSC. Cryopreserved hMSCs were also effective, while the hMSC secretome was less effective in this model. hMSC therapy enhanced macrophage phagocytic capacity and increased lung and systemic concentrations of the antimicrobial peptide LL37. CONCLUSIONS: hMSC therapy decreased E. coli induced pneumonia injury and reduced lung bacterial burden, potentially via enhanced macrophage phagocytosis and increased alveolar LL-37 concentrations.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Infecções por Escherichia coli/prevenção & controle , Transplante de Células-Tronco Mesenquimais/métodos , Pneumonia Bacteriana/prevenção & controle , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/microbiologia , Lesão Pulmonar Aguda/patologia , Animais , Carga Bacteriana , Criopreservação , Modelos Animais de Doenças , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Humanos , Infusões Intravenosas , Intubação Intratraqueal , Pulmão/microbiologia , Masculino , Fagocitose , Pneumonia Bacteriana/complicações , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Ratos Sprague-Dawley , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA